当前位置:文档之家› J2000-可逆式水泵水轮机全特性曲线处理新方法

J2000-可逆式水泵水轮机全特性曲线处理新方法

J2000-可逆式水泵水轮机全特性曲线处理新方法
J2000-可逆式水泵水轮机全特性曲线处理新方法

离心泵知识,性能参数及特性曲线(参考模板)

离心泵知识、性能参数与特性曲线要正确地选择和使用离心泵,就必需了解泵的性能和它们之间的相互关系。离心泵的主要性能参数有流量、压头、轴功率、效率等。离心泵性能间的关系通常用特性曲线来表示。 一、离心泵的概念:水泵是把原动机的机械能转换成抽送液体能量的机器。来增加液体的位能、压能、动能。原动机通过泵轴带动叶轮旋转,对液体作功,使其能量增加,从而使需要数量的液体,由吸入口经水泵的过流部件输送到要求的高处或要求压力的地方。 二、离心泵的基本构造 离心泵的基本构造是由六部分组成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封装置,基础台板等。 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上

的的内外表面要求光滑,以减少水流的摩擦损失。 2、泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、转轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。轴承的依托为轴承箱。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出,不利于散热;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封装置。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封装置,密封的间隙保持在0.25~1.10mm之间为宜。

水泵的性能曲线图分析

水泵的性能曲线图分析: 泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。 水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。注意其轴功率不应超过电机功率。 1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。扬程--流量曲线 以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。扬程是随流量的增大而下降的。 Q-H(流量-扬程)是一条不规则的曲线。相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。它将是该水泵最经济工作的一个点。在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。 因无法上图,请自找一幅水泵性能曲线图对照着看。主要就这些了。 GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分) 273L/h。 其中ft是英尺,表示扬程。 1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米. 比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢转换公式是什么请大家告诉我一下!谢谢 转换公式:高度H=P/(ρg) 压力为P=0.2 Mpa=200000 Pa 高度H=P/(ρg)=200000/(1000*9.8)= 20.41 m 以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。 0.1个兆帕理论上能撑起10米水柱, 水泵扬程与压力有什么关系 扬程就是压力。 压力的单位是bar 巴扬程单位是m 米1巴=10米 2、功率曲线(泵轴功率与流量的关系N-Q) HP与功率的比例关系? 答:HP是英制功率的计量单位,即马力。而KW是公制功率计量单位,它们的关系:1HP=0.75KW。 首先你要明白水泵性能曲线是由管路性能曲线和扬程流量曲线构成的,其实很简单。他的交点就是工况点,两水泵并联时流量叠加,扬程基本不变。串联时扬程叠加流量不变。 cdlf2系列里面还有多级叶轮的,根据叶轮代号查看对应极数的扬程(纵坐标),X+Y 对应的那个点。压力就是扬程,1公斤=10米 汽蚀余量 Capcity m3/h H (m) N (﹪) P (kw) Speed (rymin) (NPSH)r

水泵水轮机特点

天荒坪抽水蓄能电站 水泵水轮机特点 华东天荒坪抽水蓄能有限责任公司游光华 浙江安吉313302 摘要天荒坪抽水蓄能电站的水泵水轮机组由挪威KVAERNER公司提供,是我国较早从国外引进的大型可逆式机组,自首台机组投产至今已有7年多。本文总结分析了水泵水轮机7年多的运行中出现了一些问题,以供参考借鉴。 主题词天荒坪抽水蓄能水泵水轮机性能“S”形特性不稳定轴向水推力抬机导叶关闭规律 天荒坪抽水蓄能电站安装有6台300MW水泵水轮机组,为单级、立轴、混流可逆式,额定净水头为526米,运行毛水头(扬程)为526米~610.2米,水轮机安装高程为225米,淹没深度为-70米,是目前国内已投产运行的水头和变幅最大的单级可逆式机组,在国际上也较罕见,为使其达到满意的效率和良好的运行稳定性,设计难度大,没有现成的经验可供借鉴。水泵水轮机的参数如下: 水轮机工况:水泵工况:额定容量:306MW 333MW 最大轴出力(入力):338MW 333MW 额定流量:67.7m3/s 58.80m3/s(最大) 43.00m3/s(最小) 额定转速:500RPM 500RPM 旋向(俯视):顺时针逆时针 转轮水轮机进口直径:4030mm 转轮水轮机出口直径:2045mm

最大瞬态飞逸转速:720 r/min 最大稳态飞逸转速:680 r/min 水泵水轮机及其辅助设备由挪威GE 公司提供。水泵水轮机大修拆卸方式采用中拆方式。首台机组于1998年9月30日投入运行,2000年12月25日所有机组投产,投产以来运行情况表明,机组性能良好,效率较高,但也出现了一些问题,在技术人员的努力下,通过采取措施,相关问题已得到了较好的解决。 1水泵水轮机的性能和结构特点 1.1效率 按照合同规定,水泵水轮机的效率按照模型试验来验收,合同要求水轮机工况的最高效率≥92.20%,加权平均效率≥90.41%,水泵工况最高效率≥ 91.70%,加权平均效率≥ 91.52%。根据模型试验报告,水轮机工况的模型最优效率为90.61%,折算为原型其整个运行范围内的最优效率为92.28%,加权平均效率为90.317%,而水泵工况下模型最优效率为89.84%,折算原型最优效率为92.17%,加权平均效率为92.01%,除水轮机工况加权平均效率略低于保证值0.083%外,其余均达到合同要求。为了检验真机效率,我们于2001年5月在5号机组上进行了部分水头(扬程)的热力法效率试验,测得水轮机工况下在试验平均净水头566.23 m时,机组出力为210~304.06 MW,水轮机最高效率为92.11%,相应机组出力272.00 MW;水泵工况试验平均净扬程为542.09 m,水泵平均效率为88.99%。从上述结果可以看出,水轮机工况的最高效率已接近模型推算值,水泵工况效率偏

水泵水轮机全特性

水泵水轮机全特性 1.水泵水轮机全特性曲线 抽水蓄能电站的水泵水轮机均设有活动导叶,通过导叶调节水轮机运行时的流量,故水泵水轮机的特性曲线一般为一组不同导叶开度下的全特性曲线,其区域的划分与水泵的全特性区域划分一样,只是习惯上以正常水轮机运行工况的各参数为正。同时抽水蓄能电站一般H 也总是正值,即在实际工程中实用也就是5个工况区,即水轮机工况、水轮机制动工况、水泵工况、反水泵工况、水泵制动工况。 水泵水轮机全特性曲线表示方法通常采用1111~n Q 和1111~n M 来表示。图3-7和图3-8所示为某抽水蓄能电站水泵水轮机的四象限特性曲线。 图3-7 水泵水轮机流量特性曲线 图3-8 水泵水轮机力矩特性曲线

2.水泵水轮机全特性曲线的特点 通过对不同水泵水轮机的全特性分析可以看出,水泵水轮机全特性有着下述的规律与特点: (1)在水泵工况,大开度等导叶开度曲线汇集成一簇很窄的交叉曲线,说明在此区域水泵扬程与导叶开度的关系不大,开度的改变不会造成单位转速及单位力矩的很大的变化。当导叶开度较小区域时随着导叶开度的减小其流量曲线及力矩曲线则加速分又,说明此时的导水机构可看作是节流装置,水头损失急剧增大,从而对水泵的力矩及流量产生较大的影响。在水泵实际运行中导叶开度将随着扬程的变化而沿各导叶开度特性曲线的外包络线变化,使得水力损失最小,也即使得水泵的效率在此工况最高。此外,随着单位转速的增大,也即水泵扬程的减小,水泵的流量及水力矩将快速增大,所以在水泵及电动机设计时应充分考虑此时水泵的力矩特性,电动机容量应根据可能的正常运行最低扬程工况进行设计,并留有一定的裕量;同时根据导叶小开度区域力矩分散的特性,在异常低扬程起动时(如初次向上水库异常低扬程充水时)可采取关小导叶开度来限制其水力矩,即限制水泵的入力在一定范围以内。

离心泵特性曲线的测定

离心泵特性曲线的测定 一、 实验目的 1、了解离心泵的结构与特性,熟悉离心泵的使用。 2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安转方法。 4、测量孔板流量计的孔流系数C 随雷若数Re 变化的规律。 5、测定管路特性曲线。 二、 基本原理 离心泵的主要性能参数有流量Q 、压头H 、效率和轴功率N ,在一定转速下,离心泵的送液能力(流量)可以通过调节出口阀门使之从零至最大值间变化。而且,当期流量变化时,泵的压头、功率、及效率也随之变化。因此要正确选择和使用离心泵,就必须掌握流量变化时,其压头、功率、和效率的变化规律、即查明离心泵的特性曲线。 1、扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2截面,列机械能衡算方程: ∑+++=+++f h g u g p H g u g p 2z 2z 2 2 222111ρρ 因两截面间的管长很短,通常将其阻力项∑f h 归并到泵的损失中,且泵的进出口为等径 管则有 式中 H 0 :泵出口和进口的位差,对于磁力驱动泵32CQ-15装置,H 0= ρ:流体密度,kg/m 3 ; p 1、p 2:分别为泵进、出口的压强,Pa ; u 1、u 2:分别为泵进、出口的流速,m/s ; z 1、z 2:分别为真空表、压力表的安装高度,m 。 2、轴功率N 的测量与计算 N=N 电k 式中—N 电为泵的轴功率,k 为电机传动效率,取k= 3、效率η的计算 泵的效率η是泵的有效功率N e 与轴功率N 的比值。反映泵的水力损失、容积损失和机械损失的大小。泵的有效功率N e 可用下式计算: 故泵的效率为 %100g ?=N HQ ρη 4、泵转速改变时的换算 在绘制特性曲线之前,须将实测数据换算为某一定转速n? 下(可取离心泵的额定转

可逆式抽水蓄能机组与厂房

可逆式抽水蓄能机组与厂房Reversible Unit and Underground Hydropower House 本节介绍可逆式(两机式)抽水蓄能电站,二级可逆式水泵水轮机机组与抽水蓄能电站地下厂房。 二机可逆式水泵水轮机机组 可逆式(两机式)抽水蓄能电站由一台水泵水轮机与一台电动发电机组成,组成的机组称为二机可逆式水泵水轮机机组,电动发电机在上方,水泵水轮机在下方,二机轴通过联轴器连接,见图1。 图1 二机可逆式水泵水轮机机组

由于抽水蓄能电站基本都采用高水头(400m以上)工作方式,故水泵水轮机都是混流式水泵水轮机。图中水泵水轮机为单级,只有一个转轮,目前单级水泵水轮机的工作水头最高可达800m,一般混流式水泵水轮机工作范围在500m左右。 多级可逆水泵水轮机 对于超过800m的抽水蓄能电站的混流式水泵水轮机要采用多级水泵水轮机,多级水泵水轮机相当于多个单级水泵水轮机串联使用,相邻二级水泵水轮机之间用水道连接,所有转轮共用一根转轴,图2是二级水泵水轮机的结构示意图。 图2 二级可逆式水泵水轮机

两个转轮共用一根转轴,转轴下端安装在推力轴承上,推力轴承承担转轮的重量与水的推力,转轴上端有导轴承,防止转轴晃动。每个转轮有一套导水系统,由各自的接力器驱动。 多级水泵水轮机一般按每级200m至300m设计,目前已有4至6级的多级水泵水轮机工作水头达1000m至1400m。多级水泵水轮机很难在每级转轮安装导水机构,采用无导水机构结构,无导水机构结构对抽水无影响,但作水轮机运行时无法进行调节会使效率下降。 在图3中用浅蓝色箭头线表示在水轮机工况时的水流方向,在抽水工况时则相反。水轮机工况时顺时针旋转(顶视),抽水工况时反时针旋转(顶视)。 图3 二级可逆式水泵水轮机水流向图

水泵特性曲线的关系

主要是由三条特性曲线组成,分别是: H-qv曲线,表示泵的扬程与流量关系。 P-qv曲线,表示泵的轴功率与流量的关系。 η-qv曲线,表示泵的效率与流量的关系。 扬程随流量的增加而减少,轴功率随流量的增加而增加; 流量为零时,效率为零; 流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降 1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能 曲线,合理配备水泵的台数。 2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大, 会烧坏电机。 3、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题 或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 4、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好 用的。 5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线 影响造成的。 6、合理,主要就是检修,否则可以不用阀门。 7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况 下,那么压力不会变化,轴功率会增加。 8、问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有关,还有可能增加。但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。 离心泵的特性曲线是将由实验测定的Q、H、N、η等数据标绘而成的一组曲线。此图由泵的制造厂家提供,供使用部门选泵和操作时参考。

水泵水轮机选型(已看)

国产抽水蓄能机组水泵—水轮机选型中 若干问题探讨 高道扬 天津市天发重型水电设备制造有限公司 摘要:本文着重分析了可逆式水泵—水轮机模型转轮及抽水蓄能电站水泵—水轮机主要技术参数的特点,并在此基础上提出根据抽水蓄能电站水泵—水轮机的技术要求初步筛选水泵—水轮机模型转轮及水泵—水轮机方案的方法。 随着我国社会主义建设事业的发展,特别是电力工业的飞速发展,抽水蓄能电站的建设高潮已经到来,在国家有关政策的坚强支持下,抽水蓄能机组国产化、本土化的工作业已全面展开。因此如何根据可逆式水泵—水轮机模型转轮的主要技术特点并在抽水蓄能电站对水泵—水轮机技术要求的基础上优选水泵—水轮机模型转轮及水泵—水轮机方案已成为众多水泵—水轮机选型工作者的首要工作,作者根据多年工作经验对选型工作中的若干问题作一初步探讨。 1 水泵—水轮机模型转轮主要技术参数特点 叶片式水力机械具有可逆性,即它既可以做水轮机运行也可以做水泵运行,但是由于中、高比速的水轮机进口角β1T较大,当它反向旋转做水泵工况运行时,由于出口角太大,导致水流的不稳定,在H-Q曲线上出现多处大驼峰并且泵工况的效率比正常水轮机工况大幅下降,因而中、高比速水轮机显然不适合作为可逆式水泵——水轮机转轮的研究基础(70年代初北京密云电站曾用HL211-LJ-225水轮机做反向旋转的泵工况现场实验未能取得满意效果)。理论分析和实验证明具有较长叶片和缓慢扩散流道的离心泵叶轮,其泵的叶片出口水流角β2P较小,出口相对流速W2P和绝对流速V2P都较小,因而水流进入涡壳后水力损失较小,当离心泵反转做水轮机运行时进口相对流速W1T也比较小,符合常规水轮机要求,因而离心泵叶轮在水泵工况和水轮机工况都有较好的性能,现代可逆式水泵—水轮机转轮就是以离心泵叶轮为基础逐步发展起来的。 1.1水泵—水轮机模型转轮与常规水轮机模型转轮相比具有以下特点:由于混流式水轮机的β1T较大,其(V1u/U1)T约为0.9,而离心泵的β2P较小,(V2u/U2)P约为0.6,由此可以推算出在同样的水头和转速条件下,可逆式水泵—水轮机的转轮直径约为常规水轮机转轮直径的 1.4倍,即:D P/D T=1.4。在同一额定水头下,水泵—水轮机与水轮机模型转轮比转速n s(m kw)相近,但单位转速为水轮机的1.25~1.3倍,而单位流量为水轮机的0.6~0.65倍。 1.2水泵—水轮机模型转轮的水泵工况与水轮机工况相比,在通常条件下,由于高压边速度三角形既不相等亦不相似(泵工况出口因为水流的偏转出口水流角β2p比安放角βd小一些,而水轮机工况进口在无撞击的条件下,进口角βIT与βd相等),因而经实验研究及理论分析证明两种工况具有以下特点: 1.2.1 在最优工况点,水泵工况的单位转速是水轮机工况的单位转速 1.10~1.18倍,即n10P/n10T=1.10~1.18(理论分析为1.12~1.16)。 139

离心泵特性曲线

一、离心泵的特性曲线定义 当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(HS)等随流量(Q)变化的函数关系,即:H=f(Q);N=F(Q);Hs= Ψ(Q);η = φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。 离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H-Q、N-Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。严格意义上讲,每一台水泵都有特定的特性曲线。 在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。 在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。 二、影响离心泵特性曲线的因素 离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。 1、叶轮出口直径对性能曲线的影响 在叶轮其他几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。

根据这一特性,水泵制造厂和使用单位可采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。 2、转速与性能曲线的关系 同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为: Q1/Q2=n1/n2 H1/H2=(n1/n2)2 N1/N2=(n1/n2)2

第三节水轮机模型综合特性曲线

第三节水轮机模型综合特性曲线 水轮机主要综合特性曲线是指以单位转速和单位流量为纵、横坐标而绘制的若干组等值曲线,这些等值线表示出了同系列水轮机的各种主要性能。在图中常绘出下列等值线:①等效率线;②导叶(或喷针)等开度线;③等空化系数线;④混流式水轮机 的出力限制线;⑤转桨式水轮机转轮叶片等转角线。这种主要综合特性曲线一般由模型试验的方法获得,因此,又称为模型综合特性曲线。不同类型的水轮机,其模型综合特性曲线具有不同的特点,掌握它们的特点,对于正确选择水轮机及分析水轮机的性能是很重要的。下面说明几种水轮机模型综合特性曲线的特点。 一、混流式水轮机模型综合特性曲线 图8-6为某混流式水轮机模型综合特性曲线,它由等效率曲线、等开度线、等空化系数线与出力限制线所构成。 图8-6 混流式水轮机模型综合特性曲线 同一条等效率线上各点的效率均等于某常数,这说明等效率线上的各点尽管工况不同,但水轮机中的诸损失之和相等,因此水轮机具有相等的效率。 等开度线则表示模型水轮机导水叶开度为某常数时水轮机的单位流量随单位转速的改变而发生变化的特性。

等空化系数线表示水轮机各工况下空化系数的等值线,等空化系数线上各点尽管工况不同,其空化系数却相同。由于模型水轮机的空化系数大多是通过能量法空化试验而获得的,因此,尽管等空化系数线上的工况点具有相同的空化系数,但它们的空化发生状态可能是不相同的。 混流式水轮机模型综合特性曲线上通常标有5%出力限制线,它是某单位转速下水轮机的出力达到该单位转速下最大出力的95%时各工况点的连线。绘制出力限制线的目的是考虑到水轮机在最大出力下运行时,不可能按正常规律实现功率的调节,而且,在超过95%最大功率运行时,效率随流量的增加而降低,且效率降低的幅度超过流量增加的幅度,因此水轮机的出力反而减小了,从而使调速器对水轮机的调节性能较差。为了避开这些情况,并使水轮机具有一定的出力储备,因此,将水轮机限制在最大出力的95%(有时取97%)范围内运行。 二、转桨式水轮机模型综合特性曲线 轴流定桨式水轮机及其他固定叶片的反击式水轮机,其模型综合特性曲线与混流式水轮机具有相同的形式。 图8-7为某轴流转桨式水轮机模型综合特性曲线。轴流转桨或斜流转桨式水轮机的叶片可以改变角度,当水轮机的工作水头或负荷发生变化时,通过协联机构使叶片角度作相应的改变,从而保持水轮机具有良好的工作效率,这种运行方式称为协联方式。转桨式水轮机模型综合特性曲线上标有等效率线、等开度线、等叶片转角线。 图 8-7轴流转桨式水轮机模型综合特性曲线 转桨式水轮机的等效率线是水轮机在协联方式下工作时的效率等值线。它是水轮机在不同叶片角下各同类水轮机等效率线的包络线。 等开度线则表示在协联方式下,导水叶开度为某常数而叶片角度不同时,水轮机单位流量与单位转速之间的关系,它代表了水轮机在协联方式工作下的过流特性。 等叶片转角线则是同一叶片转角下各所对应的最高效率点的连线。 由等线与等线可以找出导水开度与叶片转角的最佳协联关系。 转桨式水轮机的等空化系数线是各角下的同类水轮机的等线与等线的一系列交点中,相同值的连线。 转桨式水轮机具有宽广的高效率区,在相当大的单位流量下不出现流量增加而出力减少的情况,因此一般不绘出5%出力限制线。而水轮机的最大允许出力常受到空化条件的限制。 三、冲击式水轮机模型综合特性曲线

离心泵的性能参数与特性曲线(精)

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。离心泵的主要性能参数有流量、压头、效率、轴功率等。它们之间的关系常用特性曲线来表示。特性曲线是在一定转速下,用20℃清水在常压下实验测得的。 (一)离心泵的性能参数 1、流量 离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。离心泵的流量与泵的结构、尺寸和转速有关。 2、压头(扬程) 离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。压头的影响因素在前节已作过介绍。 3、效率 离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。反映能量损失大小的参数称为效率。 离心泵的能量损失包括以下三项,即 (1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。闭式叶轮的容积效率值在0.85~0.95。 (2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。这种损失可用水力效率ηh来反映。额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。 (3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。离心泵的总效率由上述三部分构成,即 η=ηvηhηm(2-14) 离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。通常,小泵效率为50~70%,而大型泵可达90%。 4、轴功率N 由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有 Ne = HgQρ(2-15) 式中 Ne------离心泵的有效功率,W; Q--------离心泵的实际流量,m3/s; H--------离心泵的有效压头,m。 由于泵内存在上述的三项能量损失,轴功率必大于有效功率,即 (2-16) 式中 N ----轴功率,kW。 (二)离心泵的特性曲线 离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。在离心泵出厂前由泵的制造厂测定出H-Q、N-Q、η-Q

可逆式水轮机毕业设计任务书、基本资料和指示书

可逆式水轮机毕业设计 任务书、基本资料和指示书 河海大学水电学院动力系 二○○六年三月 可逆式水轮机毕业设计 任务书 一、设计内容 根据原始资料,对指定抽水蓄能电站、指定原始参数进行机电部分的初步设计,包括主机选型,调节保证计算、调速设计选择、辅助设备设计,电气设备设计等。 二、时间安排 1.机组选型设计:5周 2.调节保证计算:1.5周 3.辅助设备设计:2周 4.电气设备设计:1.5周 5.整理成果:1.5周 6.评阅答辩:1周 总计12.5周 三、成果要求 1.设计说明书:说明设计思想,方案比较及最终结果,并附必要的图表; 2.设计计算书:设计计算过程,计算公式,参数选取依据,计算结果; 3.图纸:厂房横剖面图、水系统图、气系统图、电气主结图等4~6张。 可逆式水轮机毕业设计 原始资料 仙游抽水蓄能电站

仙游抽水蓄能电站站址位于福建省莆田市下辖的仙游县西苑乡,属木兰溪流域。距仙游县城28km,对外交通较为便利。 上库广桥坝址位于木兰溪上游支流大济溪的上游,在西苑乡广桥村上游河谷中。下库半岭坝址位于木兰溪上游溪口溪上,在西苑乡半岭村上游约1km的河谷中。上、下水库成库天然条件较好,输水距离较短,上、下库均有公路到达。 本电站工程由上水库、下水库、输水系统、地下厂房洞室群及地面开关站组成。地下厂房洞室群深埋于上下库之间的雄厚山体内,水由隧洞式压力钢管引入厂房。 仙游电站为日调节纯抽水蓄能电站,平均每天抽水工况运行7h,发电工况运行5h。本电站建成后将承担所在电力系统的调峰、调频、调相及事故备用任务,在提高系统供电质量,应付系统突发事故,保障系统安全运行等方面将起到较大的作用。 机组选型设计水能参数一览表 温高,湿度大,日照时间长。上库广桥坝址多年平均气温16.9℃,极端最高气温35.3℃,极

水泵变频运行特性曲线

1 引言 水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2 水泵变频运行分析的误区 2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律 Q1/Q2=n1/n2 扬程比例定律 H1/H2=(n1/n2)2 轴功率比例定律 P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: (1) 为什么水泵变频运行时频率在30~35Hz以上时才出水? (2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高? 2.2 绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。 图1 水泵的特性曲线 图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。 2.3 变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌? 3 以上分析的误区 (1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比例定律是相似定律作为特例演变而来的。即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。 (2) 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。因此其运行工况与标准工况相同,可以应用比例定律。但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因

水泵水轮机结构介绍(精)

广州蓄能水电厂水泵水轮机结构介绍 肖苏平 一.简介 广州蓄能水电厂分二期建设,一、二期工程分别安装4×300MW可逆式水泵水轮机,单机容量(发电工况300MW,总装机容量2400 MW。一期(称A厂工程于1994年全部建成。二期(称B厂工程于1999年全部建成。一、二期工程于2000年3月全部投产。8×300MW 机组投产后,已成为当今世界最大的抽水蓄能电厂。 可逆式水泵水轮机在抽水、发电起动,停机操作灵活方便,在电网峰荷时放水发电,在低谷负荷时利用系统多余的电能抽水,在电网中起到了填谷调峰的积极作用,使系统中的所有各种电站的负荷趋于均匀,提高了整个电力系统的经济运行。 本电站两期工程共装设八台可逆式水泵水轮机。每台机组设备包括:水泵水轮机、调速系统、进水球阀、尾水事故闸门以及相应的操作控制系统,各种连接管路、阀门、管件、表计、自动化元件、控制电缆、备品、专用工具、实验设备等。A厂水泵水轮机由法国Neyrpic 公司承制、供货,B厂由德国Voith承制、供货。 电站工程主要特征数据如下: 上库水位:正常蓄水位 816.8 m 最低蓄水位 797.0 m 下库水位:正常蓄水位 287.4 m 最低蓄水位 275.0 m 电站毛水头:最大水头 541.8 m 额定水头 522.0 m

最小水头 509.6 m 二.水泵水轮机基本参数 水泵水轮机为竖轴单级、可逆、法兰西斯式,具有可调导水机构,与电动发电机轴直接连接。A、B厂水泵水轮机主要参数如下: A厂 B厂 额定转速:水轮机工况 500 r/min 500 r/min 水泵工况 500 r/min 500 r/min 旋转方向(俯视:水轮机工况为顺时针 水泵工况为反时针转轮直径:进口直径 3886mm 3802 mm 出口直径 2312mm 2090 mm 额定出力:水轮机工况 306 MW 308 MW 水泵工况 330 MW 330 MW 水轮机最大出力: 306 MW 352 MW 水轮机额定流量: 62.88m/s 65.95m/s 水轮机最大流量: 68.7m/s 72.92m/s 水泵最大流量: 60.03m/s 57.3m/s 水泵最小流量: 53.73m/s 50.6m/s 水泵水轮机总重: 450 t 转动惯量GD2: 3600t.m2 轴向最大水推力:正常运行时,水轮机工况 1500 kN 水泵工况 1500 kN

离心泵特性曲线实验报告

化工原理实验报告 实验名称:离心泵特性曲线实验报告:克川 专业:化学工程与工艺(石油炼制)班级:化工11203 学号:201202681

离心泵特性曲线实验报告 一、 实验目的 1. 了解离心泵的结构与特征,熟悉离心泵的使用。 2. 测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作围。 3. 熟悉孔板流量计的构造与性能以及安装方法。 4. 测量孔板流量计的孔流系数C 岁雷诺数R e 变化的规律。 5. 测量管路特性曲线。 二、 基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒 定转速下泵的扬程H 、功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵流动规律的宏观表现形式。由于泵部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: z 1+ P 1ρg +U 12 2g +H=z 2+ P 2 ρg +U 22 2g +∑h f (1-1) 由于两截面间的管子较短,通常可忽略阻力项∑h f ,速度平方差也很小,故也可忽略,则有 H=(z 1-z 2)+ p 1?p 2ρg =H 1+H 2(表值)+H 3 (1-2) 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.2轴功率N 的测量与计算 N=N 电k(w) (1-3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取0.90 2.3效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间流体经过泵时所获得的实际功率,轴功率N 是单位时间泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne 可用下式计算: N e =HQ ρg (1-4) η= HQρg N ×100% (1-5)

水泵的特性曲线

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 2-4离心泵的特性曲线 一、离心泵的特性曲线 压头、流量、功率和效率是离心泵的主要性能参数。这些参数之间的关系,可通过实验测定。离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线(characteristic curves)。以供使用部门选泵和操作时参考。 特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,图2-6为国产 4B20型离心泵在n=2900r/min时特性曲线。图上绘有三种曲线,即 1.H-Q曲线 H-Q曲线表示泵的流量Q和压头H的关系。离心泵的压头在较大流量范围内是随流量增大而减小的。不同型号的离心泵,H-Q曲线的形状有所不同。如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。 2.N-Q曲线 N-Q曲线表示泵的流量Q和轴功率N的关系,N随Q的增大而增大。显然,当Q=0时,泵轴消耗的功率最小。因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。 3.η-Q曲线 η-Q曲线表示泵的流量Q和效率η的关系。开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。该曲线最大值相当于效率最高点。泵在该点所对应的压头和流量下操作,其效率最高。所以该点为离心泵的设计点。

选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区,如图2-6波折线所示。高效率区的效率应不低于最高效率的92%左右。泵在铭牌上所标明的都是最高效率下的流量,压头和功率。离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。 二.离心泵的转数对特性曲线的影响 离心泵的特性曲线是在一定转速下测定的。当转速由n1改变为n2时,其流量、压头及功率的近似关系为 , , (2-6) 式(2-6)称为比例定律,当转速变化小于20%时,可认为效率不变,用上式进行计算误差不大。 三.叶轮直径对特性曲线的影响 当叶轮直径变化不大,转速不变时,叶轮直径、流量、压头及功率之间的近似关系为 , , (2-7) 式(2-7)称为切割定律。 四.液体物理性质的影响 泵生产部门所提供的特性曲线是用清水作实验求得的。当所输送的液体性质与水相差较大时,要考虑粘度及密度对特性曲线的影响。 1.粘度的影响所输送的液体粘度愈大,泵体内能量损失愈多。结果泵的压头、流量都要减小,效率下降,而轴功率则要增大,所以特性曲线改变。 2.密度的影响离心泵的压头与密度无关,这可以从概念上加以说明。液体在一定转速下,所受的离心力与液体的密度成正比。但液体由于离心力的作用而取得的压头,相当于由离心力除以叶轮出口截面积所形成的压力,再除以液体密度和重力加速度的乘积。这样密度对压头的影响就

叶片式水力机械的全特性(Q-H)

叶片式水力机械的全特性(Q ~H 坐标) (1)转速为正(n >0)时轴流式机组特性曲线。如图3-3(a )所示,曲线AB 段的H 、Q 、n 、M 均为正值,则QH >0,ωM P =>0,由工况定义知,AB 为水泵工况。BC 段的Q 、n 、M 为正,H 为负,则QH <0,水流经过转轮后能量减少,ωM P =>0,转轮输入功率,此为制动工况。C 点M =0,亦即P =0,QH <0,为飞逸工况,水流流经转轮减少的能量用于克服飞逸时的机械损耗。C 点以下的Q 、n 为正,H 、M 为负,则QH <0,水流能量减少,ωM P =<0,转轮向外输出功率,此为水轮机工况。不过这时的水流由尾水管流向蜗壳,是倒冲式水轮机工况,一般称为反水轮机工况。A 点以左,Q 为负值,其它参数均为正值,则QH <0,ωM P =>0,亦为制动工况。所以n 为某一正值时,水力机组自左至右经历了制动工况、水泵工况、制动工况及反水轮机工况四个工作状态。 图3-3 三种转速下水力机组的全特性曲线 (2)转速为零(n =0)时轴流式机组的特性曲线。此时水力机组在循环管道上实际上就成为局部阻力,因此,不管流量是正还是负,水流流经转轮后能量总是减少的,也不管扭矩是正还是负,因为转速为零,所以功率也必为零。故当转速为零时,整个特 性曲线上的工况均为制动工况,转轮处的局部损失22 2KQ g v h ==?ζ,所以()Q f H =曲线亦为抛物线,又因QH <0,则H 为正时,Q 必为负,反之亦然,故()Q f H =曲线贯穿于Ⅱ、Ⅳ象限,如图3-3(b )所示,但此抛物线不是水力机组相似工况点的抛物线。水流对转轮的作用力矩等于水流进出转轮的动量(mv )的变化量,由此可知,力矩的大小与流量的平方成正比,所以()Q f M =亦是一抛物线,其方向当n =0时,水头为正,

水泵特性曲线

一、水泵的调速性能 水泵在改变转速时,其内部几何尺寸没有改变,所以,据水泵的相似原理可知:当转速变化时,流量与转速成正比,扬程与转速的平方成正比,轴功率与转速的立方成正比,得出:同一台水泵当转速变化时,水泵的主要性能参数将按上述比例定律而变化,并且,在变化过程中可保持效率基本不变,若水泵机组转速可调,我们就可以改变某台水泵的转速以适应当时需水量的变化,这样就可以避免水泵机组在低效率区域运转造成的电动机过载,另一方面,也可以避免供水压力偏高所造成的浪费。同时,水泵随着转速的变慢而使轴功率大为减少,电动机输入功率也随之减少,这就是调速水泵在供水系统中所起的节能作用。 二、变频恒压供水的节能原理 所谓恒压供水方式,就是针对离心泵“流量大时扬程低,流量小时扬程高”的特性,通过自控变频系统,无论流量如何变化,都使水泵运行扬程保持不变,即等于设计扬程。若采用关阀调节,当流量由Q2→Q1时,则工况点由A2变为A1,浪费扬程△H=H1-H3=△H1+△H2。若采用变频恒压供水,则自动将转速调至n1,工况点处于B1点(参见图1)。由于变频调速是无级变速,可以实现流量的连续调节,所以,恒压供水工况点始终处于直线H=H2上,在控制方式上,只需在水泵出口设定一个压力控制值,比较简单易行。显然,恒压

供水节约了H1-H2。而没有考虑△H2。因此,它不是最经济的供水调节方式,尤其在管路阻力大,管路特性曲线陡曲的情况下,△H2所占的比重更大,其局限性就显而易见。 图1 三、 四、减速的基本原理 根据交流电动机工作原理中的转速关系,n=60f(1-s)/p,从公式中得出:均匀改变电动机定子绕组的电源频率,就可以平滑地改变电动机的同步转速。电动机转速变慢,轴功率就相应减少,电动机输入功率也随之减少,这就是水泵调速的节能作用。

离心泵特性曲线

长江大学 化工原理实验报告 实验四离心泵特性曲线的测定 1.实验目的及任务 1.1了解离心泵结构与特性,熟悉离心泵的使用。 1.2测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 1.3熟悉孔板流量计的构造、性能及安装方法。 1.4测量孔板流量计的孔流系数C随雷诺数Re变化的规律。 1.5测定管路特性曲线。 2.基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: z1+p1 ρg +u12 2g +H=z2+p2 ρg +u22 2g +Σ?f (1.1) 由于两截面间的管长较短,通常将其阻力项hf归并到泵的损失中,且泵进出口为等径管,则有 H=(z2?z1)+p2?p1 ρg =H0+H1+H2 (1.2)式中H0--泵出口和进口间的位差,H=z2?z1(对于磁力驱动泵32CQ=15装置,H0=0.3m;多数情况下,H可忽略,即H并归入到泵内损失中); ρ—流体密度, g—重力加速度, p1、p2—分别为泵进、出口的真空压和表压, H1、H2 ---分别为泵进、出口的真空压和表压对应的压头, u1、u2 ---分别为泵进、出口的流速, z1、z2---分别为真空表、压力表的安装高度, 由上式可知,只要直接读出真空表和压力表上的数值及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N的测量与计算 N=N 电k(1.3) 式中N电 ---电功率表显示值; k---电机传动功率,可取k=0.90 2.2效率η的计算 泵的效率n是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间内流体经过泵时所获得的实际 功,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械能损失的大小。 泵的有效功率Ne可用下式计算: N 电 =HQρg (1.4) 故泵效率为 ρ=HQρg N ×100% (1.5) 2.3转速改变时的换算 泵的特性曲线是在恒定转速下的实验测定所得。但是,实际上感应电动机在转矩改变时,其转速会有变 化,这样随着流量Q的变化,多个实验点的转速n将有所差异,因此在绘制特性曲线之前,须将实测数据换 算为某一定转速n下(可取离心泵的额定转速)的数据。在n=20%的情况下其换算关系如下: 流量 Q′=Q n′ n (1.6) 扬程 H′=H(n′ n )2 (1.7) 轴功率 N′=N(n′ n )3 (1.8) 效率 η’=Q′H′ρg N′ =QHρg N =η (1.9) 2.4管路特性曲线H-Q 当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与 管路特性有关,也就是说,在液体输送过程中,泵和管路二者是相互制约的。 在一定的管路上,泵所提供的压头和流量必然与管路所需的压头和流量一致。若将泵的特性曲线与管路 特性曲线绘在同一坐标图上,两曲线交点即为泵在该管路的工作点。因此,可通过改变泵转速来改变泵的特 性曲线,从而得出管路特性曲线。泵的压头H计算同上。 He=Δz+Δp ρg +Δu2 2g +Σhf=A+BQ2(1.10) 其中 BQ2=Δu2 2g +Σhf=Δu2 2g +(8λ π2 g )(l+Σl e d5 )Q2(1.11) 当H=He时,调节流量,即可得到管路特性曲线H?Q。 2.5孔板流量计孔流系数的测定 孔板流量计的结构如图所示。

相关主题
文本预览
相关文档 最新文档