当前位置:文档之家› 电工术语 水轮机、蓄能泵和水泵水轮机

电工术语 水轮机、蓄能泵和水泵水轮机

电工术语 水轮机、蓄能泵和水泵水轮机
电工术语 水轮机、蓄能泵和水泵水轮机

电工术语水轮机、蓄能泵和水泵水轮机(一)

电工术语水轮机、蓄能泵和水泵水轮机

目次

https://www.doczj.com/doc/7818829821.html,/techstandard/showContent.asp?id=375&TechDocTypeParentID=D&Tec hDocTypeName=%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5

1主题内容与适用范围

2一般术语

3类型

4结构部件

5性能参数

6渗道参数

7试验方面

汉语索引

英文索引

附录A水轮机零部件名词术语与图样对照(参考件)

本标准参照采用国际标准IEC4(秘)104A《水轮机、蓄能泵和水泵水轮机的名词术语导则》(1993年版),以及IEC41《确定水轮机、蓄能泵和水泵水轮机水力性能的现场验收试验》(1991年版)、IEC193《水轮机模型验收试验国际规程》(1965年版)、IEC609《水轮机、蓄能泵和水泵水轮机空蚀评定》(1978年版)。

1主题内容与适用范围

本标准规定了水轮机、蓄能泵和水泵水轮机(以下总称水力机械,简称水机)的专用术语。

本标准适用于制订标准,编写和翻译手册、教材、书刊以及图纸设计等用途。

2一般术语

2.1水力机械hydraulic machinery

实现水流机械能和固体机械能之间互相转换的机械。

2.2 水轮机hydraulic turbine

把水流能量转换成旋转机械能的水力机械。

2.3 蓄能泵storage pump

抽水蓄能电站中将水从下游提升至上游的水泵。

2.4 水泵水轮机reversible turbine,pump-turbine

既可作水轮机运行又可作蓄能泵运行的水力机械,亦称可逆式水轮机。

2.5 旋转方向direction of rotation

从发电机轴端看到的转轮[叶轮]的旋转方向。贯流式水轮机则从上游向下游方向看水泵水轮机的旋转方向取水轮机工况的旋转方向。

2.6 机组unit

用于发电或抽水蓄能的水力机械和电机的组合装置。

2.7 水轮机进口测量断面inlet measuring section of turbine

测量水轮机进口水流能量的断面[图1(a)、图1(b)、图1(c)、1断面]。

2.8 水轮机出口测量断面outlet measuring section of turbine

测量水轮机出口水流能量的断面[图1(a)、图1(b)、图1(c)、2断面、图1(d)、3断面]。

2.9 蓄能泵进口测量断面inlet measuring section of storage pump

靠近吸水管或蓄能泵壳进口处的商定断面[图1(e)、图1(f)、2断面]。

2.10 蓄能泵出口测量断面outlet measuring section of storage pump

对于开敞式排流渠道,为靠近蓄能泵出口处的商定断面[图1(g)、1断面];对于封闭管道,为排水阀上游靠近蓄能泵压水室处的商定断面[图1(e)、图1(f)、1断面]。

2.11 高压测量断面high pressure measuring section

水轮机进口测量断面与蓄能泵出口测量断面(图2)。

图1(a)后击式水轮机,混凝土蜗壳,肘形尾水管

图1(b)反击式水轮机圆断面金属蜗壳

图1(c)卧式分击式水轮机

A单喷嘴

B双喷嘴

Q=Q I+Q II

图1(d)水斗式水轮机

图1(e)离心泵——卧轴

图1(f)离心泵—立轴

图1(g)轴流泵灯泡式机组

图2

2.12低压测量断面low pressure measuring section

水轮机出口测量断面与蓄能泵进口测量断面(图2)。

2.13立式、卧式和倾斜式机组vertical,horizontal and inclined unit

主轴呈铅直、水平和倾斜布置的机组。

2.14可调式水力机械regulated hydraulic machinery

用导叶、转轮[叶轮]叶片或喷嘴来调节流量的水力机械。

2.15不可调式水力机械non-regulated hydraulic machinery

不能进行流量调节的水力机械。

2.16主阀main valve

装设在压力管道和蜗壳(压水室)之间能切断水流的阀门。

3类型

3.1水轮机

3.1.1反击式水轮机reaction turbine

转轮利用水流的压力能和动能作功的水轮机。

3.1.2 混流式水轮机Francis turbine,mixed-flow turbine

轴面水流径向流入、轴向流出转轮的反击式水轮机,又称法兰西斯式水轮机。

3.1.3 轴流式水轮机axial turbine

轴面水流轴向进、出转轮的反击式水轮机。

3.1.4 轴流转桨式水轮机Kaplan turbine,axial-flow adjustable blad propeller turbine

转轮叶片可与导叶协联调节的轴流式水轮机,又称卡普兰式水轮机。

3.1.5 轴流调桨式水轮机Thoma turbine

仅转轮叶片可调节的轴流式水轮机,又称托马式水轮机。

3.1.6 轴流定桨式水轮机Propeller turbine

转轮叶片不可调的(或停机可调的)轴流式水轮机。

3.1.7贯流式水轮机tubular turbine,through flow turbine

过流通道呈直线(或S形)布置的轴流式水轮机。

3.1.8灯泡式水轮机bulb turbine

发电机置于流道中灯泡体内的贯流式水轮机(图3)。

图3

3.1.9竖井贯流式水轮机pit turbine

发电机置于流道竖井中的贯流式水轮机。

3.1.10全贯流式水轮机straight flow turbine,rim-generator unit

发电机转子直接装在转轮叶片外缘上的贯流式水轮机(图4)。

图4

3.1.11轴伸贯流式水轮机(S形水轮机)tubular turbine(S-type turbine)

具有S形流道,其主轴自流道伸出与发电机连接的贯流式水轮机(图5)。

图5

3.1.12 斜流式水轮机diagonal turbine

轴面水流以倾斜于主轴的方向进、出转轮的反击式水轮机。

3.1.13 斜流转桨式水轮机Deriaz turbine

转轮叶片可与导叶协联调节的斜流式水轮机。

3.1.14斜流定桨式水轮机fixed blade of Deriaz turbine

转轮叶片不可调的(或停机可调的)斜流式水轮机。

3.1.15冲击式水轮机impuls turbine,action turbine

转轮只利用水流动能作功的水轮机。

3.1.16水斗式水轮机Pelton turbine,scoop turbine

转轮叶片呈斗形,且射流中心线与转轮节圆相切的冲击式水轮机(图6),又称贝尔顿水轮机,或称切击式水轮机。

图6

3.1.17斜击式水轮机inclined jet turbine

转轮叶片呈碗形,且射流中心线与转轮转动平面呈斜射角度的冲击式水轮机(图7)。

图7

3.1.18双击式水轮机cross-flow turbine

转轮叶片呈圆柱形布置,水流穿过转轮两次作用到转轮叶片上的冲击式水轮机(图8)。

图8

3.2蓄能泵

3.2.1混流式(离心式)蓄能泵centrifugal storage pump,mixed-flow storage pump

轴面水流轴向流进、径向流出叶轮的蓄能泵(图9)。

图9

3.2.2轴流式蓄能泵propeller storage pump,axial storage pump

轴面水流轴向进、出叶轮的蓄能泵(图10)。

图10

3.2.3斜流式蓄能泵diagonal storage pump

轴面水流以倾斜于主轴的方向进、出叶轮的蓄能泵(图11)。

图11

3.2.4多级式蓄能泵multi-stage storage pump

水流依次流过装在一根轴上的多个叶轮的蓄能泵。

3.3水泵水轮机(又称可逆式水轮机)

3.3.1单级水泵水轮机singal stage pump-turbine

水流只流过一个转轮的水泵水轮机。

3.3.2多级水泵水轮机multi-stage pump-turbine

水流依次流过装在一根轴上的多个转轮的水泵水轮机。

3.4主阀与阀门

3.4.1蝴蝶阀butterfly valve

3.4.1蝴蝶阀butterfly valve

活门呈凸透镜状或扁平状的主阀[图12(a)]。

3.4.2 平板蝶阀biplane butterfly valve,through flow butterfly valve

活门由双平板及隔栅组成,开启时平板间可以通过水流的主阀[图12(b)]。

图12

3.4.3 圆筒阀cylindrical valve,ring gate

活门呈圆筒形,位于水轮机固定导叶和活动导叶之间,可沿水轮机轴线方向上下移动的主阀[图12(c)]。

3.4.4 球阀rotary valve,spherical valve

阀体呈球状,全开时活门与压力钢管形成一个直通流道的主阀[图12(d)]。

3.4.5 盘形阀mushroom valve,hollow-cone valve,howell-Bunger valve

活门呈盘形,一般用作排水的阀门[图12(e)]。

3.4.6 针形阀needle valve

活门呈锥状的进水阀门或卸载阀门[图12(f)]。

3.4.7 旁通阀by-pass valve

在开启主阀前,用来平衡主阀前后水压的阀门。

3.4.8直空破坏阀vacuum break valve

当导叶紧急关闭时,为减小水锤引起的真空,能自动打开补入空气的阀门。

4结构部件

4.1混流式水轮机

4.1.1埋入部件embedded component

埋入混凝土中不可拆卸的部件。

4.1.2 引水室(turbine)flume

将水引入导水机构的通流部件,又称吸入管。

4.1.3蜗壳spiral case

蜗状的有压引水室。

4.1.4座环stay ring

由上、下环和固定导叶组成的基础构件,用以传递水推力和蜗壳上部混凝土及机组重量。

4.1.5 固定导叶stay vane

连接座环上、下环的支柱,引导蜗壳水流均匀流向导叶。

4.1.6 蜗壳鼻端spiral case nose

位于蜗壳终端具有特殊形状的固定导叶。

4.1.7基础环foundation ring,discharge ring

连接底环和尾水管锥管,并在安装、大修中用于承放转轮的基础部件。

4.1.8 尾水管draft tube

位于转轮后的出水管段,借以利用转轮出口水流的位能和部分动能,又称吸出管。

4.1.9锥形尾水管conical draft tube

流道呈直锥形的尾水管。

4.1.10肘形尾水管elbow draft tube

流道呈肘形,并由锥管、肘管和扩散段组成的尾水管。

4.1.11尾水管锥管draft tube cone

与基础环相接的直锥管段。

4.1.12尾水管肘管draft tube elbow

锥管和扩散段之间的肘形弯管。

4.1.13 尾水管扩散段draft tube outlet part

肘管后的扩散形流道。

4.1.14 尾水管支墩draft tube pier

扩散段内的流线型承重支墩。

4.1.15 尾水管里衬draft tube liner

尾水管混凝土表面的钢板护面。

4.1.16 机坑里衬pit liner

水轮机机坑混凝土表面的护面。

4.1.17导水机构distributor

引导水流和调节进入转轮流量的机构(包括顶盖、底环、导叶及其操作机构等)。

4.1.18顶盖headcover,top cover

支持导叶上部轴颈及有关部件并构成过流表面的环状件。

4.1.19底环bottom ring,bottom cover

支持导叶下轴颈并构成过流表面的环状件。

4.1.20导叶guide vane,wicket gate

引导水流和调节水轮机(蓄能泵)流量的流线形零件。

4.1.21 控制环regulating ring,operating ring

把接力器的操作力传递给连杆,使全部导叶同步动作的环形件。

4.1.22 导叶臂guide vane lever,wicket gate lever

安装在导叶上轴端用以转动导叶的零件。

4.1.23 分半键split key

连接导叶和导叶臂,并传递扭矩的分半的圆柱销。

4.1.24 导叶连杆guide vanelink,wicket gate link

连接控制环和导叶臂的传动杆件。

4.1.25 导叶过载保护装置guide vane overload protection device

导叶运动受阻时的保护装置。

4.1.26 剪断销shear pin

导叶运动受阻时剪断,并可更换的零件。

4.1.27 摩擦装置friction device

当剪断销剪断时,通过摩擦力使相邻导叶和连杆避免发生撞击的装置。

4.1.28 导叶轴承guide vane bearing

支承导叶的滑动轴承。

4.1.29 导叶止推轴承guide vane thrust bearing

承受导叶重量和轴向水压力的轴承。

4.1.30 导叶轴密封guide vane stem seal

防止导叶轴承间隙漏水的密封。

4.1.31 导叶端面密封guide vane end seal

当导叶全关时,防止导叶体端面与顶盖、底环之间漏水的密封。

4.1.32 导叶立面密封guide vane seal

当导叶全关时,防止相邻导叶头尾叠合处漏水的密封。

4.1.33抗磨板facing plates,wear plates

顶盖和底环过流面上的抗磨损护面板。

4.1.34导叶限位块guide vane stop block

当导叶失控时限制导叶转动范围的零件。

4.1.35导叶接力器guide vane servomotor

供给导叶操作力的液压装置。

4.1.36 单导叶接力器individual guide vane servomotor

供给单个导叶操作力的单个液压装置。

4.1.37 推拉杆 push and pull rod,connecting rod

连接导叶接力器和控制环的传动杆。

4.1.38 调速轴regulating shaft

传递导叶接力器与控制环之间的操作力的转动轴。

4.1.39 均压管balance pipe

将转轮上冠与顶盖间的空腔和尾水管连通以减小水推力的连通管。

4.1.40 转动部件rotating component

运行时旋转的部件及其轴承和密封。

4.1.41 转轮runner

水轮机中将水流能量转换为旋转机械能的部件(水泵称叶轮)。

4.1.42 叶片blade

转轮实现能量转换的主要构件,其过流表面呈空间曲面形状(水泵称轮叶)。

4.1.43 上冠crown

固定混流式水轮机叶片上端并与主轴连接的构件。

4.1.44 下环band

固定混流式水轮机叶片下端的构件。

4.1.45 泄水锥runner cone

连接在混流式转轮上冠或轴流式转轮体下端,用以引导转轮出口水流的锥形构件。

4.1.46 转轮密封装置runner seal

转轮与相应固定部件之间的非接触式密封,用以减小漏水量。

4.1.47 转轮止漏环runner wearing ring

在转轮上冠、下环上组成转轮密封的构件。

4.1.48 固定止漏环stationary wearing ring

与转轮止漏环相对应的固定密封构件。

4.1.49 转轮减压板decompression plate

转轮上冠与顶盖之间,用以减小水推力的环板。

4.1.50 主轴main shaft

与转轮连接,传递扭矩的轴。

4.1.51 导轴承guide bearing

保持主轴中心位置,并承受径向力的轴承。

4.1.52 轴领guide bearing collar

固定在轴上,在导轴承内旋转的筒形构件。

4.1.53 轴瓦guide bearing shoe

用耐摩擦材料制成的导轴承构件。

4.1.54 轴承体guide bearing housing

支持轴瓦的导轴承构件。

4.1.55 主轴密封装置main shaft seal

用以减少主轴与固定部件之间漏水的装置。

4.1.56 检修密封stand still seal

检修主轴密封时阻止主轴与固定部件之间漏水的可膨胀式密封。

4.1.57 联轴螺栓coupling bolt

联接水轮机主轴和转轮及发电机轴的螺栓。

4.2 轴流式水轮机和斜流式水轮机。

4.2.1 转轮室runner chamber

环绕轴流式和斜流式转轮叶片外缘,并连接底环和尾水管的壳体。

4.2.2 内顶盖(支持盖)inner head cover,inner top cover

为吊出转轮,立式轴流式水轮机顶盖可分成内外两部分,其中内圈称为内顶盖。

4.2.3 转轮体runner hub

用以支承叶片并与主轴连接的转轮的中心回转体。

4.2.4 转叶机构mechanism of runner blade

装在转轮体内腔,操作叶片转动的连杆机构(包括转轮体、叶片及其操作机构等)。

4.2.5 叶片枢轴runner blade trunnion

与叶片相连接,把转叶机构的转动力矩传递给叶片的短轴。

4.2.6 转臂rocker arm

安装在叶片枢轴上使叶片转动的构件。

4.2.7 连杆link

连接转臂和操作架的杆件。

4.2.8 操作架crosshead

将接力器操作力同步传递给叶片连杆的构件。

4.2.9 转轮叶片接力器runner blade servomotor

供给转轮叶片操作力的液压部件。

4.2.10 协联装置combination device

调速器中用来保证转轮[叶轮]叶片与导叶或折向器与喷针之间协联关系的装置。

4.2.11 受油器oil head

装在转桨式水轮机上,承接来自转轮主配压阀的压力油,使转轮接力器动作的装置。

4.3 贯流式水轮机

4.3.1 外导水环outer guide ring

支持导叶轴和控制环的锥形外环,是流道外壁的一部分。

4.3.2 内导水环inner guide ring

支持导叶轴的内环,是流道内壁的一部分。

4.3.3 灯泡体bulb

位于流道中装设发电机的流线形壳体。

4.3.4 灯泡体支柱bulb support

支承灯泡体的流线形支柱。

4.4 冲击式水轮机

4.4.1 水斗bucket

过流表面呈双瓢形,是转轮实现能量转换的构件。

4.4.2 叉管branch pipe

向两个喷嘴均匀供水的分支管。

4.4.3 分流管manifold

立式冲击式水轮机中,向多个喷嘴支管均匀供水的环形管。

4.4.4 喷嘴支管bifurcation

位于喷嘴前向喷嘴供水的短管。

4.4.5 机壳housing

防止转轮水流飞溅并支承喷嘴的外壳。

4.4.6 喷嘴nozzle

形成高速射流喷射到水斗上的收缩管嘴。

4.4.7 喷针needle

装于喷嘴内腔头部呈针状的可移动部件,用以调节射流的流量。

4.4.8 折向器jet deflector

装于喷嘴前,当停机和甩负荷时,迅速偏转全部或部分射流,使之不射在水斗上的装置,又称偏流器或分流器。

4.4.9 制动喷嘴brake nozzle

为缩短停机过程,向水斗背面射流以制动转轮的附加喷嘴。

4.4.10 喷针接力器needle servomotor

供给喷针操作力的液压部件。

4.5 蓄能泵

4.5.1 吸水管suction tube

引导水流进入叶轮的管道。

4.5.2 叶轮impeller

把机械能转换成水流能量的旋转部件(水轮机称转轮)。

4.5.3 轮叶impeller blade,impeller vane

叶轮实现能量转换的主要构件(水轮机称叶片)。

4.5.4 叶轮后盖impeller back shroud

固定轮叶后端并和主轴连接的构件。

4.5.5 叶轮前盖impeller front shroud

固定轮叶前端的构件。

4.5.6 蜗室spiral housing

汇集叶轮出口水流的蜗形构件。

4.5.7 扩散管diffuser

降低水流速度,使之转换成压力能的管段。

4.6水泵水轮机*

*水泵水轮机的术语一般和水轮机通用,在作水泵工况运行时可采用蓄能泵术语。5性能参数

5.1比能

5.1.1 比能specific energy

单位质量流体所具有的机械能,是位置比能、压力比能和速度比能的总和。

E=E z+E p+E v(1)式中E——比能,J/kg;

E z——位置比能,J/kg;

E p——压力比能,J/kg;

E v——速度比能,J/kg。

5.1.2位置比能potential energy

单位质量流体相对于基准面所具有的重力势能。

E z=gz (2)式中g——重力加速度,m/s2;

z——相对于基准面的高度,m。

5.1.3 压力比能pressure energy

单位质量流体所具有的压力能。

(3)式中ρ——流体密度,kg/m3;

p——流体压力,Pa。

5.1.4 速度比能velocity energy

单位质量流体所具有的动能。

E v=v2/2 (4)式中v——平均流速,m/s。

5.2 水头

5.2.1 位置水头potential head

相应于位置比能的水头。

H z=E z/g=Z (5)

水轮机、水泵及辅助设备课程考核说明及期末复习指导(精)

水轮机、水泵及辅助设备课程考核说明及期末复习指导 (水利水电工程专业专科) 中央广播电视大学 2003.5

一、关于课程考核的有关说明 《水轮机、水泵及辅助设备》是中央广播电视大学水利水电工程专业专科限修的一门专业课。本教材针对水利水电工程专业的各不同专业方向所编写,适合于水利水电动力工程、水利建筑工程与农业水利工程方向,各专业方向根据要求选学不同的内容。具体要求参考文字教材的使用说明。 1. 考核对象 中央广播电视大学高等专科水利水电工程专业开放教育试点的学生。 2. 考核方式 本课程采用平时作业考核和期末考试相结合的考核方式,满分为100分,及格为60分。其中期末考试成绩占考核总成绩的80%;平时作业考核成绩占考核总成绩的20%。 平时作业以各章的自我检测题和习题为主,由辅导教师按完成作业的质量进行评分。学员平时作业的完成、阅改情况由中央电大和省电大分阶段进行检查。 期未考试由中央电大统一命题,统一组织考试。 3. 命题依据 本课命题依据1999年6月审定通过的{开放教育试点水利水电工程专业(专科)水轮机、水泵及辅助设备课程教学大纲}和为本专业编写的多种媒体教材,包括:文字教材:由陈德新、杨建设主编的《水轮机、水泵及辅助设备》;录像教材:由杨建设主讲的录像教材,共20讲,10学时;CAI课件(光盘):《水轮机、水泵及辅助设备辅助教学课件》。 本考核说明是考试命题的基本依据。 4. 考试要求 本课程考核的要求与课程教学总体要求相一致。即:牢固掌握基本概念,充分理解基本工作原理,正确掌握基本计算方法。 本考核说明对各章内容规定了考核知识点和考核要求,考试按了解、理解和掌握三个层次提出学生应达到的考核标准。 5. 命题原则

水轮机的结构和原理(+笔记)

水轮机 水轮机+ 发电机:水轮发电机组 功能:发电 水泵+ 电动机:水泵抽水机组 功能:输水 水泵+ 水轮机:抽水蓄能机组。 功能:抽水蓄能 水轮发电机组:水轮机是将水能转变为旋转机械能,从而带动发电机发出电能的一种机械,是水电站动力设备之一。 第一节水轮机的工作参数 水轮发电机组装置原理图 定义:反映水轮机工作状况特性值的一些参数,称水轮机的基本参数。 由水能出力公式:N=9.81ηQH可知,基本参数:工作水头H(m)、流量Q(m3/s)、出力N(kw)、效率η,工作力矩M、机组转速n。 一、水头(head):作用于水轮机的单位水体所具有的能量,或单位重量的水体所具有的势能,更简单的说就是上下游的水位差,也叫落差。142米 1. 毛水头(nominal productive head) H M=E U-E D=Z U - Z D 2. 反击式水轮机的工作水头

毛水头 - 水头损失=净水头 H G =E A - E B =H M - h I -A 3. 冲击式水轮机的水头 H G =Z U - Z Z - h I-A 其中Z U 和Z Z 分别为上游和水轮机喷嘴处的水位。 4. 特征水头(characteristic head) 表示水轮机的运行范围和运行工况的几个典型水头。 最大工作水头: H max =Z 正-Z 下min -h I-A 最小工作水头: H min =Z 死-Z 下max -h I-A 设计水头(计算水头) H r :水轮机发额定出力时的最小水头。 平均水头: H av =Z 上av -Z 下av 二、流量(m 3/s)(flow quantity):单位时间内通过水轮机的水量Q 。单机12.2m 3/s Q 随H 、N 的变化:H 、N 一定时, Q 也一定; 当H =H r 、N =N 额时,Q 为最大。 在H r 、n r 、N r 运行时,所需流量Q 最大,称为设计流量Q r 三、出力 (output and):水轮机主轴输出的机械效率。N(KW): 指水轮机轴传给发电机轴的功率。 水轮机的输入功率 (水流传给水轮机的能量),即水流效率,与a.作用于水轮机的有效水头;b.单位时间通过水轮机的水量,即流量Q ;c.水体容重γ成正比。其公式为:QH QH N w 8.9==γ γ指水体容重(即单位容积水所具有的重力,比重): 水的比重=1000kg/m 3、G=9.8N/Kg γ=9800N/m 3 )(8.9)/(9800)/(9800)()/()/(33kw QH s J QH s m N QH m H s m Q m N N w ==?=??=γ 水轮机的输出功率:ηηQH N N w 8.9== 四、效率(efficiency ):输入水轮机的水能与水轮机主轴输出的机械能之比,又叫水轮机的机械效率、能量转换效率。η

水泵水轮机特点

天荒坪抽水蓄能电站 水泵水轮机特点 华东天荒坪抽水蓄能有限责任公司游光华 浙江安吉313302 摘要天荒坪抽水蓄能电站的水泵水轮机组由挪威KVAERNER公司提供,是我国较早从国外引进的大型可逆式机组,自首台机组投产至今已有7年多。本文总结分析了水泵水轮机7年多的运行中出现了一些问题,以供参考借鉴。 主题词天荒坪抽水蓄能水泵水轮机性能“S”形特性不稳定轴向水推力抬机导叶关闭规律 天荒坪抽水蓄能电站安装有6台300MW水泵水轮机组,为单级、立轴、混流可逆式,额定净水头为526米,运行毛水头(扬程)为526米~610.2米,水轮机安装高程为225米,淹没深度为-70米,是目前国内已投产运行的水头和变幅最大的单级可逆式机组,在国际上也较罕见,为使其达到满意的效率和良好的运行稳定性,设计难度大,没有现成的经验可供借鉴。水泵水轮机的参数如下: 水轮机工况:水泵工况:额定容量:306MW 333MW 最大轴出力(入力):338MW 333MW 额定流量:67.7m3/s 58.80m3/s(最大) 43.00m3/s(最小) 额定转速:500RPM 500RPM 旋向(俯视):顺时针逆时针 转轮水轮机进口直径:4030mm 转轮水轮机出口直径:2045mm

最大瞬态飞逸转速:720 r/min 最大稳态飞逸转速:680 r/min 水泵水轮机及其辅助设备由挪威GE 公司提供。水泵水轮机大修拆卸方式采用中拆方式。首台机组于1998年9月30日投入运行,2000年12月25日所有机组投产,投产以来运行情况表明,机组性能良好,效率较高,但也出现了一些问题,在技术人员的努力下,通过采取措施,相关问题已得到了较好的解决。 1水泵水轮机的性能和结构特点 1.1效率 按照合同规定,水泵水轮机的效率按照模型试验来验收,合同要求水轮机工况的最高效率≥92.20%,加权平均效率≥90.41%,水泵工况最高效率≥ 91.70%,加权平均效率≥ 91.52%。根据模型试验报告,水轮机工况的模型最优效率为90.61%,折算为原型其整个运行范围内的最优效率为92.28%,加权平均效率为90.317%,而水泵工况下模型最优效率为89.84%,折算原型最优效率为92.17%,加权平均效率为92.01%,除水轮机工况加权平均效率略低于保证值0.083%外,其余均达到合同要求。为了检验真机效率,我们于2001年5月在5号机组上进行了部分水头(扬程)的热力法效率试验,测得水轮机工况下在试验平均净水头566.23 m时,机组出力为210~304.06 MW,水轮机最高效率为92.11%,相应机组出力272.00 MW;水泵工况试验平均净扬程为542.09 m,水泵平均效率为88.99%。从上述结果可以看出,水轮机工况的最高效率已接近模型推算值,水泵工况效率偏

水泵水轮机资料

宁蓄电站水泵水轮机 采用单级、单速、混流可逆式水泵水轮机。由瑞士苏尔寿爱雪维斯(SEWZ)设计、制造和配套供应。 一水泵水轮机主要参数: 转轮直径: 2248 mm 转轮叶片数: 9 最大毛水头: 271 m 最小毛水头: 240 m 极端运行最小毛水头: 236.6 m 额定水头: 240 m 额定流量: 19.6 m3/s 额定转速: 600 r/min 额定出力: 41.5 MW 瞬态飞逸转速: 885 r/min 稳态飞逸转速: 830 r/min 吸出高度: -23 m 水轮机工况最优比转速: 90.3 mkw 水泵工况最优比转速:144.6 mkw 机组俯视旋转方向:水轮机工况逆时针方向;水泵工况顺时针方向 最大轴向水推力: 113t(包括所有转动部分的重量) 二水泵水轮机主要结构特征 1总体布臵形式 1.1 水泵水轮机型式为立轴、单级、混流可逆式水泵水轮机,水轮机轴通过中间轴与发电电动机连接。 1.2 和常规水轮机类似,本电站水泵水轮机也是由可拆卸部件既转轮、主轴、水导轴承、轴承支座、顶盖、导水叶、导水叶操作机构、接力器、主轴密封装臵和预埋部件既蜗壳、座环/底环、尾水管、机坑里衬等组成。其中可拆卸部件可利用厂房内起吊设备及机坑内起吊设备通过水轮机机坑旁侧通道进行拆卸,既能实现“中拆”方式。 下面将介绍上述各组成部件的构造、作用、工作原理、参数、安全监测装臵等内容:2.1 转轮 我厂水泵水轮机是立轴、单级、混流可逆式。它是水能转变为机械能又是将机械能转变为水能的部件。其主要尺寸材料如下: 转轮直径: 2248mm 材料: A743CrCA6NM 叶片数: 9片水轮机工况转向:逆时针方向 重量: 5.25吨上迷宫环间隙: 0.8 mm 下迷宫环间隙: 0.8 mm 转轮采用不锈钢铸焊结构,另外在转轮的上冠和下环设有止漏环,止漏环采用与转轮一同整体铸造的结构,转轮拆装用厂家提供的专用工具。 2.2 主轴 水泵水轮机轴和中间轴的直径均为Ф500mm,用优质锻钢锻制而成。材料为A688CL.D。水轮机轴重量为3.15吨,中间轴重量为3.95吨。 水泵水轮机轴一端联接转轮,另一端联接中间轴;中间轴两端都带有连接发兰,分别与水轮机轴和发电机轴联接。所有连接面均涂有金刚砂以增加摩擦,所有联接螺栓均经预应力处理并用LOCTITE粘接剂固定以防松脱。 水泵水轮机轴与中间轴的接合面高程为34.98m,中间轴与发电机轴的接合面高程为37.05m。水泵水轮机轴与中间轴配有拆装专用工具,可以从水轮机机坑侧道拆出。 2.3主轴密封 主轴密封是水轮机结构中重要组成部分,它的作用是通过顶盖在主轴处设臵主轴密封,以防止水泵水轮机转动部件与固定部件之间的漏水。主轴密封分工作密封和检

水泵水轮机全特性..

水泵水轮机全特性 1.水泵水轮机全特性曲线 抽水蓄能电站的水泵水轮机均设有活动导叶,通过导叶调节水轮机运行时的流量,故水泵水轮机的特性曲线一般为一组不同导叶开度下的全特性曲线,其区域的划分与水泵的全特性区域划分一样,只是习惯上以正常水轮机运行工况的各参数为正。同时抽水蓄能电站一般H 也总是正值,即在实际工程中实用也就是5个工况区,即水轮机工况、水轮机制动工况、水泵工况、反水泵工况、水泵制动工况。 水泵水轮机全特性曲线表示方法通常采用1111~n Q 和1111~n M 来表示。图3-7和图3-8所示为某抽水蓄能电站水泵水轮机的四象限特性曲线。 图3-7 水泵水轮机流量特性曲线 图3-8 水泵水轮机力矩特性曲线

2.水泵水轮机全特性曲线的特点 通过对不同水泵水轮机的全特性分析可以看出,水泵水轮机全特性有着下述的规律与特点: (1)在水泵工况,大开度等导叶开度曲线汇集成一簇很窄的交叉曲线,说明在此区域水泵扬程与导叶开度的关系不大,开度的改变不会造成单位转速及单位力矩的很大的变化。当导叶开度较小区域时随着导叶开度的减小其流量曲线及力矩曲线则加速分又,说明此时的导水机构可看作是节流装置,水头损失急剧增大,从而对水泵的力矩及流量产生较大的影响。在水泵实际运行中导叶开度将随着扬程的变化而沿各导叶开度特性曲线的外包络线变化,使得水力损失最小,也即使得水泵的效率在此工况最高。此外,随着单位转速的增大,也即水泵扬程的减小,水泵的流量及水力矩将快速增大,所以在水泵及电动机设计时应充分考虑此时水泵的力矩特性,电动机容量应根据可能的正常运行最低扬程工况进行设计,并留有一定的裕量;同时根据导叶小开度区域力矩分散的特性,在异常低扬程起动时(如初次向上水库异常低扬程充水时)可采取关小导叶开度来限制其水力矩,即限制水泵的入力在一定范围以内。

水轮机、水泵及辅助设备模拟卷(精选)

试卷代号:2051 福建广播电视大学2015—2016学年度第1学期“开放专科”模拟卷 水轮机、水泵及辅助设备试题纸(开) 请将答案写在答题纸上 2016年1月 一、判断题(共20分,每小题2分,对的打√,锚的打×) 1、水轮机工作水头是水电站库水位与尾水位之差。() 2、混流式水轮机应用水头在几十米到数百米之间。() 3、50-200m的水电站既可使用混流式水轮机,也可使用斜流式水轮机。() 4、灯泡式水轮机不是一种全贯流式水轮机。() 5、.双击式水轮机是反击式水轮机的一种。() 6、斜流式水轮机是冲击式水轮机的一种。() 7、反击式水轮机的流道可以是开敞式的。() 8、对于同系列水轮机尺寸越大效率越高。() 9、水轮机等开度线的形状与其比转速有关。() 10、甲水轮机空化系数与水轮机的装置空化系数是同一个概念。() 二、选择题(共20分,每小题2分) 1、冲击式水轮机是靠( )做功的。 A水流的动能B水流的动能与势能 2、反击式水轮机转轮是( )。 A整圆周进水B部分圆周进水 3、水轮机输出有效功率的必要条件是( )。 A进口环量必须大于0 B进口环量必须大于出口环量 4、轴流式水轮机中水流的( )转轮的轴线方向一致。 A绝对速度B轴面速度 5、水轮机的空化系数。是水轮机( )的相对值。A动态真空B静态真空 6、尾水管补气的目的是( )。 A减轻尾水管的压力脉动B消除叶片空化 7、低水头电站采用混凝土蜗壳的原因是( )。 A水流状态好B径向尺寸小,经济 8、混凝土蜗壳的断面为( )。 A圆形断面B梯形断面 9、导水机构调节流量的实质是( )。 A改变导叶出口面积B改变导叶出口水流角度 10、水头高于40米的水轮机采用( )。 A混凝土蜗壳B金属蜗壳 三、简答题(共36分,每题6分) 1、简述水电站的生产过程及主要设备的名称及作用? 2、轴流转桨式水轮机有哪些主要部件?其作用是什么? 3、高比转速水轮机用于高水头电站有什么问题? 4、水电站中使用哪些油品?其作用是什么? 5、定桨式水轮机与转桨式水轮机有什么区别? 6、简述间隙空化原因及易生部位? 四、计算题(共24分,每题12分) 1、某水电站上游水位=1000m ? 上 ,下游水位=950m ? 下 ,水轮机的单位流量3 Q=20m/s,引水管损头h=1m ?,假定水轮机的效率=90% η,发电机的效率g =0.96 η,试求该水轮机的出力P与发电机的出力 g P。注:水轮机的工作水头g H=H h -?, g H为毛水头。 2、水电站水轮机的工作水头为100m,流量为2303 m/s,机组的出力为 201.35MW,发电机的效率 g =0.97 η,求水轮机的出力P与效率η。 《水轮机、水泵及辅助设备》试题第1页(共2页)《水轮机、水泵及辅助设备》试题第2页(共2页)

水轮机英语

2.1 水力机械 hydraulic machinery 2.2 水轮机 hydraulic turbine 2.3 蓄能泵 storage pump 2.4 水泵水轮机 reversible turbine,pump-turbine 2.5 旋转方向 direction of rotation 2.6 机组 unit 2.13 立式、卧式和倾斜式机组 vertical,horizontal and inclined unit 2.14 可调式水力机械 regulated hydraulic machinery 2.15 不可调式水力机械 non-regulated hydraulic machinery 2.16 主阀 main valve 3.1 水轮机 3.1.1 反击式水轮机 reaction turbine 3.1.2 混流式水轮机 Francis turbine,mixed-flow turbine 3.1.3 轴流式水轮机 axial turbine 3.1.4 轴流转桨式水轮机Kaplan turbine,axial-flow adjustable blad propeller turbine 3.1.5 轴流调桨式水轮机 Thoma turbine 3.1.6 轴流定桨式水轮机 Propeller turbine 3.1.7 贯流式水轮机 tubular turbine,through flow turbine 3.1.8 灯泡式水轮机 bulb turbine 3.1.9 竖井贯流式水轮机 pit turbine 3.1.10 全贯流式水轮机 straight flow turbine,rim-generator unit 3.1.11 轴伸贯流式水轮机(S形水轮机) tubular turbine(S-type turbine) 3.1.12 斜流式水轮机 diagonal turbine 3.1.13 斜流转桨式水轮机 Deriaz turbine 3.1.14 斜流定桨式水轮机 fixed blade of Deriaz turbine 3.1.15 冲击式水轮机 impuls turbine,action turbine 3.1.16 水斗式水轮机 Pelton turbine,scoop turbine 3.1.17 斜击式水轮机 inclined jet turbine 3.1.18 双击式水轮机 cross-flow turbine 3.2 蓄能泵 3.2.1 混流式(离心式)蓄能泵 centrifugal storage pump,mixed-flow storage pump 3.2.2 轴流式蓄能泵 propeller storage pump,axial storage pump 3.2.3 斜流式蓄能泵 diagonal storage pump 3.2.4 多级式蓄能泵 multi-stage storage pump 3.3 水泵水轮机(又称可逆式水轮机) 3.3.1 单级水泵水轮机 singal stage pump-turbine 3.3.2 多级水泵水轮机 multi-stage pump-turbine 3.4 主阀与阀门 3.4.1 蝴蝶阀 butterfly valve 3.4.2 平板蝶阀 biplane butterfly valve,through flow butterfly valve 3.4.3 圆筒阀 cylindrical valve,ring gate 3.4.4 球阀 rotary valve,spherical valve 3.4.5 盘形阀 mushroom valve,hollow-cone valve,howell-Bunger valve

水泵、水轮机讲义资料

第一章 概述 1.基本概念 (1)什么叫水轮机? 答:将水能转变为旋转机械能的水力原动机叫做水轮机。 (2)冲击式水轮机与反击式水轮机的区别。 答:工作原理方面: 利用水流的势能与动能做功的水轮机为反击式水轮机;利用水流的动能做功的水轮机为冲击式水轮机。 流动特征方面: 反击式水轮机转轮流道有压、封闭、全周进水;冲击式水轮机转轮流道无压、开放、部分进水。 结构特征方面也显著不同。如转轮的差别,有无喷嘴、尾水管。 (3)反击式水轮机的过流部件及其作用 引水室:作用是引水流进入导水机构。 导水机构:作用是调节水轮机过流量,并使水流能按一定方向进入转轮。 转轮:将水流能量转换为固体旋转机械能量的部件。 尾水管:作用是将水流排下下游,并回收转轮出口的剩余动能。 (4)冲击式水轮机的主要部件 喷嘴:水轮机自由射流的形成装置。 喷针:与喷嘴共同完成流量控制(以行程变化喷嘴控制喷嘴出口过流面积)。 转轮:由轮盘和轮盘外周均匀排列的水斗构成的组件,转换水流能量为固体旋转 机械能。 折向器:自由射流流程内部件,可遮断射流,以防止转轮飞逸。 (5)我国关于水轮机标准直径的定义 混流式:转轮叶片进水边上最大直径。 浆叶式(轴流式、斜流式、贯流式):浆叶转动轴线与转轮室相交处直径。 冲击式:射流中心线与转轮相切处节圆直径。 (6)水轮机工作参数 工作水头H :水轮机的进口和出口处单位重量水流的能量差值。 流量Q :单位时间内通过水轮机的水流体积。 转速n :水轮机转轮单位时间内旋转的次数。 出力P :水轮机轴端输出的功率。 效率η:水轮机的输入与输出功率之比。 2.基本计算 (1)水电站的毛水头g H : d u g Z Z H -= 其中:u Z ,d Z 分别为电站上、下游水位高度。 (2)水电站的工作水头H :

第三节水轮机模型综合特性曲线

第三节水轮机模型综合特性曲线 水轮机主要综合特性曲线是指以单位转速和单位流量为纵、横坐标而绘制的若干组等值曲线,这些等值线表示出了同系列水轮机的各种主要性能。在图中常绘出下列等值线:①等效率线;②导叶(或喷针)等开度线;③等空化系数线;④混流式水轮机 的出力限制线;⑤转桨式水轮机转轮叶片等转角线。这种主要综合特性曲线一般由模型试验的方法获得,因此,又称为模型综合特性曲线。不同类型的水轮机,其模型综合特性曲线具有不同的特点,掌握它们的特点,对于正确选择水轮机及分析水轮机的性能是很重要的。下面说明几种水轮机模型综合特性曲线的特点。 一、混流式水轮机模型综合特性曲线 图8-6为某混流式水轮机模型综合特性曲线,它由等效率曲线、等开度线、等空化系数线与出力限制线所构成。 图8-6 混流式水轮机模型综合特性曲线 同一条等效率线上各点的效率均等于某常数,这说明等效率线上的各点尽管工况不同,但水轮机中的诸损失之和相等,因此水轮机具有相等的效率。 等开度线则表示模型水轮机导水叶开度为某常数时水轮机的单位流量随单位转速的改变而发生变化的特性。

等空化系数线表示水轮机各工况下空化系数的等值线,等空化系数线上各点尽管工况不同,其空化系数却相同。由于模型水轮机的空化系数大多是通过能量法空化试验而获得的,因此,尽管等空化系数线上的工况点具有相同的空化系数,但它们的空化发生状态可能是不相同的。 混流式水轮机模型综合特性曲线上通常标有5%出力限制线,它是某单位转速下水轮机的出力达到该单位转速下最大出力的95%时各工况点的连线。绘制出力限制线的目的是考虑到水轮机在最大出力下运行时,不可能按正常规律实现功率的调节,而且,在超过95%最大功率运行时,效率随流量的增加而降低,且效率降低的幅度超过流量增加的幅度,因此水轮机的出力反而减小了,从而使调速器对水轮机的调节性能较差。为了避开这些情况,并使水轮机具有一定的出力储备,因此,将水轮机限制在最大出力的95%(有时取97%)范围内运行。 二、转桨式水轮机模型综合特性曲线 轴流定桨式水轮机及其他固定叶片的反击式水轮机,其模型综合特性曲线与混流式水轮机具有相同的形式。 图8-7为某轴流转桨式水轮机模型综合特性曲线。轴流转桨或斜流转桨式水轮机的叶片可以改变角度,当水轮机的工作水头或负荷发生变化时,通过协联机构使叶片角度作相应的改变,从而保持水轮机具有良好的工作效率,这种运行方式称为协联方式。转桨式水轮机模型综合特性曲线上标有等效率线、等开度线、等叶片转角线。 图 8-7轴流转桨式水轮机模型综合特性曲线 转桨式水轮机的等效率线是水轮机在协联方式下工作时的效率等值线。它是水轮机在不同叶片角下各同类水轮机等效率线的包络线。 等开度线则表示在协联方式下,导水叶开度为某常数而叶片角度不同时,水轮机单位流量与单位转速之间的关系,它代表了水轮机在协联方式工作下的过流特性。 等叶片转角线则是同一叶片转角下各所对应的最高效率点的连线。 由等线与等线可以找出导水开度与叶片转角的最佳协联关系。 转桨式水轮机的等空化系数线是各角下的同类水轮机的等线与等线的一系列交点中,相同值的连线。 转桨式水轮机具有宽广的高效率区,在相当大的单位流量下不出现流量增加而出力减少的情况,因此一般不绘出5%出力限制线。而水轮机的最大允许出力常受到空化条件的限制。 三、冲击式水轮机模型综合特性曲线

水泵水轮机选型(已看)

国产抽水蓄能机组水泵—水轮机选型中 若干问题探讨 高道扬 天津市天发重型水电设备制造有限公司 摘要:本文着重分析了可逆式水泵—水轮机模型转轮及抽水蓄能电站水泵—水轮机主要技术参数的特点,并在此基础上提出根据抽水蓄能电站水泵—水轮机的技术要求初步筛选水泵—水轮机模型转轮及水泵—水轮机方案的方法。 随着我国社会主义建设事业的发展,特别是电力工业的飞速发展,抽水蓄能电站的建设高潮已经到来,在国家有关政策的坚强支持下,抽水蓄能机组国产化、本土化的工作业已全面展开。因此如何根据可逆式水泵—水轮机模型转轮的主要技术特点并在抽水蓄能电站对水泵—水轮机技术要求的基础上优选水泵—水轮机模型转轮及水泵—水轮机方案已成为众多水泵—水轮机选型工作者的首要工作,作者根据多年工作经验对选型工作中的若干问题作一初步探讨。 1 水泵—水轮机模型转轮主要技术参数特点 叶片式水力机械具有可逆性,即它既可以做水轮机运行也可以做水泵运行,但是由于中、高比速的水轮机进口角β1T较大,当它反向旋转做水泵工况运行时,由于出口角太大,导致水流的不稳定,在H-Q曲线上出现多处大驼峰并且泵工况的效率比正常水轮机工况大幅下降,因而中、高比速水轮机显然不适合作为可逆式水泵——水轮机转轮的研究基础(70年代初北京密云电站曾用HL211-LJ-225水轮机做反向旋转的泵工况现场实验未能取得满意效果)。理论分析和实验证明具有较长叶片和缓慢扩散流道的离心泵叶轮,其泵的叶片出口水流角β2P较小,出口相对流速W2P和绝对流速V2P都较小,因而水流进入涡壳后水力损失较小,当离心泵反转做水轮机运行时进口相对流速W1T也比较小,符合常规水轮机要求,因而离心泵叶轮在水泵工况和水轮机工况都有较好的性能,现代可逆式水泵—水轮机转轮就是以离心泵叶轮为基础逐步发展起来的。 1.1水泵—水轮机模型转轮与常规水轮机模型转轮相比具有以下特点:由于混流式水轮机的β1T较大,其(V1u/U1)T约为0.9,而离心泵的β2P较小,(V2u/U2)P约为0.6,由此可以推算出在同样的水头和转速条件下,可逆式水泵—水轮机的转轮直径约为常规水轮机转轮直径的 1.4倍,即:D P/D T=1.4。在同一额定水头下,水泵—水轮机与水轮机模型转轮比转速n s(m kw)相近,但单位转速为水轮机的1.25~1.3倍,而单位流量为水轮机的0.6~0.65倍。 1.2水泵—水轮机模型转轮的水泵工况与水轮机工况相比,在通常条件下,由于高压边速度三角形既不相等亦不相似(泵工况出口因为水流的偏转出口水流角β2p比安放角βd小一些,而水轮机工况进口在无撞击的条件下,进口角βIT与βd相等),因而经实验研究及理论分析证明两种工况具有以下特点: 1.2.1 在最优工况点,水泵工况的单位转速是水轮机工况的单位转速 1.10~1.18倍,即n10P/n10T=1.10~1.18(理论分析为1.12~1.16)。 139

水利水电专业水轮机水泵及辅助设备试题

水利水电专业水轮机、水泵及辅助设备试题一、判断题(对打√,错打X,共15分) 注:水动方向做全部(每题1分);其他专业方向做1—10题(每题L 5分) 1. 水轮机的工作水头等于水电站的毛水头。( ) 2.水轮机的效率是水轮机的轴功率与输入水轮机的水流功率之比。( ) 3.反击式水轮机流道中的压力是保持不变的。( ) 4.冲击式水轮机流道中的压力保持不变。·( ) 5.水轮机转轮中的水流运动是牵连运动与相对运动的合成。( ) 6.空化是在高温状态下由于液体内部发生的汽化现象。( ) 7.翼型空化只发生在反击式水轮机中。( ) 8.泥沙多的水流容易发生空化,( ) 9.水轮机尺寸越大效率越高。( ) lo.蜗壳中实际的水流不是轴对称的。( ) 11.水泵出口水流环量必须大于进口环量才能向高处扬水。( ) 12.水泵的相似率与水轮机的相似率实质是相同的。( ) 13.任何水电站都必须设置机组的进水阀。( ) 14.水电站的用油分透平油与绝缘油两类。( ) 15。水轮机调速器能调节机组有功功率,也能调节无功功率。( ) 二、单项选择题(每小题L 5分,共15分) 1.冲击式水轮机是靠( )做功的。 A.水流的动能B.水流的动能与势能 2.反击式水轮机转轮是( )。 A.整圆周进水的B.部分圆周进水 3.水轮机输出有效功率的必要条伺:是( )。 A.进口环量必须大于0 B.进口环量必须大于出口环量 4.轴流式水轮机中水流的( )和转轮的轴线方向一致。 A.绝对速度 B. 轴面速度 5.水轮机的空化系数。是水轮机( )的相对值。 A.动态真空 B. 静态真空 6.尾水管补气的目的是( )。 A.减轻尾水管的压力脉动 B.消除叶片空化 7.水轮机模型综合特性曲线以( )作为坐标参数。 A.n11,Q11B.H,P 8.混凝土蜗壳的断面为( )。 A. 圆形断面B.梯形断面 9.导水机构调节流量的实质是( )。 A.改变导叶出口面积 B. 改变导叶出口水流角度 10.尾水管相对损头与( )。 A. 水轮机的比转速有关 B.水轮机工作水头有关 三、简答题(每小题10分,共30分) 注:水动方向可从中任选三题,其他专业方向做前三题 1.简述水电站的生产过程及主要设备的名称及作用? 2.轴流转桨式水轮机有哪些主要部伺:?其作用是什么? 3.简述间隙空化原因及易发部位? 4.水电站中使用哪些油品?其作用是什么? 5.机械式水轮机调速器由哪几大部分构成?其作用各是什么? 四、计算题(每小题20分,共40分) 一、判断题(对打√,错打X,共15分)

叶片式水力机械的全特性(Q-H)

叶片式水力机械的全特性(Q ~H 坐标) (1)转速为正(n >0)时轴流式机组特性曲线。如图3-3(a )所示,曲线AB 段的H 、Q 、n 、M 均为正值,则QH >0,ωM P =>0,由工况定义知,AB 为水泵工况。BC 段的Q 、n 、M 为正,H 为负,则QH <0,水流经过转轮后能量减少,ωM P =>0,转轮输入功率,此为制动工况。C 点M =0,亦即P =0,QH <0,为飞逸工况,水流流经转轮减少的能量用于克服飞逸时的机械损耗。C 点以下的Q 、n 为正,H 、M 为负,则QH <0,水流能量减少,ωM P =<0,转轮向外输出功率,此为水轮机工况。不过这时的水流由尾水管流向蜗壳,是倒冲式水轮机工况,一般称为反水轮机工况。A 点以左,Q 为负值,其它参数均为正值,则QH <0,ωM P =>0,亦为制动工况。所以n 为某一正值时,水力机组自左至右经历了制动工况、水泵工况、制动工况及反水轮机工况四个工作状态。 图3-3 三种转速下水力机组的全特性曲线 (2)转速为零(n =0)时轴流式机组的特性曲线。此时水力机组在循环管道上实际上就成为局部阻力,因此,不管流量是正还是负,水流流经转轮后能量总是减少的,也不管扭矩是正还是负,因为转速为零,所以功率也必为零。故当转速为零时,整个特 性曲线上的工况均为制动工况,转轮处的局部损失22 2KQ g v h ==?ζ,所以()Q f H =曲线亦为抛物线,又因QH <0,则H 为正时,Q 必为负,反之亦然,故()Q f H =曲线贯穿于Ⅱ、Ⅳ象限,如图3-3(b )所示,但此抛物线不是水力机组相似工况点的抛物线。水流对转轮的作用力矩等于水流进出转轮的动量(mv )的变化量,由此可知,力矩的大小与流量的平方成正比,所以()Q f M =亦是一抛物线,其方向当n =0时,水头为正,

IEC 60193 水泵水轮机模型验收规程 标准译文 (1)

目录前言 目次 1总则 1.1范围和目的 1.1.1范围 1.1.2目的 1.2引用文献 1.3术语、定义、符号和单位 1.3.1概述 1.3.2单位 1.3.3术语、定义、符号和单位表 1.4与水力性能有关的保证值的性质和范围1.4.1概述 1.4.2模型试验法验证的主要水力性能保证值1.4.3模型试验法不能验证的保证值 1.4.4附加性能数据 2试验的执行 2.1试验安装和模型的要求 2.1.1试验室选择 2.1.2试验装置安装 2.1.3模型要求 2.2模型和真机的尺寸检查 2.2.1概述 2.2.2需检查的模型和真机的尺寸 2.2.3表面的波浪度和粗糙度 2.3水力相似、试验条件和试验程序 2.3.1水力相似 2.3.2试验条件 2.3.3试验程序 2.4测量方法介绍 2.4.1主要水力性能保证值的测量 2.4.2附加数据与测量 2.4.3数据的采集和处理 2.5物理性质 2.5.1概述 2.5.2重力加速度 2.5.3水的物理性质

2.5.4大气的物理性质 2.5.5水银密度 国际标准IEC60193由IEC TC4即水轮机技术委员会编制。 第二版IEC60193将取消和替代1965年出版的第一版IEC60193及其补充1(1977),IEC60193A(1972)以及IEC60497(1976)和IEC60995(1991)。 本标准的第1至第3章覆盖了上述出版物,第十章给出。 3附加内容 本标准的文本基于下列文献: 上表的表决报告给出了本标准表决标准的所有情况。 附录B、F、G、K、L和M内容是本标准不可分割的一部分。 附录A、C、D、E、H、J、N和P是供参考内容。

水泵的特性曲线

2-4离心泵的特性曲线 一、离心泵的特性曲线 压头、流量、功率和效率是离心泵的主要性能参数。这些参数之间的关系,可通过实验测定。离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线(characteristic curves)。以供使用部门选泵和操作时参考。 特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,图2-6为国产 4B20型离心泵在n=2900r/min时特性曲线。图上绘有三种曲线,即 1.H-Q曲线 H-Q曲线表示泵的流量Q和压头H的关系。离心泵的压头在较大流量范围内是随流量增大而减小的。不同型号的离心泵,H-Q曲线的形状有所不同。如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。 2.N-Q曲线 N-Q曲线表示泵的流量Q和轴功率N的关系,N随Q的增大而增大。显然,当Q=0时,泵轴消耗的功率最小。因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。 3.η-Q曲线 η-Q曲线表示泵的流量Q和效率η的关系。开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。该曲线最大值相当于效率最高点。泵在该点所对应的压头和流量下操作,其效率最高。所以该点为离心泵的设计点。 选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区,如图2-6波折线所示。高效率区的效率应不低于最高效率的92%左右。泵在铭牌上所标明的都是最高效率下的流量,压头和功率。离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。 二.离心泵的转数对特性曲线的影响 离心泵的特性曲线是在一定转速下测定的。当转速由n1改变为n2时,其流量、压头及功率的近似关系为

水轮机专用中英文对照

水轮机、蓄能泵和水泵水轮机的专用中英文对照术语及简单名称解释 2一般术语 2.1水力机械 hydraulic machinery 2.2 水轮机 hydraulic turbine 2.3 蓄能泵 storage pump 2.4 水泵水轮机 reversible turbine,pump-turbine 2.5 旋转方向 direction of rotation 2.6 机组 unit 2.13立式、卧式和倾斜式机组vertical,horizontal and inclined unit 2.14可调式水力机械 regulated hydraulic machinery 2.15不可调式水力机械 non-regulated hydraulic machinery 2.16主阀 main valve 3.1水轮机 3.1.1反击式水轮机 reaction turbine 3.1.2 混流式水轮机 Francis turbine,mixed-flow turbine 3.1.3 轴流式水轮机 axial turbine 3.1.4 轴流转桨式水轮机 Kaplan turbine,axial-flow adjustable blad propeller turbine 3.1.5 轴流调桨式水轮机 Thoma turbine 3.1.6 轴流定桨式水轮机 Propeller turbine 3.1.7贯流式水轮机 tubular turbine,through flow turbine 3.1.8灯泡式水轮机 bulb turbine 3.1.9竖井贯流式水轮机 pit turbine 3.1.10全贯流式水轮机 straight flow turbine,rim-generator unit 3.1.11轴伸贯流式水轮机(S形水轮机) tubular turbine(S-type turbine) 3.1.12 斜流式水轮机 diagonal turbine 3.1.13 斜流转桨式水轮机 Deriaz turbine 3.1.14斜流定桨式水轮机fixed blade of Deriaz turbine 3.1.15冲击式水轮机impuls turbine,action turbine 3.1.16水斗式水轮机Pelton turbine,scoop turbine 3.1.17斜击式水轮机inclined jet turbine 3.1.18双击式水轮机cross-flow turbine 3.2蓄能泵 3.2.1混流式(离心式)蓄能泵centrifugal storage pump,mixed-flow storage pump 3.2.2轴流式蓄能泵 propeller storage pump,axial storage pump 3.2.3斜流式蓄能泵 diagonal storage pump 3.2.4多级式蓄能泵 multi-stage storage pump 3.3水泵水轮机(又称可逆式水轮机) 3.3.1单级水泵水轮机 singal stage pump-turbine 3.3.2多级水泵水轮机 multi-stage pump-turbine 3.4主阀与阀门 3.4.1蝴蝶阀butterfly valve 3.4.2 平板蝶阀 biplane butterfly valve,through flow butterfly valve 3.4.3 圆筒阀 cylindrical valve,ring gate 3.4.4 球阀 rotary valve,spherical valve 3.4.5 盘形阀 mushroom valve,hollow-cone valve,howell-Bunger valve 3.4.6 针形阀 needle valve

水泵水轮机结构介绍(精)

广州蓄能水电厂水泵水轮机结构介绍 肖苏平 一.简介 广州蓄能水电厂分二期建设,一、二期工程分别安装4×300MW可逆式水泵水轮机,单机容量(发电工况300MW,总装机容量2400 MW。一期(称A厂工程于1994年全部建成。二期(称B厂工程于1999年全部建成。一、二期工程于2000年3月全部投产。8×300MW 机组投产后,已成为当今世界最大的抽水蓄能电厂。 可逆式水泵水轮机在抽水、发电起动,停机操作灵活方便,在电网峰荷时放水发电,在低谷负荷时利用系统多余的电能抽水,在电网中起到了填谷调峰的积极作用,使系统中的所有各种电站的负荷趋于均匀,提高了整个电力系统的经济运行。 本电站两期工程共装设八台可逆式水泵水轮机。每台机组设备包括:水泵水轮机、调速系统、进水球阀、尾水事故闸门以及相应的操作控制系统,各种连接管路、阀门、管件、表计、自动化元件、控制电缆、备品、专用工具、实验设备等。A厂水泵水轮机由法国Neyrpic 公司承制、供货,B厂由德国Voith承制、供货。 电站工程主要特征数据如下: 上库水位:正常蓄水位 816.8 m 最低蓄水位 797.0 m 下库水位:正常蓄水位 287.4 m 最低蓄水位 275.0 m 电站毛水头:最大水头 541.8 m 额定水头 522.0 m

最小水头 509.6 m 二.水泵水轮机基本参数 水泵水轮机为竖轴单级、可逆、法兰西斯式,具有可调导水机构,与电动发电机轴直接连接。A、B厂水泵水轮机主要参数如下: A厂 B厂 额定转速:水轮机工况 500 r/min 500 r/min 水泵工况 500 r/min 500 r/min 旋转方向(俯视:水轮机工况为顺时针 水泵工况为反时针转轮直径:进口直径 3886mm 3802 mm 出口直径 2312mm 2090 mm 额定出力:水轮机工况 306 MW 308 MW 水泵工况 330 MW 330 MW 水轮机最大出力: 306 MW 352 MW 水轮机额定流量: 62.88m/s 65.95m/s 水轮机最大流量: 68.7m/s 72.92m/s 水泵最大流量: 60.03m/s 57.3m/s 水泵最小流量: 53.73m/s 50.6m/s 水泵水轮机总重: 450 t 转动惯量GD2: 3600t.m2 轴向最大水推力:正常运行时,水轮机工况 1500 kN 水泵工况 1500 kN

水泵水轮机型式及比转速选择

水泵水轮机型式及比转速选择 作者:福建省水利水电勘测设计研究院陈绍钢 摘要:长泰抽水蓄能电站装机1 800 MW,最大动扬程896 m,如采用单级混流可逆水泵水轮机并按统计公式计算其水泵比转速为27.59 m.m3/s,显然偏低。当采用2级水泵水轮机时水泵比转速可达37.3 m.m3/s,此时机组的效率可进步、尺寸减小、土建投资也可减少。2级可调导叶混流可逆水泵水轮机比不可调导叶的机组出力可进步15%;水泵起动时可封闭导叶,起动功率只有最大功率的15%,而不可调导叶的将达65%~70%。长泰抽水蓄能电站经综合比较初步推荐2级可调导叶混流可逆式水泵水轮机,单机容量300 MW。该种机组目前国内外尚无实例。在建的韩国一抽水蓄能电站,水头816 m,装机4台,单机容量为250 MW,选用2级可调导叶混流式可逆机组,将于2001年投产。 关键词:水泵水轮机;比转速;超高水头;长泰抽水蓄能电站 1工程概况 长泰抽水蓄能电站位于福建省漳州市长泰县陈港镇,距漳州市35 km,上库位于吴田山顶部,下库利用已建活盘水库,上、下库水平间隔3 887 m,高差871 m,电站一期装机600 MW,二期再装机1 200 MW。 2单机容量选择 电站装机规模大,若采用单机容量200 MW,则总装机需9台,一般情况台数多设备多土建投资也大。目前国内制造高水头大容量的抽水蓄能机组尚有困难,主机设备需从国外引进,这种水头高、单机容量大于300 MW的机组在国外也较少,故一期工程初拟单机容量300 MW,装机2台。 3机组机型选择 电站一期净水头为849~880 m,动扬程871~882 m,最大动扬程与最小净水头之比为882/849=1.039;二期工程最大动扬程与最小净水头之比为869/847=1.058。根据电站净水头和动扬程的变幅,初拟机型为单转速混流可逆式水泵水轮机。 采用2级水泵水轮机可以减少转轮沉没深度,可采用较高的比转速以获得较高的效率。2级可调水泵水轮机在国外80年代初已完成模型试验,但由于结构复杂和设备价格较贵,一般要比单级可调贵30%~40%。所以尚未在实际工程中应用。90年代随着科学技术水平的进步及结构的改进,2级可调水泵水轮机在技术上的难度已逐渐减小,设备的差价也逐渐缩小,已进进实用期阶段。 日立公司以为单级转轮的应用水头上限为800~900 m,超过此限度后转轮的结构强度难于保证,但目前超800 m水头的还未实践过。一般水头超过600~700 m 以上时,单级水泵水轮机效率已经较低,但由于高水头综合效率较高,700 m左右仍有采用单级水泵水轮机的。采用2级水泵水轮机主要优点在于把机组每级水头降低,由于每一级水头只是总水头的一半,可以减小脉动压力;转轮圆周速度也大大降低,对转轮强度设计将更有利;转轮直径也可以减小,叶片高度可以增大,更有利于转轮叶片的加工制造;吸出高度Hs值与单级水泵水轮机相比可差15 m左右,即可以进步机组安装高程15 m;由于转轮直径减小,厂房总体尺寸也可减少30%左右,土建投资可大量减少。 选用2级可调水泵水轮机与采用2级不可调固定导叶的水泵水轮机设备相比价格约贵10%,成套机组设备约贵5%,但2级可调水泵水轮机还具有很多优点:在水轮机工况运行时,能根据系统需要调节水轮机的出力;机组可以利用超发来获得

相关主题
文本预览
相关文档 最新文档