当前位置:文档之家› 水泵水轮机特点

水泵水轮机特点

水泵水轮机特点
水泵水轮机特点

天荒坪抽水蓄能电站

水泵水轮机特点

华东天荒坪抽水蓄能有限责任公司游光华

浙江安吉313302

摘要天荒坪抽水蓄能电站的水泵水轮机组由挪威KVAERNER公司提供,是我国较早从国外引进的大型可逆式机组,自首台机组投产至今已有7年多。本文总结分析了水泵水轮机7年多的运行中出现了一些问题,以供参考借鉴。

主题词天荒坪抽水蓄能水泵水轮机性能“S”形特性不稳定轴向水推力抬机导叶关闭规律

天荒坪抽水蓄能电站安装有6台300MW水泵水轮机组,为单级、立轴、混流可逆式,额定净水头为526米,运行毛水头(扬程)为526米~610.2米,水轮机安装高程为225米,淹没深度为-70米,是目前国内已投产运行的水头和变幅最大的单级可逆式机组,在国际上也较罕见,为使其达到满意的效率和良好的运行稳定性,设计难度大,没有现成的经验可供借鉴。水泵水轮机的参数如下:

水轮机工况:水泵工况:额定容量:306MW 333MW

最大轴出力(入力):338MW 333MW

额定流量:67.7m3/s 58.80m3/s(最大)

43.00m3/s(最小)

额定转速:500RPM 500RPM

旋向(俯视):顺时针逆时针

转轮水轮机进口直径:4030mm

转轮水轮机出口直径:2045mm

最大瞬态飞逸转速:720 r/min

最大稳态飞逸转速:680 r/min

水泵水轮机及其辅助设备由挪威GE 公司提供。水泵水轮机大修拆卸方式采用中拆方式。首台机组于1998年9月30日投入运行,2000年12月25日所有机组投产,投产以来运行情况表明,机组性能良好,效率较高,但也出现了一些问题,在技术人员的努力下,通过采取措施,相关问题已得到了较好的解决。

1水泵水轮机的性能和结构特点

1.1效率

按照合同规定,水泵水轮机的效率按照模型试验来验收,合同要求水轮机工况的最高效率≥92.20%,加权平均效率≥90.41%,水泵工况最高效率≥ 91.70%,加权平均效率≥ 91.52%。根据模型试验报告,水轮机工况的模型最优效率为90.61%,折算为原型其整个运行范围内的最优效率为92.28%,加权平均效率为90.317%,而水泵工况下模型最优效率为89.84%,折算原型最优效率为92.17%,加权平均效率为92.01%,除水轮机工况加权平均效率略低于保证值0.083%外,其余均达到合同要求。为了检验真机效率,我们于2001年5月在5号机组上进行了部分水头(扬程)的热力法效率试验,测得水轮机工况下在试验平均净水头566.23 m时,机组出力为210~304.06 MW,水轮机最高效率为92.11%,相应机组出力272.00 MW;水泵工况试验平均净扬程为542.09 m,水泵平均效率为88.99%。从上述结果可以看出,水轮机工况的最高效率已接近模型推算值,水泵工况效率偏

低,我们认为主要是水泵工况的试验扬程较低所致。因测量范围有限和测量误差,我们不能全面判断最高效率和加权平均效率能否达到模型试验的推算结果,但从多年来的抽水电量与发电电量统计表明,全厂的综合效率接近80%,由此可反映机组的效率比较高。

1.2汽蚀

合同要求水泵水轮机汽蚀量为机组运行3000小时转轮材料的失重量不大于2公斤。据统计,目前失重最多的一台机组运行12000小时,汽蚀补焊焊条约4.0公斤,汽蚀性能优于合同规定。我们现场检查发现,汽蚀一般发生在转轮叶片的水泵工况进口,且多发生在正压面,由此推断汽蚀多由水泵工况运行产生,说明水泵工况的汽蚀性能比水轮机工况要差。

1.3振动

合同要求水泵水轮机的大轴相对振动(即大轴摆度)不大于150μm,顶盖垂直振动不大于 1.8mm/s。据运行资料,1#水泵水轮机大轴摆度较大,发电工况约为240μm,抽水约为160μm ,3#、4#水泵水轮机发电工况次之,约为170μm,其余机组、工况均小于150μm。最新的《水轮发电机组安装技术规范GB/T8564-2003》规定大轴运行摆度应小于导轴承总间隙的75%。天荒坪电站水导轴承的总间隙为0.40~0.50mm左右,照此标准,只要大轴运行摆度小于300μm即符合规范要求。顶盖垂直振动基本小于合同要求。

1.4机组结构特点

天荒坪抽水蓄能电站的水泵水轮机由蜗壳、座环(含固定导叶)、

导叶及导水机构、水导轴承、顶盖、主轴密封(含检修密封)、主轴、中间轴、转轮、底环、尾水管等部件组成,水泵水轮机检修的拆卸方式设计为中拆方式,水车室机墩开有宽5.8米的运输孔,转轮、顶盖等水轮机大件从水轮机层拆出,从球阀吊孔吊运至安装间,而不影响发电机的检修工作,但是在机墩开孔较大将在一定程度上影响机墩的结构强度。天荒坪电站也保留了部分下拆的方式,尾水直锥管可以从尾水管拆出,底环能够下落至尾水管混凝土基础上,导叶、迷宫环等可以直接拆出更换,抗磨板可以直接修补而不需拆卸顶盖和大轴,这样节省了检修时间。从投产至今,我厂抗磨板修补和抬机后更换上迷宫环的检修工作均采用下拆方式,目前我厂还未用过中拆的方式检修机组。设计认为,机组采用下拆方案将增加尾水管的噪音和振动,事实上,天荒坪机组的尾水管噪音在离尾水管1米处的噪音为100db左右。因尾水管非人员长期工作区,对人员不会造成大的伤害。从目前机组运行来看,我们未发现因尾水管振动原因造成设备损坏的情况。2投产以来出现的问题和解决办法

2.1机组低水头空载运行不稳定

模型试验报告显示,在低于560m水头的空载开度(约为4~6°)下,机组处于或接近全特性的“S”区运行,机组出现不稳定。由于制造厂当时对该问题认识不足,设计上未采取任何措施,导致1#机组投产试运行期间,当水头较低空载运行时转速来回摆动,自动并网困难、发电并网后出现逆功率跳机、机组甩负荷后不能转至空载稳定运行而跳机等现象,为此制造厂借鉴国外有关电厂的经验,在水泵水

轮机的5#、18#导叶上加装了两套非同步预开装臵,设定当水头低于560水头、发电空载启动或发电转调相时,当导叶开度处于2~10°时投入,或者当机组发电甩负荷后也立即投入,此时这两只导叶开度在其它导叶开度的基础上再增加26°的开度,但不能超过32°。采取此措施后,基本解决了上述机组低水头空载不稳定的现象,但是非同步预开装臵投入时,水轮机的摆度、振动和噪音将增大,因为投入时间短,对机组短期运行危害不大,长期运行影响需要监测总结。

2.22#机组转动部分向上抬起

2003年初,2#机组检修后调试期间,晚峰发电发生200MW转300MW 运行时转动部分抬起的现象。根据有关资料,由于甩负荷引起向上轴向水推力不平衡而抬机的现象比较常见,而正常增减负荷时抬机现象较为罕见,试验表明,机组甩负荷时轴向水推力向下,机组表现为较大的下沉。经专家分析认为,本次抬机由向上水推力过大引起,并具有很大的偶然性。影响轴向水推力的因素有流道畅通情况、迷宫环间隙、导叶开关速度和开度、水头、流量、尾水管空化、平压管特性、流道内残留空气等,引起本次向上轴向水推力过大的主要因素目前还不很清楚。为防止机组转动部分抬起而损坏有关部件,我们在机组上加装了抬机量保护装臵,机组相对抬起2mm延时2秒跳机。

2.3导叶关闭规律

本厂采用上游输水道采用一管三机的连接方式,设计要求压力钢管的压力上升值不大于8.7MPa,机组转速上升值不大于680rpm。由于水泵水轮机在运行区域内存在“S”特性,导致调保计算的水击压

力上升值、转速上升值与实际值相差较大,导叶关闭规律很难通过计算来确定。天荒坪电站1#、2#、4#、5#机组目前采用的发电工况的导叶关闭曲线(曲线7)是制造厂在1#机组上进行了22次甩负荷试验而获得的,根据试验结果,当单机甩负荷和一管两机同时甩负荷时,压力上升值和转速上升值均不会超过设计值,但一管两机(1#、2#机)同时甩负荷时的压力上升值达8.4MPa,如果仍采用原因导叶关闭规律,一管三机同时甩负荷时的压力钢管的压力上升值就可能超过设计值8.7MPa。由试验录波曲线可以发现,机组发电工况甩全负荷后,压力钢管压力曲线存在两个压力波峰,其中第一个压力波峰产生在导叶关闭规律的拐点处,第二个压力波峰发生在最高转速后约1秒钟,且第二个压力波峰值要大于第一个压力波峰值(拐点位臵应大于350mm接力器行程),而通过改变拐点的位臵就可以改变最高转速发生的时刻,为此,我们在5#、6#机组上再次进行了多次甩负荷试验,最终确定在3#、6#机组上采取另外的导叶关闭曲线(曲线9),通过第二个压力波的峰谷相互削减来降低压力上升值。试验证明,一管两机甩负荷压力上升值约为8.1MPa,说明上述分析与措施是有效的,也为一管三机甩负荷压力上升值预留了较大的余量。抽水工况断电按一段关闭规律关闭。

环抬起不能复位而漏水过大、调相压水困难而导致跳机或密封磨损快而进行抢修的情况,且发电调相工况不能正常运行,在投产初期是严重影响机组运行的稳定性因素之一,给天荒坪电站的正常生产造成了巨大的压力,特别在迎峰渡夏期间,更是如此。其间制造厂也多次对主轴密封进行了多次改造,但效果不能令人满意。制造厂和天荒坪电站有关技术人员经过分析认为下库水位变化太大(达到49.5米)、运行工况多、工况转换等造成主轴密封处的压力变化太快、制造厂对上述条件估计不足造成原主轴密封结构设计不合理是主轴密封不能正常运行的主要原因,因此在2002年6月,华东天荒坪抽水蓄能有限责任公司要求求制造厂重新设计主轴密封,于2003年初在1#机组上试验取得了成功,2003年6月前所有的机组已更换成新型主轴密封。

新型密封与旧密封相比有如下优点:1. 结构简单,安装方便。移动环压紧力随尾水变化而自动调整,运行稳定可靠,工况转换时不需要人员调整压力,可节省运行人员的人力;2. 更换后安装磨合期短,经首次开机约10分钟磨合就可投入运行,且温度不高(磨合期比冷却水温高5℃左右);3. 防转动装臵安装在主轴密封外部,更换方便,不用拆卸外环而重新打压,同时磨损指示装臵不再穿过操作腔,因而不会造成泄压而密封抬起;4. 密封环被磨损后,对其冷却润滑水回路不构成影响,而旧的主轴密封的密封环被磨损后,移动环进入密封环的槽内将恶化其冷却润滑效果,造成主轴密封密封环的恶性循环磨损,且大轴的摆动将加剧密封环的破裂,导致主轴密封的使用寿命降低;5. 新型主轴密封的密封环高度降低,将意味着可磨损量的减小,但将明显提高其刚度,如密封面保持良好地液体摩擦,密封环的磨损将保持在较低的水平。另外,旧的密封环中间开有冷却水沟,将削弱其结构强度,且当密封环被磨损后,不锈钢移动环将嵌入密封环,机组旋转时大轴摆动将对其进行不停的撞击,导致其破裂。而新型的密封内采用水孔通水,且密封环境优美被磨损后仍将处于自由状态而不受大轴摆动的影响。因此主轴密封的寿命不但不会缩短,反而将得到延长;6. 移动环压力调节采用压紧弹簧的形式,容易造成各弹簧的受力不均匀,且调整压紧力时需要作较多的防转动隔离措施,采用调节气缸后,供气压力取自同一压力源,保证了移动环六个方向受力均匀,同时压力调整装臵可以放在水车室外,因而调整方便。主轴密封经改造后,运行稳定性比旧的密封有很大提高,经过了发电、发电调

相、抽水、抽水调相等工况的6小时热运行试验及工况转换试验,各种工况下,密封运行温度比冷却水温约高2~3℃,同时也经过了夏季高温天气的考验,2003年夏季冷却进口水温最高达到33℃(设计最高水温为28℃),而主轴密封在各工况下的运行温度也未超过36℃,也未出现温度突升的情况。

2.5导叶上下窜动

制造厂最初设计导叶支撑时,只设计了限制导叶向下运动的止推装臵,导叶端面间隙由止推装臵进行调整,而未设计导叶向上运动的限制装臵,原因是他们认为由于导叶本身存在700公斤的重量,导叶不应向上运动。事实上,导叶上、中、下轴承均为水润滑轴承,下端导叶轴和大部分上部轴与导叶叶片一样均泡在流道内的压力水中,为防止流道内的砂子等机械杂质损伤轴承,在导叶叶片的上、下与轴连接根部,安装有开口的圆形橡胶密封条,由于流道内的水压脉动和水压分布并不均匀,且上下端部轴承腔的空间不相等,在机组运行时,特别是在机组甩负荷时,挡砂用密封圈的开口在水压的作用下闭合,并在上、下轴承腔内形成一个压力差,使导叶向上顶起,使导叶与顶盖抗磨板发生摩擦而拉伤。原导叶的止推装臵的锁定螺母比较单薄,在机组运行时易产生松动,从而使导叶向下移动,在轴承腔压力差的作用下同样产生导叶与底环抗磨板发生摩擦而拉伤。现导叶摩擦装臵对止推装臵进行了改造,使其既能够防止导叶向上移动,也能防止其向下移动,同时加强了止推装臵的锁定的防松动措施。另外,制造厂对挡砂条的压板也进行了改造,材料从橡胶改为青铜,并在其上加开

了四条泄压沟,使轴承腔的压力泄至流道内。实践证明,采取上述措施后,导叶上下窜动的现象大为改善,基本未再发生导叶与抗磨板对磨损伤的现象。

3结语

综上所述,经过投产以来的技术改造,我们成功地解决了机组空载运行不稳定、并网后机组逆功率、主轴密封运行不稳定、导叶上下窜动等问题,并在一管三机甩负荷和机组轴向水推力抬机等方面采取了一系列的防范措施后,水泵水轮机的运行稳定性和安全性得到很大的改善,因此我们认为天荒坪抽水蓄能电站的水泵水轮机的总体设计是成功的,能量、汽蚀性能和运行稳定性是令人满意的,达到了国内、国际先进水平,检修拆卸检修方便,为高水头、大变幅、大容量抽水蓄能电站水泵水轮机的设计和制造提供了成功的范例。通过参与机组的安装调试,我厂的技术人员很好地消化吸收了国外厂家的先进技术,提高了技术水平,成功地为我国在建的抽水蓄能电站的建设提供了良好的技术服务和生产技术人员的培训。

水泵水轮机特点

天荒坪抽水蓄能电站 水泵水轮机特点 华东天荒坪抽水蓄能有限责任公司游光华 浙江安吉313302 摘要天荒坪抽水蓄能电站的水泵水轮机组由挪威KVAERNER公司提供,是我国较早从国外引进的大型可逆式机组,自首台机组投产至今已有7年多。本文总结分析了水泵水轮机7年多的运行中出现了一些问题,以供参考借鉴。 主题词天荒坪抽水蓄能水泵水轮机性能“S”形特性不稳定轴向水推力抬机导叶关闭规律 天荒坪抽水蓄能电站安装有6台300MW水泵水轮机组,为单级、立轴、混流可逆式,额定净水头为526米,运行毛水头(扬程)为526米~610.2米,水轮机安装高程为225米,淹没深度为-70米,是目前国内已投产运行的水头和变幅最大的单级可逆式机组,在国际上也较罕见,为使其达到满意的效率和良好的运行稳定性,设计难度大,没有现成的经验可供借鉴。水泵水轮机的参数如下: 水轮机工况:水泵工况:额定容量:306MW 333MW 最大轴出力(入力):338MW 333MW 额定流量:67.7m3/s 58.80m3/s(最大) 43.00m3/s(最小) 额定转速:500RPM 500RPM 旋向(俯视):顺时针逆时针 转轮水轮机进口直径:4030mm 转轮水轮机出口直径:2045mm

最大瞬态飞逸转速:720 r/min 最大稳态飞逸转速:680 r/min 水泵水轮机及其辅助设备由挪威GE 公司提供。水泵水轮机大修拆卸方式采用中拆方式。首台机组于1998年9月30日投入运行,2000年12月25日所有机组投产,投产以来运行情况表明,机组性能良好,效率较高,但也出现了一些问题,在技术人员的努力下,通过采取措施,相关问题已得到了较好的解决。 1水泵水轮机的性能和结构特点 1.1效率 按照合同规定,水泵水轮机的效率按照模型试验来验收,合同要求水轮机工况的最高效率≥92.20%,加权平均效率≥90.41%,水泵工况最高效率≥ 91.70%,加权平均效率≥ 91.52%。根据模型试验报告,水轮机工况的模型最优效率为90.61%,折算为原型其整个运行范围内的最优效率为92.28%,加权平均效率为90.317%,而水泵工况下模型最优效率为89.84%,折算原型最优效率为92.17%,加权平均效率为92.01%,除水轮机工况加权平均效率略低于保证值0.083%外,其余均达到合同要求。为了检验真机效率,我们于2001年5月在5号机组上进行了部分水头(扬程)的热力法效率试验,测得水轮机工况下在试验平均净水头566.23 m时,机组出力为210~304.06 MW,水轮机最高效率为92.11%,相应机组出力272.00 MW;水泵工况试验平均净扬程为542.09 m,水泵平均效率为88.99%。从上述结果可以看出,水轮机工况的最高效率已接近模型推算值,水泵工况效率偏

水泵水轮机资料

宁蓄电站水泵水轮机 采用单级、单速、混流可逆式水泵水轮机。由瑞士苏尔寿爱雪维斯(SEWZ)设计、制造和配套供应。 一水泵水轮机主要参数: 转轮直径: 2248 mm 转轮叶片数: 9 最大毛水头: 271 m 最小毛水头: 240 m 极端运行最小毛水头: 236.6 m 额定水头: 240 m 额定流量: 19.6 m3/s 额定转速: 600 r/min 额定出力: 41.5 MW 瞬态飞逸转速: 885 r/min 稳态飞逸转速: 830 r/min 吸出高度: -23 m 水轮机工况最优比转速: 90.3 mkw 水泵工况最优比转速:144.6 mkw 机组俯视旋转方向:水轮机工况逆时针方向;水泵工况顺时针方向 最大轴向水推力: 113t(包括所有转动部分的重量) 二水泵水轮机主要结构特征 1总体布臵形式 1.1 水泵水轮机型式为立轴、单级、混流可逆式水泵水轮机,水轮机轴通过中间轴与发电电动机连接。 1.2 和常规水轮机类似,本电站水泵水轮机也是由可拆卸部件既转轮、主轴、水导轴承、轴承支座、顶盖、导水叶、导水叶操作机构、接力器、主轴密封装臵和预埋部件既蜗壳、座环/底环、尾水管、机坑里衬等组成。其中可拆卸部件可利用厂房内起吊设备及机坑内起吊设备通过水轮机机坑旁侧通道进行拆卸,既能实现“中拆”方式。 下面将介绍上述各组成部件的构造、作用、工作原理、参数、安全监测装臵等内容:2.1 转轮 我厂水泵水轮机是立轴、单级、混流可逆式。它是水能转变为机械能又是将机械能转变为水能的部件。其主要尺寸材料如下: 转轮直径: 2248mm 材料: A743CrCA6NM 叶片数: 9片水轮机工况转向:逆时针方向 重量: 5.25吨上迷宫环间隙: 0.8 mm 下迷宫环间隙: 0.8 mm 转轮采用不锈钢铸焊结构,另外在转轮的上冠和下环设有止漏环,止漏环采用与转轮一同整体铸造的结构,转轮拆装用厂家提供的专用工具。 2.2 主轴 水泵水轮机轴和中间轴的直径均为Ф500mm,用优质锻钢锻制而成。材料为A688CL.D。水轮机轴重量为3.15吨,中间轴重量为3.95吨。 水泵水轮机轴一端联接转轮,另一端联接中间轴;中间轴两端都带有连接发兰,分别与水轮机轴和发电机轴联接。所有连接面均涂有金刚砂以增加摩擦,所有联接螺栓均经预应力处理并用LOCTITE粘接剂固定以防松脱。 水泵水轮机轴与中间轴的接合面高程为34.98m,中间轴与发电机轴的接合面高程为37.05m。水泵水轮机轴与中间轴配有拆装专用工具,可以从水轮机机坑侧道拆出。 2.3主轴密封 主轴密封是水轮机结构中重要组成部分,它的作用是通过顶盖在主轴处设臵主轴密封,以防止水泵水轮机转动部件与固定部件之间的漏水。主轴密封分工作密封和检

泵的分类及选型原则

泵的分类及选型原则、用途 第1节泵的分类 泵的种类繁多,结构各异,分类的方法也很多,常见的分类方法有: (1)按泵工作原理分类 1)、叶片泵:叶片泵是将泵中叶轮高速旋转的机械能转化为液体的动能和压能。由于叶轮中有弯曲且扭曲的叶片,故称叶片泵。根据叶轮结构对液体作用力的不同,叶片泵可分为: 1、离心泵:靠叶轮旋转形成的惯性离心力而抽送液体的泵。 2、轴流泵:靠叶轮旋转产生的轴向推力而抽送液体的泵。属于低扬程、大流量泵型,一般的 性能范围:扬程1~12m;流量0.3~65m3/s,比转数500~1600。 3、混流泵:叶轮旋转既产生惯性离心力又产生轴向推力而抽送液体的泵。 2)、容积泵:利用工作室容积周期性的变化来输送液体。有活塞泵、柱塞泵、隔膜泵、齿轮泵、螺杆泵等。 3)、其他类型泵:有射流泵、水锤泵、电磁泵等。 (2)离心泵分类离心泵按结构形式分类: 1、按主轴方位分类:a.卧式泵:主轴水平放置;b.斜式泵:主轴与水平面呈一定角度放置;c.立 式泵:主轴垂直于水平面放置。 2、安叶轮的吸入方式分类: A、单吸泵:液体从一侧流入叶轮,存在轴向力,单吸叶轮; B、双吸泵:液体从两侧流入叶轮,双吸叶轮。不存在轴向力,泵的流量几乎比单吸泵增加 一倍 3、按叶轮级数分类:a.单级泵:泵轴只装一个叶轮;b.多级泵:同一泵轴上装有两个或两个以上 叶轮,液体依次流过每级叶轮。液体依次流过每级叶轮,级数越多,扬程越高 4、按泵壳体剖分方式分类: A、分段式泵:壳体按与主轴垂直的平面剖分; B、节段式泵:在分段式多级泵中,每一段泵体都是分开的; C、中开式泵:壳体从通过泵轴轴心线的平面上分开,按剖分平面的方位又分为: 水平中开式泵:剖分面是水平面,为卧式泵; 垂直中开式泵:剖分面与水平面垂直,为立式泵; 斜中开式泵:剖分面与水平面成一定夹角,为斜式泵。 5、按泵体的形式分类: a.蜗壳泵; b.双蜗壳泵。 6、特殊结构形式的泵: A、潜水电泵:泵和电动机制成一体,能潜入水中工作,泵体一般为单级或多级立式离心泵和 轴流泵。 B、液下泵:属单级或多级立式离心泵,电动机、泵座位于液面上部,泵体淹没在液体中,电 动机通过长传动轴带动叶轮旋转。主要用于食品等行业。

水泵水轮机全特性..

水泵水轮机全特性 1.水泵水轮机全特性曲线 抽水蓄能电站的水泵水轮机均设有活动导叶,通过导叶调节水轮机运行时的流量,故水泵水轮机的特性曲线一般为一组不同导叶开度下的全特性曲线,其区域的划分与水泵的全特性区域划分一样,只是习惯上以正常水轮机运行工况的各参数为正。同时抽水蓄能电站一般H 也总是正值,即在实际工程中实用也就是5个工况区,即水轮机工况、水轮机制动工况、水泵工况、反水泵工况、水泵制动工况。 水泵水轮机全特性曲线表示方法通常采用1111~n Q 和1111~n M 来表示。图3-7和图3-8所示为某抽水蓄能电站水泵水轮机的四象限特性曲线。 图3-7 水泵水轮机流量特性曲线 图3-8 水泵水轮机力矩特性曲线

2.水泵水轮机全特性曲线的特点 通过对不同水泵水轮机的全特性分析可以看出,水泵水轮机全特性有着下述的规律与特点: (1)在水泵工况,大开度等导叶开度曲线汇集成一簇很窄的交叉曲线,说明在此区域水泵扬程与导叶开度的关系不大,开度的改变不会造成单位转速及单位力矩的很大的变化。当导叶开度较小区域时随着导叶开度的减小其流量曲线及力矩曲线则加速分又,说明此时的导水机构可看作是节流装置,水头损失急剧增大,从而对水泵的力矩及流量产生较大的影响。在水泵实际运行中导叶开度将随着扬程的变化而沿各导叶开度特性曲线的外包络线变化,使得水力损失最小,也即使得水泵的效率在此工况最高。此外,随着单位转速的增大,也即水泵扬程的减小,水泵的流量及水力矩将快速增大,所以在水泵及电动机设计时应充分考虑此时水泵的力矩特性,电动机容量应根据可能的正常运行最低扬程工况进行设计,并留有一定的裕量;同时根据导叶小开度区域力矩分散的特性,在异常低扬程起动时(如初次向上水库异常低扬程充水时)可采取关小导叶开度来限制其水力矩,即限制水泵的入力在一定范围以内。

水轮机英语

2.1 水力机械 hydraulic machinery 2.2 水轮机 hydraulic turbine 2.3 蓄能泵 storage pump 2.4 水泵水轮机 reversible turbine,pump-turbine 2.5 旋转方向 direction of rotation 2.6 机组 unit 2.13 立式、卧式和倾斜式机组 vertical,horizontal and inclined unit 2.14 可调式水力机械 regulated hydraulic machinery 2.15 不可调式水力机械 non-regulated hydraulic machinery 2.16 主阀 main valve 3.1 水轮机 3.1.1 反击式水轮机 reaction turbine 3.1.2 混流式水轮机 Francis turbine,mixed-flow turbine 3.1.3 轴流式水轮机 axial turbine 3.1.4 轴流转桨式水轮机Kaplan turbine,axial-flow adjustable blad propeller turbine 3.1.5 轴流调桨式水轮机 Thoma turbine 3.1.6 轴流定桨式水轮机 Propeller turbine 3.1.7 贯流式水轮机 tubular turbine,through flow turbine 3.1.8 灯泡式水轮机 bulb turbine 3.1.9 竖井贯流式水轮机 pit turbine 3.1.10 全贯流式水轮机 straight flow turbine,rim-generator unit 3.1.11 轴伸贯流式水轮机(S形水轮机) tubular turbine(S-type turbine) 3.1.12 斜流式水轮机 diagonal turbine 3.1.13 斜流转桨式水轮机 Deriaz turbine 3.1.14 斜流定桨式水轮机 fixed blade of Deriaz turbine 3.1.15 冲击式水轮机 impuls turbine,action turbine 3.1.16 水斗式水轮机 Pelton turbine,scoop turbine 3.1.17 斜击式水轮机 inclined jet turbine 3.1.18 双击式水轮机 cross-flow turbine 3.2 蓄能泵 3.2.1 混流式(离心式)蓄能泵 centrifugal storage pump,mixed-flow storage pump 3.2.2 轴流式蓄能泵 propeller storage pump,axial storage pump 3.2.3 斜流式蓄能泵 diagonal storage pump 3.2.4 多级式蓄能泵 multi-stage storage pump 3.3 水泵水轮机(又称可逆式水轮机) 3.3.1 单级水泵水轮机 singal stage pump-turbine 3.3.2 多级水泵水轮机 multi-stage pump-turbine 3.4 主阀与阀门 3.4.1 蝴蝶阀 butterfly valve 3.4.2 平板蝶阀 biplane butterfly valve,through flow butterfly valve 3.4.3 圆筒阀 cylindrical valve,ring gate 3.4.4 球阀 rotary valve,spherical valve 3.4.5 盘形阀 mushroom valve,hollow-cone valve,howell-Bunger valve

水轮机选型设计

第六章水轮机选型设计 由于各开发河段的水力资源和开发利用的情况不同,水电站的工作水头和引用流量范围也不同,为了使水电站经济安全和高效率的运行,就必须有很多类型和型式的水轮机来适应各种水电站的要求。 水轮机由于它自身能量特性、汽蚀特性和强度条件的限制,每种水轮机适用的水头和流量范围比较窄,要作出很多系列和品种(尺寸)的水轮机,设计、制造任务繁重,生产费用和成本也大。因此有必要使水轮机生产系列化、标准化和通用化,尽可能减少水轮机系列,控制系列品种,以便加速生产、降低成本。在水电站设计中按自己的运行条件和要求选择合适的水轮机。 一、水轮机选型设计的任务及内容 1.任务 水轮机是水电站中最主要动力设备之一,影响电站的投资、制造、运输、安装、安全运行、经济效益,因此根据H、N的范围选择水轮机是水电站中主要设计任务之一,使水电站充分利用水能,安全可靠运行。每一种型号水轮机规定了适用水头范围。水头上限是根据该型水轮机的强度和汽蚀条件限制的,原则上不允许超过;下限主要是考虑到使水轮机的运行效率不至于过低。 2.内容 (1) 确定机组台数及单机容量 (2) 选择水轮机型式(型号)及装置方式 (3) 确定水轮机的额定功率、转轮直径D1、同步转速n、吸出高度H s、安装高程Z a 、飞逸转速、轴向水推力;冲锤式水轮机,还包括喷嘴数目Z0、射流直径d0等。 (4) 绘制水轮机运转特性曲线 (5) 估算水轮机的外形尺寸、重量及价格、蜗壳、尾水管的形式、尺寸、调速器及油压装置选择 (6) 根据选定水轮机型式和参数,结合水轮机在结构上、材料、运行等方面的要求,拟定并向厂家提出制造任务书,最终由双方共同商定机组的技术条件,作为进一步设计的依据。 二、选型设计 1.水轮机选型设计一般有三种基本方法 (1) 水轮机系列型谱方法: 中小型水电站水轮机选多此种方法或套用法。

水泵、水轮机讲义资料

第一章 概述 1.基本概念 (1)什么叫水轮机? 答:将水能转变为旋转机械能的水力原动机叫做水轮机。 (2)冲击式水轮机与反击式水轮机的区别。 答:工作原理方面: 利用水流的势能与动能做功的水轮机为反击式水轮机;利用水流的动能做功的水轮机为冲击式水轮机。 流动特征方面: 反击式水轮机转轮流道有压、封闭、全周进水;冲击式水轮机转轮流道无压、开放、部分进水。 结构特征方面也显著不同。如转轮的差别,有无喷嘴、尾水管。 (3)反击式水轮机的过流部件及其作用 引水室:作用是引水流进入导水机构。 导水机构:作用是调节水轮机过流量,并使水流能按一定方向进入转轮。 转轮:将水流能量转换为固体旋转机械能量的部件。 尾水管:作用是将水流排下下游,并回收转轮出口的剩余动能。 (4)冲击式水轮机的主要部件 喷嘴:水轮机自由射流的形成装置。 喷针:与喷嘴共同完成流量控制(以行程变化喷嘴控制喷嘴出口过流面积)。 转轮:由轮盘和轮盘外周均匀排列的水斗构成的组件,转换水流能量为固体旋转 机械能。 折向器:自由射流流程内部件,可遮断射流,以防止转轮飞逸。 (5)我国关于水轮机标准直径的定义 混流式:转轮叶片进水边上最大直径。 浆叶式(轴流式、斜流式、贯流式):浆叶转动轴线与转轮室相交处直径。 冲击式:射流中心线与转轮相切处节圆直径。 (6)水轮机工作参数 工作水头H :水轮机的进口和出口处单位重量水流的能量差值。 流量Q :单位时间内通过水轮机的水流体积。 转速n :水轮机转轮单位时间内旋转的次数。 出力P :水轮机轴端输出的功率。 效率η:水轮机的输入与输出功率之比。 2.基本计算 (1)水电站的毛水头g H : d u g Z Z H -= 其中:u Z ,d Z 分别为电站上、下游水位高度。 (2)水电站的工作水头H :

水泵与水泵站的设计说明

第一章设计任务与基本资料 一、设计任务 完成胜利排水泵站的初步设计 二、建站目的 为对某市用水环境进行综合治理,满足全市排污排涝等需求,拟在该市东区建一座排水泵站,将水排入外河,市内有一环卫河自西向东,市内外泄水流可汇入南北流向的外河—上龙河。 三、设计标准 水泵站按《泵站设计规范》和《室外给水排水设计规范》的标准,该站为三级建筑物。 四、基本资料 1、地形资料 环卫河自西向东,河底高程4m,底宽4m,外河为南北流向。防洪堤顶高程14.5m,堤坡底为1:2.5,建站地点高程9m。 2、地质资料 建站地点地势平坦,地面下向至5.04m为素填土,夹少量碎砖、小石子、植物根,r=190KN/m3,c=17 KN/m2,内磨擦角φ=13°,[R]=80KN/m2;5.04米以下为亚粘土,r=190KN/m3,c=10 KN/m2,内磨擦角φ=18°,[R]=100KN/m2泵站墙后回填土,r=190KN/m3,c=30 KN/m2,φ=15°,外磨擦角取(1/3-2/3)φ。

3、水文资料 环卫河末底面高程:▽4.0m 环卫河河底宽度:4.0m 水组位合: 4、流量资料: 5、交通 外河可以行船,附近有公路通往市区,交通便利。6、电源 站址附近有变电所一座,6KV输电线路经过此站。 7、排水时最高气温37°,最高水温25°。 五、其它设计依据 1、设计任务与指导书扬州大学2003 2、《泵站设计规范》GB/T50265-97 3、《水泵站设计示例与习题》 4、《中小型泵站设计与改造技术》储训刘复新主编 5、《泵站过流设施与截流闭锁装臵》严登丰著 6、《中小型泵站设计图集》

第三节水轮机模型综合特性曲线

第三节水轮机模型综合特性曲线 水轮机主要综合特性曲线是指以单位转速和单位流量为纵、横坐标而绘制的若干组等值曲线,这些等值线表示出了同系列水轮机的各种主要性能。在图中常绘出下列等值线:①等效率线;②导叶(或喷针)等开度线;③等空化系数线;④混流式水轮机 的出力限制线;⑤转桨式水轮机转轮叶片等转角线。这种主要综合特性曲线一般由模型试验的方法获得,因此,又称为模型综合特性曲线。不同类型的水轮机,其模型综合特性曲线具有不同的特点,掌握它们的特点,对于正确选择水轮机及分析水轮机的性能是很重要的。下面说明几种水轮机模型综合特性曲线的特点。 一、混流式水轮机模型综合特性曲线 图8-6为某混流式水轮机模型综合特性曲线,它由等效率曲线、等开度线、等空化系数线与出力限制线所构成。 图8-6 混流式水轮机模型综合特性曲线 同一条等效率线上各点的效率均等于某常数,这说明等效率线上的各点尽管工况不同,但水轮机中的诸损失之和相等,因此水轮机具有相等的效率。 等开度线则表示模型水轮机导水叶开度为某常数时水轮机的单位流量随单位转速的改变而发生变化的特性。

等空化系数线表示水轮机各工况下空化系数的等值线,等空化系数线上各点尽管工况不同,其空化系数却相同。由于模型水轮机的空化系数大多是通过能量法空化试验而获得的,因此,尽管等空化系数线上的工况点具有相同的空化系数,但它们的空化发生状态可能是不相同的。 混流式水轮机模型综合特性曲线上通常标有5%出力限制线,它是某单位转速下水轮机的出力达到该单位转速下最大出力的95%时各工况点的连线。绘制出力限制线的目的是考虑到水轮机在最大出力下运行时,不可能按正常规律实现功率的调节,而且,在超过95%最大功率运行时,效率随流量的增加而降低,且效率降低的幅度超过流量增加的幅度,因此水轮机的出力反而减小了,从而使调速器对水轮机的调节性能较差。为了避开这些情况,并使水轮机具有一定的出力储备,因此,将水轮机限制在最大出力的95%(有时取97%)范围内运行。 二、转桨式水轮机模型综合特性曲线 轴流定桨式水轮机及其他固定叶片的反击式水轮机,其模型综合特性曲线与混流式水轮机具有相同的形式。 图8-7为某轴流转桨式水轮机模型综合特性曲线。轴流转桨或斜流转桨式水轮机的叶片可以改变角度,当水轮机的工作水头或负荷发生变化时,通过协联机构使叶片角度作相应的改变,从而保持水轮机具有良好的工作效率,这种运行方式称为协联方式。转桨式水轮机模型综合特性曲线上标有等效率线、等开度线、等叶片转角线。 图 8-7轴流转桨式水轮机模型综合特性曲线 转桨式水轮机的等效率线是水轮机在协联方式下工作时的效率等值线。它是水轮机在不同叶片角下各同类水轮机等效率线的包络线。 等开度线则表示在协联方式下,导水叶开度为某常数而叶片角度不同时,水轮机单位流量与单位转速之间的关系,它代表了水轮机在协联方式工作下的过流特性。 等叶片转角线则是同一叶片转角下各所对应的最高效率点的连线。 由等线与等线可以找出导水开度与叶片转角的最佳协联关系。 转桨式水轮机的等空化系数线是各角下的同类水轮机的等线与等线的一系列交点中,相同值的连线。 转桨式水轮机具有宽广的高效率区,在相当大的单位流量下不出现流量增加而出力减少的情况,因此一般不绘出5%出力限制线。而水轮机的最大允许出力常受到空化条件的限制。 三、冲击式水轮机模型综合特性曲线

高水头小容量水轮发电机组的选型设计(一)

高水头小容量水轮发电机组的选型设计(一) 摘要:根据三斗水库电站水轮机组为高水头、小容量的特点,结合溪屯溪水电站群在建瓯市电力系统中为辅助调频电站的情况,走访主要水轮发电机组设备制造厂,在机组订货和施工设计时就采取相应改进措施。投运后,达到设计要求,机组运行状况良好,经济效益可观。关键词:小型水电站水轮发电机组小型水轮机高水头水轮机水轮机选型经济效益1工程简况三斗水库为建瓯市溪屯溪流域水电资源开发规划的龙头水库,总库容530万m3,兴利库容437万m3,为年调节水库。电站压力引水隧洞长2160m,明敷压力钢管长438m,最高水头200.43m,设计水头174.7m,最低发电水头152.9m,设计流量1.84m3/s,装机容量2×1250kW。多年平均发电量827.58万kW·h,P=75%保证出力690kW,设备年利用小时3310h,水库及电站概算总投资2037万元。 三斗水库电站及赤坑水电站(装机2000kW)为溪屯溪规划开发的第一期工程,1986年12月动工,赤坑电站于1998年5月竣工发电,三斗电站于1999年9月开始试运行。 2水轮发电机组的选型设计 三斗水库电站设计水头174.7m,单机容量1250kW,为高水头、小容量水轮发电机组,查“中小型反击式水轮机使用范围综合图”,本电站水轮机选择在冲击式水轮机范围。冲击式水轮机具有构造简单、出力变化时对机组效率影响较小等优点,特别是其折向器的作用对调保有利,可节省调压井等水工建筑物的造价,但其转速低,机组体积大;混流式水轮机则其转速高,机组体积小,且运转可靠效率较高,并有适应水头范围宽的优势,还可利用尾水管回收能量,减少厂房开挖工程,但在低负载时机组效率降低较多。经机型选择计算,初选了CJA237-W-125/14.5水轮机,配套SFW1250-14/1730发电机和HLD54-WJ-55水轮机,配套SFW1250-4/1170发电机两种机型。 走访闽、浙、赣三省主要水轮发电机设备制造厂,厂家表示两种机型均可生产供货,对高转速机组的运行都有所担心,推荐本站采用冲击式机组。初步报价两种机型的水轮机和发电机主设备价格相差悬殊,冲击式1套141.2万元,混流式1套只70万元。初设中经两种机型的辅助设备配套和水工建筑物不同方案的投资对比,在造价上选用混流式机组仍可节省84.2万元;此外选用HLD54-WJ-55水轮机在本站的水力条件下,运行区域很理想,溪屯溪水电站群在建瓯市电力系统中为辅助调频电站,对有水库调节的更应发挥顶峰作用,一般时间在较高出力区运行,既使水库水位变化,机组也运行在较高效率区内,为此初设推荐选用HLD54-WJ-55配SFW1250-4/1170水轮发电机组。3小转轮高转速混流式水轮发电机组的运 行问题和改进措施选用混流式水轮发电机组,其额定转速达到1500r/min,其运行状况是我们最为关注的问题,据设备生产厂家介绍,当时浙、赣两省尚没有相近规模高水头小转轮高转速的水电站,仅福建水力发电设备厂制造安装在龙岩大片溪水电站(H=177.7m,HLD54-WJ-60,SFW1600-4/1170)和漳平岭兜水电站(H=180m,HLA179-WJ-60,SFW1600-4/1170)有4台机组水力条件和装机规模相近,机组额定转速为1500r/min,并已建成发电。 经现场考察,两站4台机组均已投产1年以上,运行中主要问题为:机组转速高、噪音大,轴承温度偏高(推力轴承63℃,导轴承55℃),轴承润滑油为油泵供油外循环水冷却系统,设置了重力油箱、回油箱、油泵及冷却水池等设施,不仅增加投资加大运行维护工作量,而且供油或供水系统发生故障时易发生烧瓦事故或被迫停机维修而影响正常发电。 在机组订货和施工设计时,经与福建水力发电设备厂设计、生产、经营有关人员多次协商探

水泵水轮机选型(已看)

国产抽水蓄能机组水泵—水轮机选型中 若干问题探讨 高道扬 天津市天发重型水电设备制造有限公司 摘要:本文着重分析了可逆式水泵—水轮机模型转轮及抽水蓄能电站水泵—水轮机主要技术参数的特点,并在此基础上提出根据抽水蓄能电站水泵—水轮机的技术要求初步筛选水泵—水轮机模型转轮及水泵—水轮机方案的方法。 随着我国社会主义建设事业的发展,特别是电力工业的飞速发展,抽水蓄能电站的建设高潮已经到来,在国家有关政策的坚强支持下,抽水蓄能机组国产化、本土化的工作业已全面展开。因此如何根据可逆式水泵—水轮机模型转轮的主要技术特点并在抽水蓄能电站对水泵—水轮机技术要求的基础上优选水泵—水轮机模型转轮及水泵—水轮机方案已成为众多水泵—水轮机选型工作者的首要工作,作者根据多年工作经验对选型工作中的若干问题作一初步探讨。 1 水泵—水轮机模型转轮主要技术参数特点 叶片式水力机械具有可逆性,即它既可以做水轮机运行也可以做水泵运行,但是由于中、高比速的水轮机进口角β1T较大,当它反向旋转做水泵工况运行时,由于出口角太大,导致水流的不稳定,在H-Q曲线上出现多处大驼峰并且泵工况的效率比正常水轮机工况大幅下降,因而中、高比速水轮机显然不适合作为可逆式水泵——水轮机转轮的研究基础(70年代初北京密云电站曾用HL211-LJ-225水轮机做反向旋转的泵工况现场实验未能取得满意效果)。理论分析和实验证明具有较长叶片和缓慢扩散流道的离心泵叶轮,其泵的叶片出口水流角β2P较小,出口相对流速W2P和绝对流速V2P都较小,因而水流进入涡壳后水力损失较小,当离心泵反转做水轮机运行时进口相对流速W1T也比较小,符合常规水轮机要求,因而离心泵叶轮在水泵工况和水轮机工况都有较好的性能,现代可逆式水泵—水轮机转轮就是以离心泵叶轮为基础逐步发展起来的。 1.1水泵—水轮机模型转轮与常规水轮机模型转轮相比具有以下特点:由于混流式水轮机的β1T较大,其(V1u/U1)T约为0.9,而离心泵的β2P较小,(V2u/U2)P约为0.6,由此可以推算出在同样的水头和转速条件下,可逆式水泵—水轮机的转轮直径约为常规水轮机转轮直径的 1.4倍,即:D P/D T=1.4。在同一额定水头下,水泵—水轮机与水轮机模型转轮比转速n s(m kw)相近,但单位转速为水轮机的1.25~1.3倍,而单位流量为水轮机的0.6~0.65倍。 1.2水泵—水轮机模型转轮的水泵工况与水轮机工况相比,在通常条件下,由于高压边速度三角形既不相等亦不相似(泵工况出口因为水流的偏转出口水流角β2p比安放角βd小一些,而水轮机工况进口在无撞击的条件下,进口角βIT与βd相等),因而经实验研究及理论分析证明两种工况具有以下特点: 1.2.1 在最优工况点,水泵工况的单位转速是水轮机工况的单位转速 1.10~1.18倍,即n10P/n10T=1.10~1.18(理论分析为1.12~1.16)。 139

IEC 60193 水泵水轮机模型验收规程 标准译文 (1)

目录前言 目次 1总则 1.1范围和目的 1.1.1范围 1.1.2目的 1.2引用文献 1.3术语、定义、符号和单位 1.3.1概述 1.3.2单位 1.3.3术语、定义、符号和单位表 1.4与水力性能有关的保证值的性质和范围1.4.1概述 1.4.2模型试验法验证的主要水力性能保证值1.4.3模型试验法不能验证的保证值 1.4.4附加性能数据 2试验的执行 2.1试验安装和模型的要求 2.1.1试验室选择 2.1.2试验装置安装 2.1.3模型要求 2.2模型和真机的尺寸检查 2.2.1概述 2.2.2需检查的模型和真机的尺寸 2.2.3表面的波浪度和粗糙度 2.3水力相似、试验条件和试验程序 2.3.1水力相似 2.3.2试验条件 2.3.3试验程序 2.4测量方法介绍 2.4.1主要水力性能保证值的测量 2.4.2附加数据与测量 2.4.3数据的采集和处理 2.5物理性质 2.5.1概述 2.5.2重力加速度 2.5.3水的物理性质

2.5.4大气的物理性质 2.5.5水银密度 国际标准IEC60193由IEC TC4即水轮机技术委员会编制。 第二版IEC60193将取消和替代1965年出版的第一版IEC60193及其补充1(1977),IEC60193A(1972)以及IEC60497(1976)和IEC60995(1991)。 本标准的第1至第3章覆盖了上述出版物,第十章给出。 3附加内容 本标准的文本基于下列文献: 上表的表决报告给出了本标准表决标准的所有情况。 附录B、F、G、K、L和M内容是本标准不可分割的一部分。 附录A、C、D、E、H、J、N和P是供参考内容。

浅谈扬水泵站如进行水泵选型

浅谈扬水泵站如进行水泵选型

————————————————————————————————作者:————————————————————————————————日期:

浅谈扬水泵站如何进行水泵选型-企业管理论文 浅谈扬水泵站如何进行水泵选型 苏俊礼(宁夏红寺堡扬水管理处) 摘要:随着国家西部大开发战略的实施,自治区党委政为了改变南部山区靠天吃饭的历史现状,开展了造福中部干旱带人民群众的扶贫扬黄工程;扬水泵站是解决干旱缺水、人畜饮水的有效工程措施之一,它将要承担着区域性的灌溉、调水和供输水的重任,水泵是扬水泵站的核心设备,它的合理配置和选型是扬水泵站必须优先考虑的选项之一;现结合工作实际就在建扬水泵站的水泵选型做简要分析。 关键词:扬水单位水泵选型 1 水泵选型的影响因素 水泵选型的影响因素很多,但主要有下列几个方面:1.1 水泵类型。水泵类型通常根据地区特点和泵站的性质来选择,一般来说,灌溉泵站扬程较高,多采用离心泵站和混流泵;排水泵站相对来说扬程较低,多采用轴流泵和混流泵。各类型泵又有立式卧式之分。一般来说,立式泵泵房前后尺寸较小,高度较大,水泵叶轮淹于水中,启动比较方便,动力机可安装在水面以上,通风采光较好,但安装要求较高,检修比较麻烦。立式泵适用于水源水位变幅较大的场合,卧式泵泵房平面尺寸较大,安装检修比较容易,荷载分布比较均匀,适应地基应力较弱,但通常水泵叶轮在水面以上,启动水泵时需要充水设备,卧式泵适用于水源水位变幅不大的场合,因此一座泵站选用何种泵型,应综合考虑泵站性质、水源水位变幅、地基条件、开挖深度等条件来确定。 1.2 水泵台数。水泵台数的确定应考虑以下几个问题:

抽水蓄能电站水泵水轮机组选型思考

抽水蓄能电站水泵水轮机组选型思考 发表时间:2019-11-29T09:45:42.000Z 来源:《防护工程》2019年15期作者:王娟娟 [导读] 抽水蓄能电站机组具有启动灵活、调节速度快的优势,是技术成熟、运行可靠且较为经济的调峰电源与储能电源。 江苏国信溧阳抽水蓄能发电有限公司江苏 213334 摘要:水泵水轮机组选型对抽水蓄能电站而言发挥着极为重要的作用。水泵水轮机兼具水轮机和水泵两个功能,但是其属性还是受水轮机比转速和水泵比转数的影响。前期选型方案的制定,设计院的经验很重要,业主方从整体工程的角度考虑对机组参数方案的制定进行决策。 关键词:抽水蓄能电站;水泵;水轮机组选型 引言 抽水蓄能电站机组具有启动灵活、调节速度快的优势,是技术成熟、运行可靠且较为经济的调峰电源与储能电源,在系统中主要承担调峰、填谷、调频、调相和紧急事故备用任务。在特高压电网与新能源快速发展的新时期,抽水蓄能电站也被赋予了更重要的任务,是电力系统重要调节工具,可以为特高压电网大范围优化配置资源、促进清洁能源消纳提供有力支撑。同时,特高压电网发展也为抽水蓄能电站功能发挥提供了更优质平台、更丰富渠道和更广阔空间。“十三五”期间,抽水蓄能产业建设发展规模日益加快。作为抽水蓄能电站的机组,可逆式水泵水轮机的稳定运行越来越受到重视。 1储能技术概述 储能技术已经成为电力系统运行环节中的重要组成部分,在其中起着重要的作用。它可以消除可再生能源的随机性和间歇性,提高电力系统的稳定性;可以替代部分火电机组的工作,达到系统节能减排的目的;可以更好地实现需求侧管理,减少昼夜之间的峰谷差异,提高电能的转换效率,节约电力系统传输的成本消耗,加强系统抵御风险的能力。储能技术的研究发展给电力行业带来了积极的影响。按照电能存储形式的区别,可以将其划分为物理储能、生物储能等,将储能的种类进行综合比较分析,发现抽水储能电站的方式是最具性价比的,它的运行方式灵活,在目前的电力系统中应用广泛,为电力系统的稳定运行提供了可靠地保证,越来越受到各国重视。近些年来,我国的抽水储能技术也迎来了日新月异的发展,建容量已经居于世界首位,投产装机的容量也有望在近期有更大的突破,就抽水储能装机容量的占有比来说,我国较于西方发达国家仍然有着很大的差距。 2抽水蓄能电站水泵水轮机组选型方法 2.1比转速的确定 比转速和比转数是水泵水轮机的两个重要参数,它直接决定着水泵水轮机的机组性能。水轮机的比转速一般由设计点来决定,是设计水头的函数,因此设计水头的选择对比转速有比较大的影响。水轮机工况比转速计算公式为:

双塔泵站水泵选型方案比选

双塔泵站水泵选型方案比选 [摘要] 大伙房水库输水应急入连工程是向大连市供水的长距离供水工程,其中加以泵站水泵选型方案的合理设计对节省工程的一次性投资、运行费用及方便工程运行管理等具有十分重要的意义。本文从技术和经济两方面对水泵选型进行比较,最终选择较优的方案,为大连应急供水工程设计提供参考。 [关键字] 供水工程 水泵选型 方案比选 1 泵站规模 泵站最大供水流量30.31万m 3/d ,平均供水流量23.32万m 3/d 。在引碧入连暗渠工程供水事故时,能提供57.5万m 3/d 。 2泵站设计原则 根据泵站任务和运行条件,确定泵站的设计原则如下: 表1 泵站流量、扬程参数表 正常平均供水量23.32万 m3/d 水库水位(m ) 47 50 55 60 65 69 水泵需要扬程(m ) 98.5 95.5 90.5 85.5 80.5 76.5 正常最大供水量30.31万 m3/d 水库水位(m ) 47 50 55 60 65 69 水泵需要扬程(m ) 102.5 99.5 94.5 89.5 84.5 80.5 事故供水量57.5万m3/d 水库水位(m ) 60 65 69 水泵需要扬程(m ) 115.8 110.8 106.8 3水泵设计方案比选 根据泵站运行工况流量大,扬程高,扬程变化幅度大的特点,为满足水泵在各工况下能够高效、安全运行,水泵选择应考虑一下几种措施:变频调速;增加水泵台数;大小泵搭配。 增加水泵台数和大小泵搭配都不能在最大流量和平均流量间连续调节。一般只能保证在最大流量和平均流量两个工况点运行效率较高,其他工况点只能依靠关阀增加损失调节流量,不仅不能充分利用水库死水位以上的水能,而且偏离额定工况后运行效率降低幅度较大,增大运行费用。 变频调速是通过变频器改变电机的供电频率以改变电机转速来调节水泵运行工况,能使水泵在多种运行工况下,均在较高的效率范围内运行,并能连续调节;能够充分利用水库死水位以上的水能,减少耗电量,节约运行费用。近几年,随着变频技术的不断成熟,产量增大,变频调速装置价格已大幅度降低了,所以目前在大中型泵站,特别是在一些进水侧水

叶片式水力机械的全特性(Q-H)

叶片式水力机械的全特性(Q ~H 坐标) (1)转速为正(n >0)时轴流式机组特性曲线。如图3-3(a )所示,曲线AB 段的H 、Q 、n 、M 均为正值,则QH >0,ωM P =>0,由工况定义知,AB 为水泵工况。BC 段的Q 、n 、M 为正,H 为负,则QH <0,水流经过转轮后能量减少,ωM P =>0,转轮输入功率,此为制动工况。C 点M =0,亦即P =0,QH <0,为飞逸工况,水流流经转轮减少的能量用于克服飞逸时的机械损耗。C 点以下的Q 、n 为正,H 、M 为负,则QH <0,水流能量减少,ωM P =<0,转轮向外输出功率,此为水轮机工况。不过这时的水流由尾水管流向蜗壳,是倒冲式水轮机工况,一般称为反水轮机工况。A 点以左,Q 为负值,其它参数均为正值,则QH <0,ωM P =>0,亦为制动工况。所以n 为某一正值时,水力机组自左至右经历了制动工况、水泵工况、制动工况及反水轮机工况四个工作状态。 图3-3 三种转速下水力机组的全特性曲线 (2)转速为零(n =0)时轴流式机组的特性曲线。此时水力机组在循环管道上实际上就成为局部阻力,因此,不管流量是正还是负,水流流经转轮后能量总是减少的,也不管扭矩是正还是负,因为转速为零,所以功率也必为零。故当转速为零时,整个特 性曲线上的工况均为制动工况,转轮处的局部损失22 2KQ g v h ==?ζ,所以()Q f H =曲线亦为抛物线,又因QH <0,则H 为正时,Q 必为负,反之亦然,故()Q f H =曲线贯穿于Ⅱ、Ⅳ象限,如图3-3(b )所示,但此抛物线不是水力机组相似工况点的抛物线。水流对转轮的作用力矩等于水流进出转轮的动量(mv )的变化量,由此可知,力矩的大小与流量的平方成正比,所以()Q f M =亦是一抛物线,其方向当n =0时,水头为正,

IEC60193水泵水轮机模型验收规程标准译文

目录 前言 目次 1 总则 1.1 范围和目的 1.1.1 范围 1.1.2 目的 1.2 引用文献 1.3 术语、定义、符号和单位 1.3.1 1.3.2 1.3.3 概述 单位 术语、定义、符号和单位表 1.4 与水力性能有关的保证值的性质和范围 1.4.1 1.4.2 1.4.3 1.4.4 概述 模型试验法验证的主要水力性能保证值 模型试验法不能验证的保证值 附加性能数据 2 试验的执行 2.1 试验安装和模型的要求 2.1.1 2.1.2 2.1.3 试验室选择 试验装置安装 模型要求 2.2 模型和真机的尺寸检查 2.2.1 2.2.2 2.2.3 2.3 水力相似、试验条件和试验程序 2.3.1 2.3.2 2.3.3 概述 需检查的模型和真机的尺寸 表面的波浪度和粗糙度 水力相似 试验条件 试验程序 2.4 测量方法介绍 2.4.1 2.4.2 2.4.3 2.5 物理性质 2.5.1 2.5.2 2.5.3 主要水力性能保证值的测量 附加数据与测量 数据的采集 和处理 概述 重力加速 度 水的物理性质

2.5.4大气的物理性质 2.5.5水银密度 国际标准IEC60193由IEC TC4即水轮机技术委员会编制。 第二版IEC60193将取消和替代1965年出版的第一版IEC60193及其补充1 (1977),IEC60193A( 1972)以及 IEC60497( 1976)和 IEC60995( 1991)。 本标准的第1至第3章覆盖了上述出版物,第十章给出。 3附加内容 本标准的文本基于下列文献: 上表的表决报告给出了本标准表决标准的所有情况。 附录B、F、G、K、L和M内容是本标准不可分割的一部分。 附录A、C、D、E、H、J、N和P是供参考内容。

水泵的选择与集水池设计

水泵的选择与集水池设计 1.泵站设计流量的确定 城市的用水量是不均匀的,因而排人管道的污水流量也是不均匀的。排水泵站的设计流量一般均按最高日最高时污水流量决定。一般小型排水泵站(最高日污水量在5000m3以下),设1-2套机组;大型排水泵站(最高日污水量超过l5000m3)设3-4套机组。 2.泵站扬程的确定 泵站扬程可按下式计算: H=Hss+Hsd+∑hs+∑hd(m) 式中Hss——吸水地形高度,m,为集水池内最低水位与磁力泵轴线之高差; Hsd——压水地形高度,m,为水泵轴线与输水最高点(即压水管出口处)之高差; ∑hs,∑hd——污水通过吸水管路和压水管路中的水头损失(包括沿程损失和局部损失)。 由于污水泵站一般扬程较低,局部损失占总损失比重较大,所以不可忽略不计。考虑到排污泵在使用过程中因效率下降和管道中因阻力增加而增加的能量损失,在确定水泵扬程时,可增大1-2m安全扬程。 3.选泵应注意的问题 (1)因为水泵在运行过程中,集水池中水位是变化的,因此所选水泵在这个变化范围内应处于高效段,当泵站内的水泵超过两台时,在选择水泵时应注意不但在并联运行时,而且在单泵运行时都应处于高效段内; (2)为提高水泵的使用范围,每台水泵的流量最好相当于1/2~1/3的设计流量,并且以采用同型号的水泵为最好; (3)从适应流量的变化和节约电能角度考虑,采用大小搭配较为合适的型号可适应更广泛的来水量。若选用两台不同型号的水泵,则小泵的出水量不应小于大泵出水量的一半;若选用一大两****台水泵,则小泵的出水量不小于大泵出水量的]/3; (4)大流量的排水泵站可选择轴流泵,一般泵站选择离心污水泵,泵房不太深的情况可选择卧式离心污水泵; (5)工业排水泵站的来水中往往含有酸性、碱性或其他腐蚀性物质,因此,应选择耐腐蚀性能好的污水泵; (6)泵站经常工作水泵不多于四台,且为同一型号时,只需在管路中设置一套备用机组;若超过四台,除安装在管路上的一套备用机组外,还应在仓库中备用一套。 集水池设计 1.集水池形式 污水泵站集水池的形式有圆形、半圆形和矩形等多种形式,上口宜采用敞开式,周围加栏杆或短墙,上加顶棚,设梁勾或滑车,以满足吊泥或栅渣的要求。 2.集水池布置原则 集水池的布置,应考虑改善水泵吸水的水力条件,减少滞流和涡流,以保证水泵正常运行。布置时应注意以下几点。 (1)泵的吸水管或叶轮应有足够的淹水深度,防止空气吸入或形成涡流时吸入空气。 (2)水泵的吸入喇叭口应与池底保持所要求的距离。 (3)水流应均匀顺畅无漩涡地流近水泵吸水管口。每台水泵进水水流条件基本相同,水流不要突然扩大或改变方向。 (4)集水池进口流速和水泵吸入口处的流速尽可能缓慢。 污水泵房的集水池前应设置闸门或闸槽,以在集水池清洗或水泵检修时使用。 3.集水池容积 集水池的容积与进入泵站的流量变化情况、水泵的型号、工作台数及其工作制度、泵站操作性质、启动时间等有关。在满足安装格栅和吸水管的要求,保证水泵工作时的水力条件及能够及时将流入的污水抽走的前提下,集水池应尽量小些。集水池容积的确定方法见表7—6 表7-6集水池容积的确定

相关主题
文本预览
相关文档 最新文档