当前位置:文档之家› 直圆柱齿根弯曲疲劳强度计算

直圆柱齿根弯曲疲劳强度计算

直圆柱齿根弯曲疲劳强度计算
直圆柱齿根弯曲疲劳强度计算

机械设计试题及答案

1.在疲劳曲线上,以循环基数N0为界分为两个区:当N≥N0时,为(无限寿命区)区;当N <N0时,为(有限寿命区)区。 2.刚度是指机械零件在载荷作用下抵抗(弹性变形)的能力。零件材料的弹性模量越小,其刚度就越(小)。 3.润滑油的(油)性越好,则其产生边界膜的能力就越强;(粘度)越大,则其内摩擦阻力就越大。 4.为改善润滑油在某些方面的性能,在润滑油中加入的各种具有独特性能的化学合成物即为(添加剂)。 5.正是由于(弹性滑动)现象,使带传动的传动比不准确。带传动的主要失效形式为(打滑)和(带的疲劳破坏)。 6.蜗杆传动的主要缺点是齿面间的(相对滑动速度)很大,因此导致传动的(效率)较低、温升较高。 7.链传动水平布置时,最好(紧边)边在上,(松边)在下。 8.设计中,应根据被联接轴的转速、(转矩)和(直径)选择联轴器的型号。 9.径向滑动轴承的半径间隙与轴颈半径之比称为(相对间隙);而(偏心距)与(半径间隙)之比称为偏心率 。 10.对于普通平键,考虑到载荷分布的不均匀性,双键联接的强度按(1.5 )个键计算。 1.当所受轴向载荷通过(螺栓组形心)时,螺栓组中各螺栓承受的(轴向工作拉力)相等。2.从结构上看,带轮由(轮毂)、轮辐和(轮缘)三部分组成。 3.在直齿圆柱齿轮传动的接触疲劳强度计算中,以(节点)为计算点,把一对轮齿的啮合简化为两个(圆柱体)相接触的模型。 4.按键齿齿廓曲线的不同,花键分为(矩形)花键和(渐开线)花键。 5.请写出两种螺纹联接中常用的防松方法:(双螺母等)和(防松垫圈等)。

6.疲劳曲线是在(应力比)一定时,表示疲劳极限 与(循环次数)之间关系的曲线。 γN 7.理论上为(点)接触或(线)接触的零件,在载荷作用下,接触处局部产生的应力称为接触应力。 8.开式齿轮传动的主要失效形式是:(齿面的磨粒磨损)和(断齿)。 9.径向滑动轴承的条件性计算主要是限制压强、(速度)和(pv值)不超过许用值。10.在类型上,万向联轴器属于(无弹性元件的挠性)联轴器,凸缘联轴器属于(刚性)联轴器。 二、选择填空(每空1分,共10分) 1.下列磨损中,不属于磨损基本类型的是( 3 );只在齿轮、滚动轴承等高副零件上经常出现的是( 2 )。 (1)粘着磨损;(2)表面疲劳磨损; (3)磨合磨损;(4)磨粒磨损。 2.在通过轴线的截面内,(1 )的齿廓为直边梯形;在与基圆柱相切的截面内,(3 )的齿廓一侧为直线,另一侧为曲线。 (1)阿基米德蜗杆;(2)法向直廓蜗杆; (3)渐开线蜗杆;(4)锥蜗杆。 3、对于直齿圆柱齿轮传动,其齿根弯曲疲劳强度主要取决于(4 );其表面接触疲劳强度主要 取决于( 1 )。 (1)中心距和齿宽;(2)中心距和模数; (3)中心距和齿数;(4)模数和齿宽。 4、对于径向滑动轴承,(1 )轴承具有结构简单,成本低廉的特点;( 3 )轴承必须成对使 用。 (1)整体式;(2)剖分式; (3)调心式;(4)调隙式。 5.在滚子链传动的设计中,为了减小附加动载荷,应(4 )。 (1)增大链节距和链轮齿数;(2)增大链节距并减小链轮齿数; (3)减小链节距和链轮齿数;(4)减小链节距并增加链轮齿数。 6.对中性高且对轴的削弱又不大的键联接是( 1 )联接。

齿轮接触强度与弯曲强度

1. 齿轮接触强度计算 1.1齿轮接触的计算应力 βανεννπσK K K K u u bd F Z Z Z MPa E E R L F H A t E H red H 1)(11112 2 2121±?=-+-= 式中: A K —工况系数; νK —动载系数; αH K —接触强度的端面载荷分配系数; βK —齿向载荷分布系数; H Z —节点域系数; E Z —弹性系数; εZ 一重合度系数; 1.1.1 工况系数A K 由于齿轮的载荷特性为工作稳定状况下,故取工况系数为A K =1.0. 1.1.2 动载系数νK 由于 =15.96m/s 齿轮重合度 再根据《机械设计手册》图8-32与8.33得;

)=1.48-0.44(1.48-1.22)=1.36 1.1.3 端面载荷分配系数αH K 查表8-120得 21εαZ C K H H ? = 其中H C 查图8-34为0.865. 1.1.4 齿向载荷分布系数βK 查图8.35可得βK =1.13. 1.1.5 节点域系数H Z 式中:错误!未找到引用源。为端面分度圆压力角; 错误!未找到引用源。 为基圆螺旋角; 错误!未找到引用源。 为端面啮合角; 经计算最后得到H Z =2.254 1.1.6 弹性系数E Z 带入各值后,得E Z =189.87错误!未找到引用源。。 1.1.7 重合度系数εZ 与1.13的分母约去,不需考虑。

最后得到理论接触应力为: MPa Z mm mm N Z MPa H 67.124413 .11 865.036.11208.2208.3776.1572.7627.5265287.189254.2=???????? ??=ε εσ 1.2 接触疲劳极限lim H σ' W R V L N H H Z Z Z Z Z lim lim σσ=' 式中: 'H l i m σ表示计算齿轮的接触疲劳极限; Hlim σ表示试验齿轮的接触疲劳极限; N Z 表示接触强度的寿命系数; L Z 表示润滑剂系数; V Z 表示速度系数; R Z 表示光洁度系数; W Z 表示工作硬化系数。 1.2.1 试验齿轮的接触疲劳极限lim 1H σ 由手册中图8-38d 查得lim 2lim 1H H σσ==1690MPa 。 1.2.2 接触强度的寿命系数N Z 查表8-123得6 0102?=N , nt N e γ60= 0N N e >,取121==N N Z Z 。 1.2.3 润滑剂系数L Z 取10050=υ,由图8-40查得21L L Z Z ==1. 1.2.4 速度系数V Z 由图8-41,按V=1米/秒和MPa H 1200lim >σ查得95.021==V V Z Z 。

抗弯强度计算公式

工字钢抗弯强度计算方法 一、梁的静力计算概况 1、单跨梁形式:简支梁 2、荷载受力形式:简支梁中间受集中载荷 3、计算模型基本参数:长L =6 M 4、集中力:标准值Pk=Pg+Pq =40+40=80 KN 设计值Pd=Pg*γG+Pq*γQ =40*1.2+40*1.4=104 KN 工字钢抗弯强度计算方法 二、选择受荷截面 1、截面类型:工字钢:I40c 2、截面特性:Ix= 23850cm4 Wx= 1190cm3 Sx= 711.2cm3 G= 80.1kg/m 翼缘厚度tf= 16.5mm 腹板厚度tw= 14.5mm 工字钢抗弯强度计算 方法三、相关参数 1、材质:Q235 2、x轴塑性发展系数γx:1.05 3、梁的挠度控制〔v〕:L/250 工字钢抗弯强度计算方法 四、内力计算结果 1、支座反力RA = RB =52 KN 2、支座反力RB = Pd / 2 =52 KN 3、最大弯矩Mmax = Pd * L / 4 =156 KN.M 工字钢抗弯强度计算方法 五、强度及刚度验算结果

1、弯曲正应力σmax = Mmax/ (γx * Wx)=124.85 N/mm2 2、A处剪应力τA = RA * Sx / (Ix * tw)=10.69 N/mm2 3、B处剪应力τB = RB * Sx / (Ix * tw)=10.69 N/mm2 4、最大挠度fmax = Pk * L ^ 3 / 48 * 1 / ( E * I )=7.33 mm 5、相对挠度v = fmax / L =1/ 818.8 弯曲正应力σmax= 124.85 N/mm2 < 抗弯设计值f : 205 N/mm2 ok! 支座最大剪应力τmax= 10.69 N/mm2 < 抗剪设计值fv : 125 N/mm2 ok! 跨中挠度相对值v=L/ 818.8 < 挠度控制值〔v〕:L/ 250 ok! 验算通过! 钢板抗弯强度计算公式 钢板强度校核公式是:σmax= Mmax / Wz ≤ [σ] 4x壁厚x(边长-壁厚)x7.85 其中,边长和壁厚都以毫米为单位,直接把数值代入上述公式,得出即为每米方管的重量,以克为单位。 如30x30x2.5毫米的方管,按上述公式即可算出其每米重量为: 4x2.5x(30-2.5)x7.85=275x7.85=2158.75克,即约2.16公斤 矩管抗弯强度计算公式 1、先计算截面模量 WX=(a四次方-b四次方)/6a 2、再根据所选材料的强度,计算所能承受的弯矩 3、与梁上载荷所形成的弯矩比对,看看是否在安全范围内 参见《机械设计手册》机械工业出版社2007年12月版第一卷第1-59页

直齿圆柱齿轮传动的轮齿弯曲强度计算

直齿圆柱齿轮传动的轮齿弯曲强度计算准则 为了保证在预定寿命内齿轮不发生轮齿断裂失效,应进行轮齿弯曲强度计算。 直齿圆柱齿轮传动的轮齿弯曲强度计算准则为:齿根弯曲应力σF 小于或等于许用弯曲应力[σ F ],即 σF ≤[σF ] 轮齿弯曲强度计算公式 轮齿弯曲强度的验算公式 计算弯曲强度时,仍假定全部载荷仅由一对轮齿承担。显然,当载荷作用于齿顶时,齿根所受的弯曲力矩最大。 图 11-8 齿根危险截面 计算时将轮齿看作悬臂梁(如图11-8所示)。其危险截面可用切线法确定,即作与轮齿对称中心线成夹角并与齿根圆角相切的斜线,而认为两切点连线是危险截面位置(轮齿折断的实际情况与此基本相符)。危险截面处齿厚为。 法向力Fn 与轮齿对称中心线的垂线的夹角为 ,Fn 可分解为 使齿根产生弯曲应力,则产生压缩应力。因后者较小故通常略去不计。 齿根危险截面的弯曲力矩为 式中:K 为载荷系数;为弯曲力臂。 危险截面的弯曲截面系数W 为 故危险截面的弯曲应力为 3030F s F α1F 2F F h F σ

令 式中称为齿形系数....。因和均与模数成正比,故值只与齿形中的尺寸比例有关而与模数无关,对标准齿轮仅决定于齿数。由此可得轮齿弯曲强度的验算公式 Mpa (a) 通常两齿轮的齿形系数和并不相同,两齿轮材料的许用弯曲应力[]和[] 也不相同,因此应分别验算两个齿轮的弯曲强度。 轮齿弯曲强度设计公式 引入齿宽系数,可得轮齿弯曲强度设计公式为 mm (b) 上式中的负号用于内啮合传动。内齿轮的齿形系数可参阅有关书籍。 式(a )和(b)中为小齿轮齿数;的单位为N ·mm ;b 和m 的单位为mm ; 和[]的单位为MPa 。 式(b)中的应代入和中的较大者。 算得的模数应圆整为标准模数。 传递动力的齿轮,其模数不宜小于1.5mm 。 26( )cos ()cos F F F F h m Y s m αα=F Y F h F s F Y 1 112122[]F F F F KTY KTY bd m bm z σσ= =≤1F Y 2F Y 1F σ2F σa b a ψ=m ≥1z 1T F σF σ[]F F Y σ11[]F F Y σ2 2[]F F Y σ

基础实验-塑料弯曲强度-实验讲义

塑料弯曲强度实验 塑料弯曲实验常用作热固性脆性材料的力学性能评价。可以将其看做是冲击韧性的放大。本质上是拉伸和弯曲的复合,最终直接关系到材料的剪切强度。 【实验目的】 1.掌握塑料弯曲强度测量的基本原理 2.掌握简支梁弯曲性能的测量方法; 3.了解弯曲强度实验方法适用的材料范围。 【实验原理】 把试样支撑成横梁,使其在跨度中心以恒定速度弯曲,直到试样断裂或者变形达到预定值,测量该过程中对试样施加的压力。 4. 基本定义。 1.试验速度——speed of testing,支座与压头之间相对运动的速率,单位 mm/min 。 2.弯曲应力flexural stress Jf 试样跨度中心外表面的正应力, 按9.1 的(3) 式计算, 单位MPa 。 3.断裂弯曲应力flexural stress at break, σ fB试样断裂时的弯曲应力( 见图1 的曲线 a 和b), 单位MPa 。 4.弯曲强度flexural stretn gth, σ阳试样在弯曲过程中承受的最大弯曲应力( 见 国 1 的曲线 a 和b), 单位MPa 。 5.在规定挠度时的弯曲应力flexural stress at conventional deflection Jfc 达到 3.7 规定的挠度sc 时的弯曲应力( 见图1 的曲线C), 单位MPa 。 6.挠度deflection d 在弯曲过程中, 试样跨度中心的顶面或底面偏离原始 位置的距离, 单位mm 。 7.规定挠度conventionai deflection ,Sc规定挠度为试样厚度h 的1.5 倍, 单 位mm 。当跨度L=16h 时, 规定挠度相当于弯曲应变为 3.5% ( 见 3.8) 。 8.弯曲应变flexural strain, ε f试样跨度中心外表面上单元长度的微量变化, 用 无量纲的比或百分数(%) 表示。按9.2 的式(4) 计算。

用romax软件进行齿轮强度分析报告及齿形优化流程

用romax软件进行齿轮强度分析及齿形优化流程 (吕浚潮) 目录 1.建立流程目的 2.用romax软件建模过程 3.强度分析过程 4.齿轮优化过程 4.1 齿向优化 4.2 齿廓优化 5.结论 1.建立流程目的 用romax软件对齿轮及轴进行建模,首先进行强度分析。由于轴、轴承、齿轮的变形及受载,必然导致轮齿变形及及错位,减小单位啮合长度的最大载荷及传递误差(减小啮合噪声),对轮齿进行齿向及齿形修形,这样可以有效减小啮合线单位长度上的载荷,减小载荷突变,可减小啮合噪声。 2.用romax软件建模过程 本部分简要地阐述了用romax软件建立换挡机构的过程,按先后顺序建立轴、轴承、齿轮,然后装配到一起,最后设置边界条件,建立分析工况。具体过程如下: (1) 通过菜单栏的components按钮增加一个组(add New assemble/component),弹出图2所示对话框。 图2.1 为模型增加一个部件 (2) 首先增加一个轴组件,如图2.2,单击ok按钮。

图2.2 增加一个轴组件 (3) 建立轴各段的截面形式、直径和长度,如图2.3。 设置轴各段的长度、截面直径、圆锥方向 图2.3 建立轴各段的直径、长度及截面形式 (4)当建完轴后,点击增加轴承按钮,打开轴承增加页面,选择符合要求的轴承。

增加轴承按钮 选择轴承界面 图2.4 增加轴承界面 (5) 指定轴承安装在轴上的位置,如图2.5。 设定轴承在轴上位置 图2.5 设置轴承位置截面 (6) 按上述方法,把换挡机构的主轴、副轴全部建完。然后按图2.1,增加一个齿轮部件,如图2.6。

增加一个齿轮部件 图2.6 (7) 继第6步,出现齿轮参数选择界面,如图2.7,选择齿轮类型(直齿或斜齿),螺旋角,螺旋方向,模数,主动齿轮或被动齿轮,压力角等参数。 设置齿轮的模数、压力角、直(斜)齿、主被动形式 图2.7 齿轮参数选择界面 (8) 单击next,进入齿轮参数设置页面,设定齿轮的齿宽、变位系数、齿顶高系数、齿根高系数、齿顶倒角、齿根倒角、跨齿数等参数。

斜齿圆柱齿轮设计例题(变载荷)_校核弯曲强度

4.校核齿根弯曲疲劳强度NO 1)齿形系数: 当量齿数Z v1=Z1/cos3β=27/cos312036'12''=29 Z v2=Z2/cos3β=81/cos312036'12''=87 图12.21page229 Y Fa1=2.55 Y Fa2=2.22 应力修正系数:图12.22page230 Y Sa1=1.62 Y Sa2=1.78 重合度系数Yε:εα=[1.88-3.2(1/Z1+1/Z2)]cosβ =[1.88-3.2(1/29+1/87)]cos12036'12'' εα=1.69 Yε=0.25+0.75/εα=0.25+0.74/1.69 Yε=0.69 螺旋角系数Yβ:Yβ=max(1-εββ0/1200,1-0.25εβ,0.75) =max(1-1×12.60/1200,1-0.25×1,0.7 5) Yβ=0.9 2)载荷系数

a.齿间载荷分配系数:表12.10page217 K Fα=εα/cos2βb=1.69/cos212.60 K Fα=1.75 b.齿向载荷分布系数:图12.14page219 b/h=83/(2.25×2.5)=12.3 K Fβ=1.36 c.载荷系数:K=K A K v K FαK Fβ=1.5×1.2×1.75×1.36 K=4.28 3)许用应力: (同直齿轮例题)[σF]=σFlim Y N Y X/s Fmin a.极限应力:图12.23page231 σFlim1=600Mpa σFlim2=450M pa b.当量应力循环次数: 设3×106

齿轮弯曲应力的有限元分析

齿轮弯曲应力的有限元分析 朱彤1 摘要:本文对有限元的概念和分析方法做了介绍,利用有限元分析软件ANSYS 对UG建模的齿轮进行了分析,得出了齿轮在不同载荷下,弯曲应力的变化情况,对齿轮的设计提供了理论依据。 关键词:ANSYS;有限元;齿轮 1.有限元的基本概念 有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。用有限元法不仅能提高计算精度,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。 第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。 1作者简介:朱彤(1969-)男,苏州职业大学教师。研究方向:计算机辅助设计与制造。

为保证问题求解的收敛性,单元形状应以规则为好,内角避免出现钝角,避免出现畸形,因为畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。 简言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。 2.齿轮建模及数据转换 根据给出的齿轮参数,在UG软件中通过齿轮端面的曲线方程逐步建立起齿轮的模型图,然后再模拟出一对齿轮副的啮合模型。截取其中的三个轮齿;数据存储转换为IGES格式。用ANYSY有限元分析软件读取IGES格式的数据,通过数据转换,把模型输入到ANSYS中,对有数据丢失的模型进行修复,在ANSYS 中形成完整的模型,如图1所示。修复读入的啮合模型步骤如下:先修整模型,保留单根轮廓线,然后由线生成各部分面,面构成体,结果为三个齿条和一个齿底座,使之能在ANSYS中进行有限元分析。 3.有限元分析 对直齿圆柱齿轮定材料参数,加载,网格划分,应力分析。然后给出计算结果云图,对结果的合理性进行分析。 3.1.齿轮模型的前置处理 (1)材料属性:Structural 〉Linear〉Elastic 〉Isotropic; EX=30e6,PRXY=0.3 (2)单元类型:Structural solid > Brick 8node 45(solid45) (3)划分网格:

标准齿轮模数齿数计算公式

齿轮的直径计算方法: 齿顶圆直径=(齿数+2)*模数 分度圆直径=齿数*模数 齿根圆直径=齿顶圆直径-(4.5×模数) 比如:M4 32齿34*3.5 齿顶圆直径=(32+2)*4=136 分度圆直径=32*4=128 齿根圆直径=136-4.5*4=118 7M 12齿 中心距(分度圆直径1+分度圆直径2)/2 就是(12+2)*7=98 这种计算方法针对所有的模数齿轮(不包括变位齿轮)。 模数表示齿轮牙的大小。 齿轮模数=分度圆直径÷齿数 =齿轮外径÷(齿数-2) 齿轮模数是有国家标准的(1357-78) 模数标准系列(优先选用)1、1.25、1.5、2、2.5、3、4、5、6、8、10、12、14、16、20、25、32、40、50 模数标准系列(可以选用)1.75,2.25,2.75,3.5,4.5,5.5,7,9,14,18,22,28,36,45 模数标准系列(尽可能不用)3.25,3.75,6.5,11,30

上面数值以外为非标准齿轮,不要采用! 塑胶齿轮注塑后要不要入水除应力 精确测定斜齿轮螺旋角的新方法 ()周节 齿轮分度圆直径d的大小可以用模数(m)、径节()或周节()与齿数(z)表示 径节P()是指按齿轮分度圆直径(以英寸计算)每英寸上所占有的齿数而言

径节与模数有这样的关系: 25.4 1/8模=25.48=3.175 3.175/3.1416(π)=1.0106模 1) 什么是「模数」? 模数表示轮齿的大小。 R模数是分度圆齿距与圆周率(π)之比,单位为毫米()。 除模数外,表示轮齿大小的还有CP(周节:)与DP(径节:)。【参考】齿距是相邻两齿上相当点间的分度圆弧长。 2) 什么是「分度圆直径」? 分度圆直径是齿轮的基准直径。 决定齿轮大小的两大要素是模数和齿数、 分度圆直径等于齿数与模数(端面)的乘积。 过去,分度圆直径被称为基准节径。最近,按标准,统一称为分度圆直径。 3) 什么是「压力角」? 齿形与分度圆交点的径向线与该点的齿形切线所夹的锐角被称为分度圆压力角。一般所说的压力角,都是指分度圆压力角。 最为普遍地使用的压力角为20°,但是,也有使用14.5°、15°、17.5°、22.5°压力角的齿轮。 4) 单头与双头蜗杆的不同是什么? 蜗杆的螺旋齿数被称为「头数」,相当于齿轮的轮齿数。

齿轮弯曲强度有限元精确分析方法研究_罗齐汉

2007年第26卷9月第9期机械科学与技术 M echanical Science and Technol ogy f or Aer os pace Engineering Sep te mber Vol .262007No .9 收稿日期:2006-04 -10 作者简介:罗齐汉(1962-),男(汉),安徽,副教授,硕士,luoqihan@https://www.doczj.com/doc/7912050832.html, 罗齐汉 齿轮弯曲强度有限元精确分析方法研究 罗齐汉 1,2 ,李成刚1,厉海祥2,胡于进 1 (1华中科技大学机械科学与工程学院,武汉 430074; 2 武汉理工大学物流工程学院,武汉 430063) 摘 要:通过计算轮齿弹性共轭接触迹,确定齿轮在啮合过程中各个位置的压力角、齿廓接触长度 以及接触位置等参数。并对ANSYS 进行二次开发,制作了一个精确计算齿轮弯曲强度有限元分析的软件。运用此软件对相同参数的渐开线齿轮与点线啮合齿轮进行弯曲强度的有限元精确计算,得出点线啮合齿轮比渐开线齿轮弯曲强度提高1117%的结论。关 键 词:弯曲强度;有限元分析;点线啮合齿轮;渐开线齿轮中图分类号:TH132 文献标识码:A 文章编号:100328728(2007)0921212204 Research on Accurate AnalysisM ethod for Bendi n g Strength of Gear Usi n g Fi n ite Ele ment Analysis(FEA) Luo Q ihan 1,2 ,L i Chenggang 1,L i Haixiang 2,Hu Yujin 1 (1School ofM echanical Science and Engineering,Huazhong University of Science and Technol ogy,W uhan 430074; 2 College of Logistic Engineering,W uhan University of Technol ogy,W uhan 430063) Abstract:The para meters such as p ressure angle,contact length of t ooth p r ofile and contact regi on during gear meshing are deter m ined by calculating the contact mark of elastic conjugate teeth .Further devel opment of ANSYS p r oduces a p iece of FEA s oft w are f or calculating accurately the bending strength of gears .The bending strength of an involute gear and the point 2line meshing gear is calculated with this s oft w are .The caluclati on results show that the bending strength of the point 2line meshing gear is 1117%higher than the involute gear .Key words:bending strength;finite ele ment analysis;point 2line meshing gear;involute gear 点线啮合齿轮是一种新型的啮合传动。目前已经广泛应用于起重、运输、冶金、矿山、化工等行业的减速器中[1] 。点线啮合齿轮传动项目1999年1月通过湖北省省级鉴定,2000年3月荣获武汉市发明一等奖,2001年12月荣获湖北省发明三等奖。同时,此新型齿轮作为一项创新性的科技产品,已经被国家科技部批准为“国家九五重点推广项目”进行推广。它还被机械行业、齿轮行业最有权威的《中国机械设计大典》、《齿轮传动设计手册》和大学教 科书《机械设计》作为一种新齿轮体系而列入[2] 。 传统方法计算渐开线轮齿的弯曲强度是以刘易斯公式为基础,将轮齿视为悬臂梁,并用霍菲尔30°切线法确定齿根危险截面位置,近似认为载荷F n 全部作用于齿顶,且只由一个轮齿承受。这种方法只 能近似地计算渐开线齿轮计算轮齿的弯曲强度,对于点线啮合齿轮这种方法误差较大,而且在齿轮啮合过程中,作用在齿面上的载荷是随着齿轮的转动而使齿面载荷位置和分布发生变化,进而引起齿根弯曲应力发生变化。对于高速齿轮来说,由此而产生的动载荷是不容忽视的。载荷的波动也使得最大应力载荷点在事先无法确定。因此,对于高速重载齿轮必须计算出整个啮合过程中轮齿齿根弯曲应力分布过程,找出其中的应力最大值,从而满足动强度与可靠性计算要求。我们通过对齿轮接触迹的计算,得到有限元所需要的各个位置的实际载荷分布情况,利用目前应用最为广泛的CAE 软件ANSYS 分别对渐开线齿轮及点线啮合齿轮进行有限元分析比较,准确计算出两种齿轮应力变化情况,并找到最

齿轮强度计算公式

第7节 标准斜齿圆柱齿轮的强度计算 一. 令狐采学 二. 齿面接触疲劳强度计算 1. 斜齿轮接触方式 2. 计算公式 校核式: 设计式: 3. 参数取值说明 1) Z E---弹性系数 2) Z H---节点区域系数 3) ---斜齿轮端面重合度 4) ---螺旋角。斜齿轮:=80~250;人字齿轮=200~350 5) 许用应力:[H]=([H1]+[H2])/2 1.23[H2] 6) 分度圆直径的初步计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: a) 初取K=Kt b) 计算dt c) 修正dt 三. 齿根弯曲疲劳强度计算 1. 轮齿断裂 2. 计算公式校核式: 设计式: 3. 参数取值说明 1) Y Fa 、YSa---齿形系数和应力修正系数。Zv=Z/cos3YFa 、YFa 2) Y ---螺旋角系数。 3) 初步设计计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: d) 初取K=Kt e) 计算mnt [] H t H E H u u bd KF Z Z σεσα≤±=1 1[]32 1112 ??? ? ??±≥H H E d t t Z Z u u T K d σψ[]3 2121cos 2F sa Fa d n Y Y z Y KT m σεψβα β≥[] 32 121cos 2F sa Fa d t nt Y Y z Y T K m σεψβα β≥

f) 修正mn 第8节 标准圆锥齿轮传动的强度计算 一. 作用:用于传递相交轴之间的运动和动力。 二. 几何计算 1. 锥齿轮设计计算简化 2. 锥距 3. 齿数比: u=Z2/Z1=d2/d1=tan 2=cot 1 4. 齿宽中点分度圆直径 dm/d=(R-0.5b)/R=1-0.5b/R 记R=b/R---齿宽系数R=0.25~0.3 dm=(1-0.5R)d 5. 齿宽中点模数 mn=m(1-0.5R) 三. 受力分析 大小: Ft1=2T1/dm1(=Ft2) Fr1=Ft1tan cos Fa2) Fa1=Ft1tan sin 1(=Fr2) 方向: 四. 强度计算 1. 齿面接触疲劳强度计算 1)计算公式: 按齿宽中点当量直齿圆柱齿轮计算,并取齿宽为0.85b ,则: 以齿轮大端参数代替齿宽中点当量直齿圆柱齿轮参数,代入 n 1 n 2 相交轴 n 2 两轴夹角900 n 1 2 2 2122212 21Z Z m d d R +=+= d 1 d m b R d m2 d 2 δ1 δ2 O C 2 C 1 A 2 A 1 q Fr α δ Fa Fn Ft Fa1 Fr 2 2 1 n 1 Fa2 Fr 1 Ft 1 Ft 2 []H v v v v H E H u u bd KT Z Z σσ≤+=1 85.023 1 1

齿轮强度校核的新方法(图文)

齿轮强度校核的新方法(图文)论文导读:使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的依据,实现变速器齿轮的计算机辅助设计,可以加快设计进程、缩短研制周期、提高设计质量。本文应用了APDL,即ANSYS参数化设计语言(ANSYSParametricDesignLanguage),设计直齿圆柱齿轮模块以及应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。关键词:ANSYS,直齿圆柱齿轮,接触应力,齿根弯曲应力 0引言 齿轮作为在机械结构中经常用到的重要的传动零件,其强度直接影响到整个机械结构的工作性能和寿命,然而在传统齿轮设计中,齿轮的强度校核过程和设计过程主要是通过人工设计完成,计算繁琐,设计周期长且难以实现优化设计。 本文采用有限元分析法对渐开线标准圆柱直齿轮进行接触应力和齿根弯曲应力进行分析计算。并且在有限元分析中,对AYSYS[1]软件进行二次开发,即应用了APDL[2]语言,自动实现了齿轮的参数精确建模,自适应网格划分和有限元强度分析。 最后和传统经典方法进行了对比分析,证明了本方法的准确性。具有实际操作性和推广价值。论文发表。 1.齿轮强度分析的基本要求 在机械专业中,减速机是主要的重要的传动机构,而齿轮传动是其中最常见的实现方式。论文发表。因此齿轮零件的设计就显得尤为重要。

其中齿轮应力强度校核是齿轮结构设计的前提,只有相互啮合的齿轮通过了接触和弯曲强度校核计算,才能进行齿轮结构设计。当然相互啮合的齿轮种类十分繁杂。这里我们为方便起见,只考虑渐开线标准圆柱直齿轮的问题。 传统的应力强度校核计算十分烦琐,需要查阅机械设计手册中大量的数据(包括图形和图表)。而传动机构中往往是多对齿轮啮合,其中有一对不符合要求,整个计算就得重来,耗费了设计者大量的精力。因此借助计算机及相应软件完成对齿轮的优化设计十分必要。使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的依据,实现变速器齿轮的计算机辅助设计,可以加快设计进程、缩短研制周期、提高设计质量。 本文应用了APDL,即ANSYS参数化设计语言(ANSYS Parametric Design Language),设计直齿圆柱齿轮模块以及应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。 2.问题研究的主要方法及实例 本文以ANSYS软件为平台,以直齿圆柱齿轮为实例,研究了在ANSYS 环境下实现直齿轮精确建模和应力分析的方法,并与弹性力学和机械手册的计算结果进行了比较。 2.1ANSYS软件介绍 ANSYS是一个大型通用有限元软件。在机械结构系统中.主要在于分析机械结构系统受到负载后产生的力学效应.如位移、应力、变形等.根据该结果判断是否符合设计要求。

弯曲变形的强度条件和强度计算

弯曲变形的强度条件和强度计算 当梁受到一组垂直于其轴线的力即横向力或位于轴线平面内的外力偶作用时,梁的轴线由一条直线变为曲线,称为弯曲变形。如果梁的几何形状材料性能和外力都对称于梁的纵向对称面则称为对称弯曲。如果梁变形后的轴为形心主惯性平面内的平面曲线则称为平面弯曲。本课程中主要研究以对称弯曲为主的平面弯曲,如图1所示。 图1 平面弯曲 一、梁弯曲时的内力——剪力和弯矩 梁的横截面上有两个分量——剪力和弯矩,它们都随着截面位置的变化而变化,可表示为F S=F S(x)和M=M (x),称为剪力方程和弯矩方程。 为了研究方便,通常对剪力和弯矩都有正负规定:使微段梁发生顺时针转动的剪力为正,反之为负,如图2所示;使微段梁上侧受拉下侧受压的弯矩为正,反之为负,如图3所示。 图2 剪力的正负 图3 弯矩的正负 例1:试写出下图所示梁的内力方程,并画出剪力图和弯矩图。

解:( 1 )求支反力 = ∑C M:0 3 10 12 6= ? - - ? Ay F,kN 7 = Ay F = ∑Y:0 10= - +By Ay F F,kN 3 = By F (2)列内力方程 剪力: ? ? ? < < - < < = 6 3 kN 3 3 kN 7 ) ( S x x x F 弯矩: ? ? ? ≤ ≤ ≤ ≤ ? - ? - = 6 3 3 m kN ) 6(3 m kN 12 7 ) ( x x x x x M (3)作剪力图和弯矩图 二、梁弯曲时的正应力 在一般情况下,梁的横截面上既有弯矩又有剪力。若梁上只有弯矩没有剪力,称为纯弯曲。本讲主要讨论纯弯曲时横截面上的应力——正应力。梁横截面上的正应力大小与该点至中性轴的距离成正比,即正应力沿截面宽度均匀分布,沿高度呈线性分布,如图4所示。 图4 梁弯曲时的正应力分布图 即有y I x M z ) ( = σ(1)

齿轮传动的强度设计计算

1. 齿面接触疲劳强度的计算 齿面接触疲劳强度的计算中,由于赫兹应力是齿面间应力的主要指标,故把赫兹应力作为齿面接触应力的计算基础,并用来评价接触强度。齿面接触疲劳强度核算时,根据设计要求可以选择不同的计算公式。用于总体设计和非重要齿轮计算时,可采用简化计算方法;重要齿轮校核时可采用精确计算方法。 分析计算表明,大、小齿轮的接触应力总是相等的。齿面最大接触应力一般出现在小轮单对齿啮合区内界点、节点和大轮单对齿啮合区内界点三个特征点之一。实际使用和实验也证明了这一规律的正确。因此,在齿面接触疲劳强度的计算中,常采用节点的接触应力分析齿轮的接触强度。强度条件为:大、小齿轮在节点处的计算接触应力均不大于其相应的许用接触应力,即: ⑴圆柱齿轮的接触疲劳强度计算 1)两圆柱体接触时的接触应力 在载荷作用下,两曲面零件表面理论上为线接触或点接触,考虑到弹性变形,实际为很小的面接触。两圆柱体接触时的接触面尺寸和接触应力可按赫兹公式计算。 两圆柱体接触,接触面为矩形(2axb),最大接触应力σHmax位于接触面宽中线处。计算公式为: 接触面半宽:

最大接触应力: ?F——接触面所受到的载荷

?ρ——综合曲率半径,(正号用于外接触,负号用于内接触) ?E1、E2——两接触体材料的弹性模量 ?μ1、μ2——两接触体材料的泊松比 2)齿轮啮合时的接触应力 两渐开线圆柱齿轮在任意一处啮合点时接触应力状况,都可以转化为以啮合点处的曲率半径ρ1、ρ2为半径的两圆柱体的接触应力。在整个啮合过程中的最大接触应力即为各啮合点接触应力的最大值。节点附近处的ρ虽然不是最小值,但节点处一般只有一对轮齿啮合,点蚀也往往先在节点附近的齿根表面出现,因此,接触疲劳强度计算通常以节点为最大接触应力计算点。 参数直齿圆柱齿轮斜齿圆柱齿轮 节点处的载荷为

机械设计齿轮传动设计答案解析

题10-6 图示为二级斜齿圆柱齿轮减速器,第一级斜齿轮的螺旋角1β的旋向已给出。 (1)为使Ⅱ轴轴承所受轴向力较小,试确定第二级斜齿轮螺旋角β的旋向,并画出各轮轴向力 、径向力及圆周力的方向。 (2) 若已知第一级齿轮的参数为:Z 1=19,Z 2=85,m n =5mm,020=n α,a=265mm, 轮1的传动功率P=,n 1=275 r/min 。试求轮1上所受各力的大小。 解答: 1.各力方向:见题解10-6图。 2.各力的大小:m N 045.217m N 27525.6 955095501 11?=??= ?= n P T 148.11,9811.0265 2) 8519(52)(cos 211==?+?=+= ββa z z n m ; mm 83.96cos 1 1==βz n m d ; N 883tan ,N 1663cos tan ,N 448320********* 1 1====== ββαt a t r t F F n F F d T F ; 题10-7 图示为直齿圆锥齿轮-斜齿圆柱齿轮减速器,为使Ⅱ轴上的轴向力抵消一部分,试确定一对斜齿圆柱齿轮螺旋线的方向;并画出各齿轮轴向力、径向力及圆周力的方向。 解答:齿轮3为右旋,齿轮4为左旋; 力的方向见题解10-7图。 题解10-6图 题10-6图

题10-9 设计一冶金机械上用的电动机驱动的闭式斜齿圆柱齿轮传动, 已知:P = 15 kW,n 1 =730 r/min,n 2 =130 r/min,齿轮按8级精度加工,载荷有严重冲击,工作时间t =10000h,齿轮相对于轴承为非对称布置,但轴的刚度较大,设备可靠度要求较高,体积要求较小。(建议两轮材料都选用硬齿面) 解题分析:选材料→确定许用应力→硬齿面,按轮齿的弯曲疲劳强度确定齿轮的模数→确定齿轮的参数和几何尺寸→校核齿轮的接触疲劳强度→校核齿轮的圆周速度 解答:根据题意,该对齿轮应该选用硬齿面,其失效形式以轮齿弯曲疲劳折断为主。 1. 选材料 大、小齿轮均选用20CrMnTi 钢渗碳淬火([1]表11-2),硬度为56~62HRC ,由[1]图 11-12 和[1]图11-13查得:MPa 1500,MPa 430lim lim ==H F σσ 2.按轮齿弯曲疲劳强度进行设计 (1)确定FP σ 按[1]式(11-7 P227)计算,取6.1,2min ==F ST S Y ;齿轮的循环次数: 8111038.41000017306060?=???==at n N ,取11=N Y ,则: 538MPa MPa 16 .124301m in lim 1=??== N F ST F FP Y S Y σσ (2)计算小齿轮的名义转矩T 1

齿轮弯曲强度有限元分析精确建模的探讨

第;&箍第,弩矛MEcHAmc老苎嚣差点吉镳HNo加舛甚置。鼍船2004年10月MECHANICALSCIENCEANDTECHNOII)GYuctoberzuu4 唐进元文章编号:1003-8728(2004)lO一1146JM 齿轮弯曲强度有限元分析精确建模的探讨 唐进元1,一,周长江1,吴运新1 (1中南大学机电工程学院,长沙4100r75;2重庆大学机械传动国家重点实验室,重庆400044) 摘要:根据齿轮啮合原理,建立了轮齿的精确齿形。系统探讨了加载位置、轮缘厚度、周向齿数的确定方法,分析了滚刀顶部圃角对齿根应力的影响,提出了两类平面问题的判据并予以验证。在此基础上,创建了精确的二维扣三维有限元模型,并将计算结果与各类权威标准进行对照,证明了模型的正确性。 关键词:齿轮;精确建模;有限元分析;齿根应力 中图分类号:’m114文献标识码:A AMethodforExactMod枷哩ofⅡ地B蛐m嚷ofSpllrGe盯T∞tllbyFEM TANGJin州8111”。ZHOUChan“iall只1。WUYun—xinl (1SchoolofMechallicalaIldElectricalEngineering,Cen№lSout}lUniversity,ChaJlgsha410075; 2 StateKeyLaboratoryofMechanicalTransmissions,ChongqingUniVersi哆,Chongqing40()o“) Abs打act:Exactmodeling0fgeartee出isbasedonmeshingmeory. 触ersyn幽eticallystudying出eeH-ectsofloadingpositions,rimt}lickness,circularpinionnumbersandfilletradiiofgearhobonrootsec—tionsn.esses,aiudgingf0瑚ulaofplanestressandplane8tI.ainispIDposedandverified,then2Dand3DFEMmodelsaIeaccu工atel丫esta【blished.Theresuhsshowthatourmethodisreliableandcon.ectaccor也ngtodlecomparisonswit}l山eresultsofau出耐tativemethods. KeywordS:Gearexacdvmodeling;Finiteelementmet|lod(FEM);R00tsectionstresses 现在轮齿弯曲强度的各类计算标准,大多基于k“s公式。kwis公式基于材料力学等强度悬臂梁假设,不能有效地处理齿根截面突变;由于不计纵向纤维正应力(其适用条件:∥z≤l/5),应用梁的初等弯曲理论计算轮齿应力,结果出入较大,忽略了轮齿径向载荷的影响…。Aida和Te瑚lucIli率先将保角映射理论应用到齿轮应力分析中,并用弹性力学方法研究齿轮应力。但在载荷工况及边界条件的处理上,和实际情况仍有较大差距嗡J。有限元法的出现,使齿轮应力分析变得方便,计算精度更加可靠。同传统的计算方法相比,有限元法能处理复杂的载荷工况和边界条件,较全面地反映齿轮体的应力场、齿根应力集中与轮齿变形等。 1973年,wilcox和colem蛐…应用二维有限元单齿模型研究了齿根圆角表面处的拉应力,给出了简化应力公式并验证了其可靠性。1974年,G.chabert¨1等采用二维有限元单齿模型,分析了不同齿数和齿根圆角半径的轮齿应力和变形,进而提出了计算齿根最大拉/压应力的简易公式。1983年,s.H.ch舭g【4o等使用二维有限元单齿模型,初步研究了轮齿圆角半径、轮缘厚度及支承方式对齿根应力的影 收稿日期:2003一09一16 基金项目:湖南省基金项目(02JJY2075)和机械传动国家重点实验室访阔学者基金项目(2003)资助 作者简介:唐进元(1962一)。男(汉),湖南,教授,硕士响。1990年,H.v∞E洲副等建立了二维有限元单/三齿模型,讨论了轮齿形状对内/外齿轮的齿根应力的影响。1992年,J.H.KuBng和Y.T.Y蛐g【60考虑了由标准齿条刀具生成的过渡曲线,通过平面有限元三齿模型研究了直齿啮合刚度和载荷分配率。1994年,G.B.Bibel【7’等采用2D有限元五齿模型,分析了轮缘厚度对轮齿弯曲应力的影响。1995年,Filiz和Eyerci蟛u【11应用平面有限元单齿模型,按集中力、分布力和模拟接触的3种情况,考虑模数、接触率、齿根圆角半径、压力角及齿数对轮齿应力的影响,并提出了新的齿根应力计算公式。同时,国内在齿轮的有限元分析方面也取得了一定的进展【2’9““。 上述文献模型的精确性,有待综合性考虑和进一步探讨,主要体现在如下几个方面: (1)齿根过渡曲线形状的精确计算; (2)加载位置的选择; (3)轮缘厚度对齿根应力的影响及确定; (4)考虑多对轮齿同时啮合时相邻轮齿的影响,进而确定有效周向齿数; (5)齿轮刀具顶部圆角对齿根应力的影响: (6)两类平面问题的近似性与判据。 本文基于具体计算模型,在齿形精确建模的基础上,综合分析了上述因素对齿根应力的影响,进而创建出较为精确的 有限元模型。最后,把各种计算结果作了比较,并与相关文献 万方数据

相关主题
文本预览
相关文档 最新文档