当前位置:文档之家› 信号分析与处理 杨西侠版 第2章习题答案

信号分析与处理 杨西侠版 第2章习题答案

信号分析与处理 杨西侠版 第2章习题答案
信号分析与处理 杨西侠版 第2章习题答案

2-1 画出下列各时间函数的波形图,注意它们的区别

1)x 1(t) = sin Ω t ·u(t )

2)x 2(t) = sin[ Ω ( t – t 0 ) ]·u(t )

3)x 3(t) = sin Ω t ·u ( t – t 0 )

-1

4)x2(t) = sin[ ( t – t0) ]·u( t – t0)

2-2 已知波形图如图2-76所示,试画出经下列各种运算后的波形图

(1)x ( t-2 )

(2)x ( t+2 )

(3)x (2t)

(4)x ( t/2 )

(5)x (-t)

(6)x (-t-2)

(7)x ( -t/2-2 )

(8)dx/dt

2-3 应用脉冲函数的抽样特性,求下列表达式的函数值

(1)?+∞

∞--)(0t t x δ(t) dt = x(-t 0) (2)?+∞

∞--)(0t t x δ(t) dt = x(t 0) (3)?+∞∞

--)(0t t δ u(t -

20t ) dt = u(2

t )

(4)?+∞

∞--)(0t t δ u(t – 2t 0) dt = u(-t 0) (5)()

?+∞∞

--+t e

t

δ(t+2) dt = e 2-2

(6)()?+∞

∞-+t t sin δ(t-6π

) dt =

6

π

+

2

1

(7) ()()[]?+∞

∞-Ω---dt t t t e t

j 0δδ

=()?+∞

-Ω-dt t e

t

j δ–?+∞∞

-Ω--dt t t e t j )(0δ

= 1-0

t j e

Ω- = 1 – cos Ωt 0 + jsin Ωt 0

2-4 求下列各函数x 1(t)与x 2(t) 之卷积,x 1(t)* x 2(t) (1) x 1(t) = u(t), x 2(t) = e -at · u(t) ( a>0 ) x 1(t)* x 2(t) =?+∞

∞---ττττ

d t u

e u a )()( =

?-t

a d e 0

ττ = )1(1at

e a

--

x 1(t)* x 2(t) =ττδτδτπ

d t t u t )]1()1([)]()4

[cos(---+-+Ω?+∞

∞-

= cos[Ω(t+1)+

4

π

]u(t+1) – cos[Ω(t-1)+

4

π

]u(t-1)

(3) x 1(t) = u(t) – u(t-1) , x 2(t) = u(t) – u(t-2) x 1(t)* x 2(t) =

?

+∞

-+-----τττττd t u t u u u )]1()()][2()([

当 t <0时,x 1(t)* x 2(t) = 0 当 0

t

d τ? = t 当 1

1d τ?

= 1

当 2

2

t d τ-?=3-t 当 3

(4) x 1(t) = u(t-1) , x 2(t) = sin t · u(t) x 1(t)* x 2(t) =?

+∞

∞---ττττd t u u )1( )( )sin(

=??∞

==01

-t 0

1

-t 0| cos - d sin 1)d --u(t sin ττττττ

= 1- cos(t-1)

2-5 已知周期函数x(t)前1/4周期的波形如图2-77所示,根据下列各种情况的要求画出x(t)在一个周期( 0

(1) x(t)是偶函数,只含有偶次谐波分量

f(t) = f(-t), f(t) = f(t ±T/2)

(2) x(t)是偶函数,只含有奇次谐波分量 f(t) = f(-t), f(t) = -f(t ±T/2)

(3) x(t)是偶函数,含有偶次和奇次谐波分量f(t) = f(-t)

(4) x(t)是奇函数,只含有奇次谐波分量

f(t) = -f(-t), f(t) = -f(t±T/2)

(5) x(t)是奇函数,只含有偶次谐波分量

f(t) = -f(-t), f(t) = f(t±T/2)

(6) x(t)是奇函数,含有偶次和奇次谐波分量

f(t) = -f(-t)

2-6 利用信号x(t)的对称性,定性判断图2-78所示各周期信号的傅里叶级数中所含有的频率分量

(a)

这是一个非奇、非偶、非奇偶谐波函数,且正负半波不对称,所以含有直流、正弦等所有谐波分量,因为去除直流后为奇函数。(b)

这是一个奇函数。也是一个奇谐波函数,所以只含有基波、奇次正弦谐波分量。

(c)

除去直流分量后是奇函数,又f(t) = f(t±T/2),是偶谐波函数,所以含有直流、偶次正弦谐波。

(d)

正负半波对称,偶函数,奇谐波函数,所以只含有基波、奇次余弦分量。

(e)

奇函数、正负半波对称,所以只含有正弦分量(基、谐)

(f)

正负半波对称、奇函数、奇谐波函数,所以只含有基波和奇次正弦谐波。

2-7 试画出x(t) = 3cos Ω1t + 5sin2Ω1t 的复数谱图(幅度谱和相位谱) 解:a 0 = 0, a 1 = 3, b 2 = 5, c 1 = 3, c 2 = 5 |x 1| = |2

1

(a 1-jb 1)| =

23, |x 2| = 2

1c 2 = 25

φ1 = arctan (-30

) = 0, φ-1= 0

φ2 = arctan (-05) = -2π, φ-2= 2

π

1

1

2-8 求图2-8所示对称周期矩形信号的傅里叶级数

解:这是一个正负半波对称的奇函数,奇谐函数,所以只含有基

波和奇次正弦谐波。 b n =

?

ΩT

t x T

dt t n sin )(2

=

?

Ω20dt t n sin 2

2T E

T –

?

ΩT

T

E

T 2

dt t n sin 22 =

?

ΩΩ20

]dt )2

T

-(t n sin -t n sin [T T

E = 2

02

T

0|)]2

([n cos 2n E |t n cos 2T

T t n E -Ω+Ω-ππ

= )n cos -(1 cos 2n E

1)- n (cos 2ππ

ππ+-n E

π

n E

2 ,n 为奇数,n = 1,3,5 ……

= 1)- n (cos =-ππ

n E

0 ,n 为偶数,n = 2,4,6 ……

∴ x(t) = ] t 5sin 5

1

t 3 sin 31 t sin [ 2???+Ω+Ω+ΩπE

指数形式的傅里叶级数

0 , n = 0, ±2, ±4 …… X n =

2

1

(a n -jb n ) = π

n jE

-

, n = ±1, ±3, ±5 …… ∴ x(t) = a 0 + ∑∞

=Ω-Ω+0

)(n t

jn n

t jn n e X e X 2-9 求图2-9所示周期信号的傅里叶级数

解:此函数是一个偶函数 x(t) = x(-t) ∴ 其傅里叶级数含有直流分量和余弦分量

a o = ?40 4 1T

dt t T E T = 8

E + ?434 E 1T T dt T + ?T T dt T 43 )T t -4E(1 1 =

8E + 2E + E –)169

(2222T T T

E -

= 46E –43E = 4

3E

a n = ?ΩT

dt t T 0 n cos x(t) 2

= ?ΩΩ+T dt T

0t jn -t jn )e (e x(t) 1 =

T 1 = )2cos 1()

(42ππn n E --, n = 1, 2, …

∴ x(t) = 4

3E – ]... t 3 cos 91 t cos241 t cos [42+Ω+Ω+ΩπE

2-10 若已知F [x(t)] = X(Ω)利用傅里叶变换的性质确定下列信号的傅里叶变换

(1) x(2t –5) (2) x(1–t) (3) x(t) · cos t

解:(1) 由时移特性和尺度变换特性可得

F [x( 2t - 5)] =ΩΩ25

j -e )2( X 21

(2) 由时移特性和尺度变换特性

F [x(at)] =

)a

( X ||1Ωa

F [x(t-t 0)] = 0t

-j e )( X ΩΩ

F [x(1–t)] = Ω

Ω-j e )(- X

(3) 由欧拉公式和频移特性

cos t = )e e ( 2

1jt -j +t F [t

j 0e (t)x Ω±] = X(Ω Ω0)

Ω0 = 1

F [x(t) · cos t] =

2

1

[ X(Ω–1) + X(Ω+1)] 2-11已知升余弦脉冲x(t) = ) 2

cos 1 (2t E π+)( ττ<<-t 求其傅里叶变换 解:x(t) = ) 2

cos 1 (2t

E π+[ u( t +τ)–u( t –τ)]

求微分

)(t x ' = )]-u(t - ) u(t [ t

sin 2τττ

πτ

π+-E

)(t x '' = )]-u(t - ) u(t [ t cos 222τττ

πτπ+-E

)(t x '''= )]-u(t - ) u(t [ t sin 233τττπτπ+E + )]-(t - ) (t [ 222

τδτδτ

π+E

= (t) 22x 'τπ+ )]-(t - ) (t [ 22

2

τδτδτ

π+E 由微分特性可得:

( j Ω)3 X(Ω) = 22

)](2E )X( )[-(j τ

πττΩ-Ω

-+ΩΩj j e e

∴ X(Ω) = )(2sin 22222

Ω-ΩΩτ

πτπE 2-12已知一信号如图2-81所示,求其傅里叶变换

解:(1) 由卷积定理求

x(t) = )(2

t G τ * )(2

t G τ

)(2

t G τ =

)]4

()4([2τ

ττ--+t u t u E

)(2

ΩτG =

)4

(22τ

ττΩSa E 由时域卷积定理

X(Ω) = )(2

ΩτG )(2

ΩτG =

)4

(22τ

τΩSa E

(2) 由微分特性求

2τE

,–2

τ< t < 0

)(t x ' = – 2τ

E

,0 < t < 2

τ

0 ,| t | > 2

τ

)(t x '' =

2τE

[δ( t +2τ) +δ( t –2

τ)–2δ(t)] 由微分特性 ( j Ω)2

X(Ω) = )22

cos 2(2)2(2E

2

2

-Ω=--Ω-Ω

τ

ττ

ττE

e

e

j j

X(Ω) = )4

(22τ

τΩSa E 2-13已知矩形脉冲的傅里叶变换,利用时移特性求图2-82所示信号的傅里叶变换,并大致画出幅度谱

解:)(t G τ = E [ u( t + 2τ)–u( t –2

τ

)] )(ΩτG = )2

( ττΩSa E

x(t) = τG ( t +

2τ)–τG ( t –2

τ

)

由时移特性和线性性

X(Ω) = )2( ττΩSa E τ2Ωj e –)2

( ττΩSa E τ

-j e

= )2

( ττΩSa E j

e e j

j 22

2

Ω-Ω-τ·2j = 2j )2(

τ

τΩSa E 2

sin τΩ

2-14已知三角脉冲x 1(t)的傅里叶变换为

X 1(Ω) = )4

(22ττΩSa E 试利用有关性质和定理求x 2(t) = x 1(t –2

τ

) cos Ω0t 的傅里叶变换

解:由时移性质和频域卷积定理可解得此题 由时移性质

F [x 1 (t –2

τ

)] = 2j -1e )( X τ

ΩΩ

由频移特性和频域卷积定理可知: F [x(t )cos Ω0t]=

2

1

[X(Ω–Ω0)+ X(Ω+Ω0)]

X 2 (Ω) = F [x 1 (t –2

)cos Ω0t ]

= 2

1[ X 1 (Ω–Ω0) τ20Ω-Ω-j e + X(Ω+Ω0) τ2

0Ω+Ω-j e ]

= 4τE [Sa

2ττ2

00

4

)(Ω-Ω-Ω-Ωj e + Sa

2ττ2

00

4

)(Ω+Ω-Ω+Ωj

e ]

2-15求图2-82所示X(Ω)的傅里叶逆变换x(t)

解:a) X(Ω) = | X(Ω)| )(Ω-?j e

=

0)(2t j e

G ΩΩΩ

由定义:

x(t) =

?

+∞

-ΩΩΩd e X t j )(21

π

= ?

ΩΩ-ΩΩΩ0

021d e Ae t j t j π

= ?

ΩΩ-+ΩΩ0

0)(2d e A t t j π

= 0

00|)

(2)(0ΩΩ-+Ω+t t j e t t j π

=

)](sin[)

(000t t t t A

+Ω+π

=

)]([000

t t Sa A +ΩΩπ

b) ?

+∞

-ΩΩΩ=d e X t x t j )(21)(π

=?

Ω-Ω-Ω0

2

021d e

Ae t

j j

π

π+

?

ΩΩΩ0

221d e Ae t j j

π

π

=?

Ω--

ΩΩ0

)

2

(0

2d e

A t j π

π

+

?

Ω+

ΩΩ0

)

2

(2d e

A

t j π

π

=0)2(0|2Ω--ΩΩππt j e j A +00

)2(|2Ω+ΩΩ

π

πt j e j A

=)

2

(020)

2

(2π

π

ππ+

Ω-+Ω-t j e t j A

j A

–)

2

(020)

2

(2π

π

ππ+

Ω+Ω+t j e t j A

j A

=

)]2

sin[()

2

(00π

π

π+Ω+

Ωt t A

=

]2

[0π

π

+

Ωt Sa A

2-16确定下列信号的最低抽样频率与抽样间隔

(1) Sa(100t) (2) Sa 2(100t)

(3) Sa(100t)+ Sa 2(100t) 解:(1)由对偶性质可知:

Sa(100t)的频谱是个矩形脉冲,其脉宽为[-100,100] 即Ωm = 100 =2πf m ∴ f m =

π

50

由抽样定理 f s ≥ 2f m ∴ f s ≥ 2×π

50

=

π

100

T s ≤

100

π

(2) 由对偶性质可知

Sa(100t)的频谱是个矩形脉冲,其脉宽为[-100,100] 又由频域卷积定理可知

Sa 2(100t)的频谱是脉宽为[–200,–200]的三角形脉冲 即Ωm = 200 =2πf m

∴ f m =

π

100

由抽样定理 f s ≥ 2f m ∴ f s ≥ 2×π

100

=

π

200

T s ≤

200

π (3) 由线性性质可知

Sa(100t)+ Sa 2(100t) 的频谱是Sa(100t)和Sa 2(100t)之和 ∴其Ωm =2πf m = 200 即 f m =

π

100

则f s ≥ 2f m = π

200

T s ≤

200

π

数字信号处理期末实验 语音信号分析与处理

山东建筑大学信电学院课程设计说明书 语音信号分析与处理 摘要 用MATLAB对语音信号进行分析与处理,采集语音信号后,在MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。 数字滤波器是数字信号处理的基础,用来对信号进行过滤、检测和参数估计等处理。IIR数字滤波器最大的优点是给定一组指标时,它的阶数要比相同组的FIR 滤波器的低的多。信号处理中和频谱分析最为密切的理论基础是傅立叶变换(FT)。离散傅立叶变换(DFT)和数字滤波是数字信号处理的最基本内容。 关键词:MATLAB;语音信号;加入噪声;滤波器;滤波 1. 设计目的与要求 (1)待处理的语音信号是一个在20Hz~20kHz频段的低频信号。 (2)要求MATLAB对语音信号进行分析和处理,采集语音信号后,在MATLAB平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器进行滤除噪声,恢复原信号。 1 山东建筑大学信电学院课程设计说明书

2. 设计步骤 (1)选择一个语音信号或者自己录制一段语音文件作为分析对象; (2)对语音信号进行采样,并对语音信号进行FFT频谱分析,画出信号的时域波形图和频谱图; (3)利用MATLAB自带的随机函数产生噪声加入到语音信号中,对语音信号进行回放,对其进行FFT频谱分析; (4)设计合适滤波器,对带有噪声的语音信号进行滤波,画出滤波前后的时域波形图和频谱图,比较加噪前后的语音信号,分析发生的变化; (5)对语音信号进行回放,感觉声音变化。 3. 设计原理及内容 3.1 理论依据 (1)采样频率:采样频率(也称采样速度或者采样率)定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率只能用 于周期性采样的采样器,对于非周期采样的采样器没有规则限制。通俗的讲,采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。采样频率越高,即采样的间隔时间越短,则在单位之间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。(2)采样位数:即采样值或取样值,用来衡量声音波动变化的参数。 (3)采样定理:在进行模拟/数字信号的的转换过程中,当采样频率f大于信s.max 号中,最高频率f的2倍时,即:f>=2f,则采样之后的数字信号完整的maxmaxs.max 保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的 5~10倍;采样频率又称乃奎斯特定理。 (4)时域信号的FFT分析:信号的频谱分析就是计算信号的傅立叶变换。连续信号与系统的傅立叶分析显然不便于直接用计算机进行计算,使其应用受到限制。而FFT是一种时域和频域均离散化的变换,适合数值计算,成为用计算机分析 离2 山东建筑大学信电学院课程设计说明书 散信号和系统的的有力工具。对连续信号和系统,可以通过时域采样,应用DFT 进行近似谱分析。

信号分析与处理答案第二版完整版

信号分析与处理答案第 二版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第二章习题参考解答 求下列系统的阶跃响应和冲激响应。 (1) 解当激励为时,响应为,即: 由于方程简单,可利用迭代法求解: ,, …, 由此可归纳出的表达式: 利用阶跃响应和冲激响应的关系,可以求得阶跃响应: (2) 解 (a)求冲激响应 ,当时,。 特征方程,解得特征根为。所以: …(2.1.2.1) 通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1): …(2.1.2.2) 可验证满足式(2.1.2.2),所以: (b)求阶跃响应 通解为 特解形式为,,代入原方程有,即 完全解为 通过原方程迭代之,,由此可得 解得,。所以阶跃响应为: (3)

解 (4) 解 当t>0时,原方程变为:。 …(2.1.3.1) …(2.1.3.2) 将(2.1.3.1)、式代入原方程,比较两边的系数得: 阶跃响应: 求下列离散序列的卷积和。 (1) 解用表 格法求 解 (2) 解用表 格法求 解 (3) 和 如题图2.2.3所示 解用表 格法求 解

(4) 解 (5) 解 (6) 解参见右图。 当时: 当时: 当时: 当时: 当时: (7) , 解参见右图: 当时: 当时: 当时: 当时: 当时: (8) ,解参见右图

当时: 当时: 当时: 当时: (9) , 解 (10) , 解 或写作:

求下列连续信号的卷积。 (1) , 解参见右图: 当时: 当时: 当时: 当时: 当时: 当时: (2) 和如图2.3.2所示 解当时: 当时: 当时: 当时: 当时: (3) , 解 (4) , 解 (5) , 解参见右图。当时:当时: 当时:

数字信号处理习题及答案1

数字信号处理习题及答案1 一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出 y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n ) 的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换 DFT 的是 ( ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列 C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即 可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理 想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)

信号分析与处理习题

2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ),y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32621=< =Ωh ,所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652=>=Ωh ,所以y 2(t )失真。 3.2 设x (n )的傅里叶变换为X (e j ω),试利用X (e j ω )表示下列序列的傅里叶变换: (1) )1()1()(1n x n x n x --+-= (2) )]()([2 1 )(2n x n x n x -+= * 分析:利用序列翻褶后的时移性质和线性性质来求解,即 )()(ωj e X n x ?,)()(ωj e X n x -?- )()(ωωj m j e X e n m x --?- 解:(1)由于)()]([ω j e X n x DTFT =,)()]([ωj e X n x DTFT -=-,则 )()]1([ωωj j e X e n x DTFT --=- )()]1([ωωj j e X e n x DTFT -=-- 故ωωωωω cos )(2])[()]([1j j j j e X e e e X n x DTFT ---=+= (2)由于)()]([ω j e X n x DTFT * * =- 故)](Re[2 ) ()()]([2ωωωj j j e X e X e X n x DTFT =+= * 3.7 试求下列有限长序列的N 点离散傅里叶变换(闭合形式表达式):

信号分析与处理试题

河南科技学院2006-2007学年第二学期期终考试 信号分析与处理试题 适用班级: 注意事项:1 在试卷的标封处填写院(系)、专业、班级、姓名和准考证号。 2 考试时间共100分。 一、单项选择题(本大题共10小题,每题2分,共20分) 1.下列单元属于动态系统的是( ) A. 电容器 B.电阻器 C.数乘器 D.加法器 2.单位阶跃函数()u t 和单位冲激函数()t δ的关系是( ) A.()/()d t dt u t δ= B.()/()du t dt t δ= C.()()u t t δ= D.()2()u t t δ= 3.()()f t t dt δ∞-∞=?( ) A.()f t B.()t δ C.(0)f D.(0)δ 4.单位冲激函数()t δ的()F j ω=( ) A .0 B.-1 C.1 D.2 5.设()f t 的频谱为()F j ω,则利用傅里叶变换的频移性质,0()j t f t e ω的频谱为( ) A.0()F j ω B.()F j ω C.0[()]F j ωω+ D.0[()]F j ωω- 6.设1()f t 的频谱为1()F j ω,2()f t 的频谱为2()F j ω,利用傅里叶变换卷积定理,12()()f t f t *的频谱为( ) A.1()F j ω B.2()F j ω C.11()()F j F j ωω* D.11()()F j F j ωω 7.序列()n m δ-的Z 变换为( ) A.m z B.m z - C.m D.m - 8.单边指数序列()n a u n ,当( )时序列收敛 A.1a < B.1a ≤ C.1a > D.1a ≥ 9.取样函数()/Sa t sint t =,则(0)Sa =( ) A.0 B.1 C.2 D.3 10.设实函数()f t 的频谱()()()F j R jX ωωω=+,下列叙述正确的是( )

信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础 2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ), y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32 621 =< =Ωh , 所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652 => =Ωh , 所以y 2(t )失真。 2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求: (1) 该信号的最小采样频率; (2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○ 1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频

率f m 的两倍,即 f s ≥2f m ○ 2采样公式 )()()(s nT t nT x t x n x s === 解:(1)在模拟信号中含有的频率成分是 f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz ∴信号的最高频率f m =6000Hz 由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号 ? ?? ? ????? ??-???? ????? ??=? ??? ????? ??+???? ????? ??-???? ????? ??=? ??? ????? ??++???? ????? ??-+???? ????? ??=? ??? ????? ??+???? ????? ??+???? ????? ??=? ?? ? ??====n n n n n n n n n n n f n x nT x t x n x s s nT t s 522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分, 即 kHz f f f kHz f f f s s 25000200052150001000512211 ======,, 若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号

数字信号处理期末试卷及答案

A 一、选择题(每题3分,共5题) 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期6 π = N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20 点 DFT ,得 )(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

信号处理第二章知识点

第二章 连续时间傅里叶变换 1 周期信号的频谱分析——傅里叶级数FS (1) 狄义赫利条件:在同一个周期1T 内,间断点的个数有限;极大值和极小值的数目有限; 信号绝对可积∞

信号分析与处理课后习题答案

信号分析与处理课后习题答案 第五章快速傅里叶变换 1.如果一台通用计算机的速度为平均每次复乘需要50us ,每次复加需要10us ,用来就散N=1024点的DFT ,问: (1)直接计算需要多少时间?用FFT 计算呢? (2)照这样计算,用FFT 计算快速卷积对信号进行处理是,估计可实现实时处理的信号最高频率? 解: 分析:直接利用DFT 计算:复乘次数为N 2,复加次数为N(N-1); 利用FFT 计算:复乘次数为20.5log N N ,复加次数为2log N N ; (1) 直接DFT 计算: 复乘所需时间2215010245052.4288T N us us s =?=?= 复加所需时间2(1)101024(10241)1010.47552T N N us us s =-?=-?= 所以总时间1262.90432DFT T T T s =+= FFT 计算: 复乘所需时间3220.5log 500.51024log 1024500.256T N N us us s =?=???= 复加所需时间422log 101024log 1024100.1024T N N us us s =?=??= 所以总时间为340.3584FFT T T T s =+= (2) 假设计算两个N 长序列1()x n 和2()x n 的卷积 计算过程为如下: 第一步:求1()X k ,2()X k ;所需时间为2FFT T ? 第二步:计算12()()()X k X k X k =?,共需要N 次复乘运算 所需时间为501024500.0512To N us us s =?=?= 第三步:计算(())IFFT X k ,所需时间为FFT T 所以总时间为230.35840.0512 1.1264FFT T T To s s s =?+=?+= 容许计算信号频率为N/T=911.3Hz 2.设x(n)是长度为2N 的有限长实序列,()X k 为x(n)的2N 点得DFT 。

信号分析与处理模拟试卷

1.具有跳变的信号在其跳变处的导数是一个 a 。 a )强度等于跳变幅度的冲激函数 b) 幅度为无限大的冲激函数 c) 强度为无限大的冲号 d) 理想阶跃信号 2.设 x (n ) 是一个绝对可求和的信号,其有理 z 变换为 X ( z ) 。若已知 X ( z ) 在 z =0.5有一个极点,则 x (n ) 是 c 。 a )有限长信号 b )左边信号 c )右边信号 d )区间信号 3. z (t ) = 4t 2δ (2t ? 4) = b 。 a )8δ (t ? 2) b )16δ (t ? 2) c )8 d )16 4. 设两个有限长序列 x (n ) 和 h (n ) 的卷积为 y (n ) = x (n ) ? h (n ) , y (n ) 的长度 L y 与 x (n ) 的长度L x 和 h (n ) 的长度 L h 的关系是 b 。 a ) L y = L x + L h + 1 b ) L y = L x + L h ? 1 c ) L y = L x ? L h + 1 d ) L y = L x ? L h ? 1 5. 已知 x (n ) 的 Z 变换 X ( z ) =?2.5z /(z 2 ? 1.5z ? 1), 则 X ( z ) 可能存在的收敛域是 a a )|Z|<0.5, 0.5<|Z|< 2, |Z|> 2 b) |Z|<0.5, 0.5<|Z|< 2 c) 0.5<|Z|< 2, |Z|> 2 d) |Z|> 2 二.填空题(20分,每空1分) (1)按照信号幅度和时间取值方式的不同,信号可以分为以下几种类型:连续时间信号、离散时间信号、数字信号。 (2)若一个离散时间系统满足__线性__和__时不变性则称为线性时不变系统,线性移不变系统具有因果性的充分必 要条件是系统的单位抽样响应满足下式:__h(n)=0 (当n<0时)___。 (3)快速傅里叶变换(FFT )并不是一种新的变换形式,但它应用了系数kn N W 的_对称性__周期性__可约性__,不断地将长序列的DFT 分解成几个短序列的DFT,并减少DFT 的运算次数。其运算量是DFT 的__N 2 /[(N/2)log 2N]__倍。 (4)求积分 dt )t ()t (212-+? ∞ ∞ -δ的值为 5 。 (5)线性系统是同时具有 齐次性 和 叠加性 的系统。 (6)系统的完全响应也可以分为暂态响应和稳态响应。随着时间t 的增大而衰减为零的部分 称为系统的暂态响应 ,其余部分为系统的 稳态响应 。 (7)周期信号频谱3个典型特点:离散性、谐波性、收敛性. (8)模拟滤波器设计IIR 数字滤波器的方法有 冲激响应不变法 和 双线性变换法 。 一、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。(10分,每小题2分) 1.单位冲激函数总是满足)()(t t -=δδ ( √ ) 2.满足绝对可积条件 ∞

信号分析与处理 杨西侠 第2章习题答案

2-1 画出下列各时间函数的波形图,注意它们的区别 1)x 1(t) = sin Ω t ·u(t ) 2)x 2(t) = sin[ Ω ( t – t 0 ) ]·u(t ) 3)x 3(t) = sin Ω t ·u ( t – t 0 ) -1

4)x2(t) = sin[ ( t – t0) ]·u( t – t0) 2-2 已知波形图如图2-76所示,试画出经下列各种运算后的波形图 (1)x ( t-2 ) (2)x ( t+2 )

(3)x (2t) (4)x ( t/2 ) (5)x (-t) (6)x (-t-2)

(7)x ( -t/2-2 ) (8)dx/dt 2-3 应用脉冲函数的抽样特性,求下列表达式的函数值 (1)?+∞ ∞--)(0t t x δ(t) dt = x(-t 0) (2)?+∞ ∞--)(0t t x δ(t) dt = x(t 0) (3)?+∞∞ --)(0t t δ u(t - 20t ) dt = u(2 t ) (4)?+∞ ∞--)(0t t δ u(t – 2t 0) dt = u(-t 0) (5)() ?+∞∞ --+t e t δ(t+2) dt = e 2-2 (6)()?+∞ ∞-+t t sin δ(t-6π ) dt = 6 π + 2 1

(7) ()()[]?+∞ ∞-Ω---dt t t t e t j 0δδ =()?+∞ ∞ -Ω-dt t e t j δ–?+∞∞ -Ω--dt t t e t j )(0δ = 1-0 t j e Ω- = 1 – cos Ωt 0 + jsin Ωt 0 2-4 求下列各函数x 1(t)与x 2(t) 之卷积,x 1(t)* x 2(t) (1) x 1(t) = u(t), x 2(t) = e -at · u(t) ( a>0 ) x 1(t)* x 2(t) =?+∞ ∞---ττττ d t u e u a )()( = ?-t a d e 0 ττ = )1(1at e a -- x 1(t)* x 2(t) =ττδτδτπ d t t u t )]1()1([)]()4 [cos(---+-+Ω?+∞ ∞- = cos[Ω(t+1)+ 4 π ]u(t+1) – cos[Ω(t-1)+ 4 π ]u(t-1) (3) x 1(t) = u(t) – u(t-1) , x 2(t) = u(t) – u(t-2) x 1(t)* x 2(t) = ? +∞ ∞ -+-----τττττd t u t u u u )]1()()][2()([ 当 t <0时,x 1(t)* x 2(t) = 0 当 0

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)A是常数 8ππn 73Acos x(n)???? ??-= (2))81 (j e )(π-=n n x 解: (1) 因为ω=73π, 所以3 14π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω= 81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0?+=是周期序列的条件是是有理数2π/w 0。 3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。 卷积和:①h(n)*求x(n),其他0 2n 0n 3,h(n)其他03n 0n/2设x(n) 例、???≤≤-=???≤≤= ②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n ) x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)

《信号分析与处理》(第二版)-徐科军、黄云志-课后标准答案

《信号分析与处理》(第二版)-徐科军、黄云志-课后答案

————————————————————————————————作者:————————————————————————————————日期:

Chap1. 1.4 ()()()()()()()()()()()() ()()()()()()()121 2 122 12112 2 121 2 2 2y 11102 y 0.5111 y 0.5 1.513y 0 13 013 y 0.5111 0.5 1.513t t t t t x t x t x x t d x x t x x t d t d t t t x x t d t d t t t t t or t t or t t t t t t t τττ ττττ τττττττττττ+∞ -∞ ----=*=-=-≤≤???=≤≤??=-= -=+-<≤=-= -=-++<<=≤-≥≤-≥??=+-<≤??-++<

()()[] ()()()[]()()()∑∞ =? ? ? ???Ω-Ω-+=- =-= =??? ??<≤<≤-=1002212 2 01cos cos cos 1cos 141cos 1cos 1 5 .0202 20 (a)n n n t n n n t n n n t x n n b n n a a T t t T t T t x πππππ πππ 代入公式得: ()() ()()() ()[] ()()[]()()∑∞ =Ω-? ? ? ???Ω-Ω-+=- =-= ==Ω=Ω-=1002222 2 012 212cos 1cos cos 11411cos 11 5.0cos 2 (b)n n n T jn t n n t n n n t x n b n n a a n n X e n X T t x t x πππππππ得到:根据时移性质: ()() ()()()[]()()[]() ∑?∑∞ =-∞ =Ω-+=-=Ω==Ω+=102232 20 2 0201 00 3cos cos 12 21cos 12cos 41 cos 2 (c)n T n n n t n n n t x n n dt t n t x T a a t n a a t x ππ ππ偶对称, 1.12 ()()dt e t x j X t j ?+∞ ∞ -Ω-=Ω频谱密度函数:

信号分析与处理

信号分析与处理 第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统。 测试技术的目的是信息获取、处理和利用。 测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。 信号分析与处理是测试技术的重要研究内容。 信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。 一切物体运动和状态的变化,都是一种信号,传递不同的信息。 信号常常表示为时间的函数,函数表示和图形表示信号。 信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。 信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号; 周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号 在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析; 信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。 信号处理包括时域处理和频域处理。时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容; 测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。 常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列。 系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。被测系统和测试系统统称为系统。输入信号和输出信号统称为测试信号。系统分为连续时间系统和离散时间系统。

2020年整理信号分析与处理期末试卷A.doc

学年第二学期期末考试 信号分析与处理试卷(A) 使用班级答题时间120分钟 一、判断题(本大题共10小题,每题2分,共20分) 1、单位冲激函数总是满足)t ( )t(- =δ δ。() 2、满足绝对可积条件∞ < ?∞∞-dt)t(f的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。() 3、非周期信号的脉冲宽度越小,其频带宽度越宽。() 4、所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。() 5、离散时间信号的频谱都是周期的。() 6、信号()()2 7/ 8 cos+ =n n xπ是周期信号。() 7、信号0 )4 (2= - ?∞∞-dt t δ。() 8、因果系统时指系统在 t时刻的响应只与 t t=时刻的输入有关() 9、线性系统是指系统同时满足叠加性和齐次性() 10、过渡带即为通带与阻带之间的频率范围。() 二、填空题(本大题共9小题10个空,每空2分,共20分) 1、我们把声、光、电等运载消息的物理量称为。 2、幅度有限的周期信号是信号。 3、已知}1 ,3,2{ ) ( 1 - = k f,}2,0,0,1,3{ ) ( 2 = k f,则卷积和f1(k)*f2(k)= 。 4、若信号f(t)的最高频率是2kHz,则t) f(2的乃奎斯特抽样频率为。 5、若一个离散时间系统满足_____________和____________,则称为线性时不变系统。 6、实现滤波功能的系统称为_____________。 7、 () 12 1 4 t dt δ - -= ? 8、 sin 22 t t ππ δ ???? -*+= ? ? ???? 9、周期信号频谱3个典型特点:离散性、谐波性、。 三、选择题(本大题共10小题,每题2分,共20分)

《信号分析与处理》备课教案(第二章) (2)

第二章:单输入单输出系统的时域分析 2.1.概述 系统分析的主要任务是解决在给定的激励作用下,系统将产生什么样的响应。即如果系统(这里指“线性时不变LTI系统”,以下相同)是确定的,激励是已知的,则响应一定也是确定的。 系统数学模型的时域描述主要有两种形式:“输入输出描述”与“状态变量描述”,本章只涉及“输入输出描述”,即采用微分或差分方程对系统进行描述。 为了确定一个线性时不变系统在时域中对给定激励的响应,首先要建立描述该系统的微分方程(对于连续系统)或差分方程(对于离散系统),并求出满足给定初始状态的解。这里,解就是系统的响应。 LTI连续/离散系统的时域分析,可以归结为:建立并求解线性微分/差分方程。这也称之为系统时域响应求解的“经典法”。 由于在其分析过程涉及的函数变量均为时间t,故这一方法称之为“时域分析法”。这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。 几个重要的概念: 由于对“线性时不变LTI系统”在时域中进行描述的数学模型就是“微分方程/连续系统”和“差分方程/离散系统”,因此这些方程的“解”就是系统的“时域响应”,进而又可以按照“解的形式”分解为“自由响应”和“强制响应”,也可以按照“响应产生的原因”分解为“零输入响应”和“零状态响应”。 1、自由响应

“微分方程/差分方程”的“齐次通解”就是系统的“自由响应/固有响应”,其只取决于系统本身的特性。也就是说,对于同一个系统,在不同的激励作用下,系统“自由响应”的形式是相同的。(但系数仍与“激励形式和系统初始状态”有关) 2、强制响应 “微分方程/差分方程”的“特解”就是系统的“强制响应/受迫响应”,其形式由系统的激励所决定。 3、零输入响应 指激励输入为零时,仅由系统的初始状态所产生的系统响应。 4、零状态响应 指系统的初始状态为零,仅由激励输入所引起的系统响应。 5、全响应 系统全响应 = 自由响应+强制响应 = 零输入响应+零状态响应 2.2.连续系统的时域分析 见书上P24~30,由于该部分内容已在高等数学与电路原理课程中作过较详细的讨论,因此本课程中为“自学内容”。 2.3.离散系统的时域分析 一、差分与差分方程 1、差分 设有序列f(k),则…,f(k+2),f(k+1),…,f(k-1),f(k-2)…等称为f(k)的移位序列。 仿照连续信号的微分运算,如下式所示:

信号分析与处理课后习题答案

信号分析与处理课后习题答案 第五章 快速傅里叶变换 1.如果一台通用计算机的速度为平均每次复乘需要50us ,每次复加需要10us ,用来就散N=1024点的DFT ,问: (1)直接计算需要多少时间?用FFT 计算呢? (2)照这样计算,用FFT 计算快速卷积对信号进行处理是,估计可实现实时处理的信号最高频率? 解: 分析:直接利用DFT 计算:复乘次数为N 2,复加次数为N(N-1); 利用FFT 计算:复乘次数为20.5log N N ,复加次数为2log N N ; (1) 直接DFT 计算: 复乘所需时间2215010245052.4288T N us us s =?=?= 复加所需时间2(1)101024(10241)1010.47552T N N us us s =-?=-?= 所以总时间1262.90432DFT T T T s =+= FFT 计算: 复乘所需时间3220.5log 500.51024log 1024500.256T N N us us s =?=???= 复加所需时间422log 101024log 1024100.1024T N N us us s =?=??= 所以总时间为340.3584FFT T T T s =+= (2) 假设计算两个N 长序列1()x n 和2()x n 的卷积 计算过程为如下: 第一步:求1()X k ,2()X k ;所需时间为2FFT T ? 第二步:计算12()()()X k X k X k =?,共需要N 次复乘运算 所需时间为501024500.0512To N us us s =?=?= 第三步:计算(())IFFT X k ,所需时间为FFT T 所以总时间为230.35840.0512 1.1264FFT T T To s s s =?+=?+= 容许计算信号频率为N/T=911.3Hz 2.设x(n)是长度为2N 的有限长实序列,()X k 为x(n)的2N 点得DFT 。

数字信号处理课后答案

1.4 习题与上机题解答 1. 用单位脉冲序列δ(n)及其加权和表示题1图所示的序列。 题1图 解:x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n -1)+2δ(n -2)+4δ(n -3)+0.5δ(n -4)+2δ(n -6) 2. 给定信号: ?? ? ??≤≤-≤≤-+=其它04 061 452)(n n n n x (1) 画出x(n)序列的波形, 标上各序列值; (2) 试用延迟的单位脉冲序列及其加权和表示x(n)序列; (3) 令x 1(n)=2x(n -2),试画出x 1(n)波形; (4) 令x 2(n)=2x(n+2),试画出x 2(n)波形; (5) 令x 3(n)=x(2-n),试画出x 3(n)波形。 解:(1) x(n)序列的波形如题2解图(一)所示。 (2) x(n)=-3δ(n+4)-δ(n+3)+δ(n+2)+3δ(n+1)+6δ(n)+6δ(n -1)+6δ(n -2)+6δ(n -3)+6δ(n -4) (3)x 1(n)的波形是x(n)的波形右移2位,再乘以2,画出图形如题2解图(二)所示。 (4) x 2(n)的波形是x(n)的波形左移2位,再乘以2,画出图形如题2解图(三)所示。 (5) 画x 3(n)时,先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°),然后再右移

2位, x 3(n)波形如题2解图(四)所示。 3.判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)是常数 A n A n x 8π73 cos )(??? ??-=π (2))8 1 (j e )(π-= n n x 解:(1) 因为ω=7 3 π, 所以314 π 2= ω , 这是有理数,因此是周期序列,周期T=14。 (2) 因为ω=81 , 所以ωπ2=16π, 这是无理数, 因此是非周期序列。 4. 对题1图给出的x(n)要求: (1) 画出x(-n)的波形; (2) 计算x e (n)=1/2[x(n)+x(-n)], 并画出x e (n)波形; (3) 计算x o (n)=1/2[x(n)-x(-n)], 并画出x o (n)波形; (4) 令x 1(n)=x e (n)+x o (n), 将x 1(n)与x(n)进行比较, 你能得到什么结论? 解:(1)x(-n)的波形如题4解图(一)所示。 (2) 将x(n)与x(-n)的波形对应相加,再除以2,得到x e (n)。毫无疑问,这是一个偶对称序列。x e (n)的波形如题4解图(二)所示。 (3) 画出x o (n)的波形如题4解图(三)所示。 (4) 很容易证明:x(n)=x 1(n)=x e (n)+x o (n) 上面等式说明实序列可以分解成偶对称序列和奇对称序列。偶对称序列可以用题中(2)的公式计算,奇对称序列可以用题中(3)的公式计算。 5.设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出,判断系统是否是线性非时变的。

相关主题
文本预览
相关文档 最新文档