当前位置:文档之家› 信号处理-习题(答案)

信号处理-习题(答案)

信号处理-习题(答案)
信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础

2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中

??

???≥Ω<Ω=Ωππ

3032

1

)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ),

y 2(t )有无失真?为什么?

分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ

π32

621

=<

=Ωh ,

所以y 1(t )无失真;

因为x 2(t )=cos5πt ,而频谱中最高角频率ππ

π32

652

=>

=Ωh ,

所以y 2(t )失真。

2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:

(1) 该信号的最小采样频率;

(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○

1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频

率f m 的两倍,即

f s ≥2f m

2采样公式 )()()(s nT t nT x t x n x s

===

解:(1)在模拟信号中含有的频率成分是

f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz

∴信号的最高频率f m =6000Hz

由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号

?

??

?

????? ??-???? ????? ??=?

???

????? ??+???? ????? ??-???? ????? ??=?

???

????? ??++???? ????? ??-+???? ????? ??=?

???

????? ??+???? ????? ??+???? ????? ??=?

??

?

??====n n n n n n n n n n n f n x nT x t x n x s s nT

t s

522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,

kHz

f f f kHz

f f f s

s 25000200052150001000512211

======,,

若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号

()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=

可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。

第三章 傅里叶分析

I. 傅里叶变换概述

3.1 [习题3.2]设序列x (n )=δ(n-m ),求其频谱X (e j ω),并讨论其幅频和相频响应

分析:求解序列的频谱有两种方法:

○1先求序列的z 变换X (z ),再求频谱ω

ωj e z j z X e X ==)()(,即X (e j ω)为单

位圆上的z 变换; ○

2直接求序列的傅里叶变换 ∑∞

-∞

=-=

n n

j j e

n x e X ωω

)()(

解:对序列x (n )先进行z 变换,再求频谱,得

m z m n ZT n x ZT z X -=-==)]([)]([)(δ

则ωωω

jm e z j e z X e X j -===)()(

若系统的单位采样响应h (n )=x (n ),则系统的频率响应

)}(exp{)(1)()(ω?ωωωωωj e H e e e X e H j jm jm j j ====--?

故其幅频和相频响应(如图)分别为

幅频响应 1)(=ωj e H 相频响应 ωω?m -=)(

由图可见,该系统的频率响应具有单位幅值以及线性相位的特点。 3.2 设x (n )的傅里叶变换为X (e j ω),试利用X (e j ω)表示下列序列的傅里叶变换:

(1)

)1()1()(1n x n x n x --+-= (2) )]()([2

1

)(2n x n x n x -+=*

分析:利用序列翻褶后的时移性质和线性性质来求解,即

)()(ωj e X n x ?,)()(ωj e X n x -?-

)()(ωωj m j e X e n m x --?-

解:(1)由于)()]([ωj e X n x DTFT =,)()]([ωj e X n x DTFT -=-,则

)()]1([ωωj j e X e n x DTFT --=- )()]1([ωωj j e X e n x DTFT -=--

故ωωωωωcos )(2])[()]([1j j j j e X e e e X n x DTFT ---=+= (2)由于)()]([ωj e X n x DTFT **=-

故)](Re[2

)

()()]([2ωωωj j j e X e X e X n x DTFT =+=

* 3.3 设X (e j ω)是如图所示的信号x (n )的傅里叶变换,不必求出X (e j

ω

),试完成下列计算:

(1)

)(0j e X

(2) ?-π

πω

ωd e X j )(

(3) ωππω

d e X j ?-2

)(

分析:利用序列傅里叶变换的定义以及帕塞瓦定理来求解。 (1) 序列的傅里叶变换公式为:

正变换 ∑∞

-∞

=-=

n n

j j e

n x e X ωω

)()(

反变换 ?-

=

π

π

ωωωπ

d e e X n x n j j )(21

)(

(2) 帕塞瓦定理

?∑

-

-∞

==

π

π

ωωπ

d e X n x j n 2

2

)(21)(

解:(1)由傅里叶正变换公式可知ω=0,则

6)()()(00

==

=

∑∑∞

-∞

=∞

-∞

=?-n n n

j j n x e

n x e X

(2)由于e j0=1,则由傅里叶反变换公式可知n=0,故

πππωωπ

π

ωπ

π

ω422)(2)()(00====?=--

??n j j j n x d e e X d e X

(3) 由帕塞瓦定理,得

ππ

ωπ

π

ω

28)(2)(2

2

==∑

?∞

-∞

=-

n j n x d e X

II. 周期序列的离散傅里叶级数(DFS )

3.4 如图所示,序列x (n )是周期为6的周期性序列,试求其傅里叶级数的系数。

MATLAB信号处理例题

◆例1设方波的数学模型为: ]5sin 513sin 31[sin 4)(000 t t t E t f T ,基频: T 20 用MATLAB 软件完成该方波的合成设计 ◆ MATLAB 源程序 t=-10:0.1:10; %设定一个数组有201个点,方波周期为20 e=5;w=pi/10; %设定方波幅值为5,w 代表w0 m=-5*sign(t); %给定幅值为5的方波函数 y1=(-4*e/pi)*sin(w*t); %计算1次谐波 y3=(-4*e/pi)*(sin(w*t)+sin(3*w*t)/3); %计算3次谐波 y5=(-4*e/pi)*(sin(w*t)+sin(3*w*t)/3+sin(5*w*t)/5); %计算5次谐波 plot(t,y1,'y');hold; grid; %用黄色点线画出1次谐波及网格线,并在同一张图上画其余曲线 plot(t,y3,'g'); %用绿色点线画出3次谐波 plot(t,y5,'b'); %用蓝色点线画出5次谐波 plot(t,m,'-k'); %用黑色实线画方波 title('方波合成');xlabel('t');ylabel('f(t)'); %为图形加上标题 n=50; %合成任意次方波,n 决定方波的合成次数,在此给定50 yn=0; %设置初始值 for i=1:n yn=yn+(-4*e/pi)*(1/(2*i-1))*sin((2*i-1)*w*t); end; %计算n 次谐波合成 plot(t,yn,'r') %用红色实线画出n 次谐波合成 ◆ 从图中我们可以看到Gibbs 现象。在函数的间断点附近,增加傅里叶级数的展开次数,虽然可以使其间断点附近的微小振动的周期变小,但振幅却不能变小。此现象在控制系统表现为:当求控制系统对阶跃函数的响应时,超调量总是存在的。

数字信号处理答案解析

1-1画出下列序列的示意图 (1) (2) (3) (1) (2)

(3) 1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。 图1.41信号x(n)的波形 (1)(2)

(3) (4) (5)(6) (修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期 (1) 解:非周期序列; (2) 解:为周期序列,基本周期N=5; (3)

解:,,取 为周期序列,基本周期。 (4) 解: 其中,为常数 ,取,,取 则为周期序列,基本周期N=40。 1-4判断下列系统是否为线性的?是否为移不变的? (1)非线性移不变系统 (2) 非线性移变系统(修正:线性移变系统) (3) 非线性移不变系统 (4) 线性移不变系统 (5) 线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的? (1) ,其中因果非稳定系统 (2) 非因果稳定系统 (3) 非因果稳定系统 (4) 非因果非稳定系统

(5) 因果稳定系统 1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图 (1) (2) (3) 解:(1) (2) (3)

1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真? (1) (2) (3) 解: (1)采样不失真 (2)采样不失真 (3) ,采样失真 1-8已知,采样信号的采样周期为。 (1) 的截止模拟角频率是多少? (2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何? (3)若,求的数字截止角频率。 解: (1) (2) (3)

数字信号处理习题集(附答案)

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 () 答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处

理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频 率。 (b ) 对于kHz T 201=,重复(a )的计算。 采样(T) () n h () n x () t x () n y D/A 理想低通T c πω=() t y 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

数字信号处理经典例题解析

1:周期序列()()n n x 0cos ~ ω=, 0ω6 π =,()n x ~是由)(~ t x a ()t 0cos Ω=理想抽样而得。试求(1)()n x ~的周期; (2)()()[]n x F e X j ~ =ω (3) ()t x a ~=∑∞ -∞ =n nt j n 0 e Ωα;求n α (4) ()()[]t x F X a ~ =Ω 解:(1) 对于周期性序列()()n n x 0cos ~ ω= 因为 2ωπ = 6/2ππ =112=K N 所以序列周期12=N (2):由题意知()n x ~是由()t x a ~ 理想抽样所得,设抽样间隔为s T ,抽样输出为()t x a ?; 易得()()[]t x F X a ~ =Ω()[]t F 0cos Ω= ]2 [00t j t j e e F Ω-Ω+= =π()0Ω+Ωδ+π()0Ω-Ωδ 由采样序列()n x ~=()nt x a ?,由采样定理知: () ()[]n x F e X j ~=ω=()s T a X /?ω=ΩΩ =∑∞ ∞ --k s s s T k T X T )2( 1πω = ∑∞ ∞ --k s s T k X T )2(1 πω

=)]26()26([1s k s s T k T k T π πωπδππωπδ-++--∑∞∞- =)]26()26([ππ ωπδππωπδk k k -++--∑∞ ∞ - (3) 由)(~t x a ()t 0cos Ω== 2 00t j t j e e Ω-Ω+=∑∞ -∞ =n nt j n 0 e Ωα得: ?????=±==其他 n n n 0121 α (4)由(2)得:()ΩX =π()0Ω+Ωδ+π()0Ω-Ωδ 2:有限长序列()?? ? ??=n n x 6cos π ()n R 12求: (1))]([)(n R F e R n j n =ω (2) ()()[]n x F e X j =ω,用)(ωj N e R 表示; (3)求(2)中() ωj e X 的采样值??? ? ??k j e X 122 π 110≤≤k ; (4)()()[]n x DFT k X =; (5):求第(3)问中??? ? ??k j e X 122 π 的IDFT 变换; (6):求() ()????????? ??=n R n F e X j 2416cos πω 的采样值??? ? ??k j e X 2421π 230≤≤k ; (7):求第(6)问中的采样序列()n x 1; (8):第(2)问中() ωj e X 的采样值??? ? ??k j e X 242 π 对应的采样序列。 .解:(1))]([)(n R F e R n j n =ω =∑-=1 )(N n n j N e n R ω

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础 2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ), y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32 621 =< =Ωh , 所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652 => =Ωh , 所以y 2(t )失真。 2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求: (1) 该信号的最小采样频率; (2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○ 1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频

率f m 的两倍,即 f s ≥2f m ○ 2采样公式 )()()(s nT t nT x t x n x s === 解:(1)在模拟信号中含有的频率成分是 f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz ∴信号的最高频率f m =6000Hz 由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号 ? ?? ? ????? ??-???? ????? ??=? ??? ????? ??+???? ????? ??-???? ????? ??=? ??? ????? ??++???? ????? ??-+???? ????? ??=? ??? ????? ??+???? ????? ??+???? ????? ??=? ?? ? ??====n n n n n n n n n n n f n x nT x t x n x s s nT t s 522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分, 即 kHz f f f kHz f f f s s 25000200052150001000512211 ======,, 若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号

数字信号处理实验作业

实验5 抽样定理 一、实验目的: 1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。 2、进一步加深对时域、频域抽样定理的基本原理的理解。 3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和插公式的编程方法。 二、实验原理: 1、时域抽样与信号的重建 (1)对连续信号进行采样 例5-1 已知一个连续时间信号sin sin(),1Hz 3 ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。 程序清单如下: %分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2; f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 程序运行结果如图5-1所示:

原连续信号和抽样信号 图5-1 (2)连续信号和抽样信号的频谱 由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。 例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。 程序清单如下: dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm; t=-2:dt:2;N=length(t); f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2;N=length(n); f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); wm=2*pi*fs;k=0:N-1; w=k*wm/N;F=f*exp(-j*n'*w)*Ts; subplot(4,1,i+1);plot(w/(2*pi),abs(F)); axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end 程序运行结果如图5-2所示。 由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的围,频谱出现了镜像对称的部分。

数字信号处理试题和答案 (1)

一. 填空题 1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。 3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。 4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。 5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。 6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。 7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。 8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。 9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。 10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关 11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。 12.对长度为N的序列x(n)圆周移位m位得到的序列用x m (n)表示,其数学表达式为 x m (n)= x((n-m)) N R N (n)。 13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。 14.线性移不变系统的性质有交换率、结合率和分配律。 15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

数字信号处理实验1认识实验

实验1认识实验-MATLAB语言上机操作实践 一、实验目的 ㈠了解MATLAB语言的主要特点、作用。 ㈡学会MATLAB主界面简单的操作使用方法。 ㈢学习简单的数组赋值、运算、绘图、流程控制编程。 二、实验原理 ㈠简单的数组赋值方法 MATLAB中的变量和常量都可以是数组(或矩阵),且每个元素都可以是复数。 在MATLAB指令窗口输入数组A=[1 2 3;4 5 6;7 8 9],观察输出结果。然后,键入:A(4,2)= 11 键入:A (5,:) = [-13 -14 -15] 键入:A(4,3)= abs (A(5,1)) 键入:A ([2,5],:) = [ ] 键入:A/2 键入:A (4,:) = [sqrt(3) (4+5)/6*2 –7] 观察以上各输出结果。将A式中分号改为空格或逗号,情况又如何?请在每式的后面标注其含义。 2.在MATLAB指令窗口输入B=[1+2i,3+4i;5+6i ,7+8i], 观察输出结果。 键入:C=[1,3;5,7]+[2,4;6,8]*i,观察输出结果。 如果C式中i前的*号省略,结果如何? 键入:D = sqrt (2+3i) 键入:D*D 键入:E = C’, F = conj(C), G = conj(C)’ 观察以上各输出结果, 请在每式的后面标注其含义。 3.在MATLAB指令窗口输入H1=ones(3,2),H2=zeros(2,3),H3=eye(4),观察输出结果。 ㈡、数组的基本运算 1.输入A=[1 3 5],B= [2 4 6],求C=A+B,D=A-2,E=B-A 2.求F1=A*3,F2=A.*B,F3=A./B,F4=A.\B, F5=B.\A, F6=B.^A, F7=2./B, F8=B.\2 *3.求B',Z1=A*B’,Z2=B’*A 观察以上各输出结果,比较各种运算的区别,理解其含义。 ㈢、常用函数及相应的信号波形显示 例1:显示曲线f(t)=2sin(2πt),(t>0) ⅰ点击空白文档图标(New M-file),打开文本编辑器。 ⅱ键入:t=0:0.01:3; (1) f=2*sin(2*pi*t); (2) plot(t,f); title(‘f(t)-t曲线’); xlabel(‘t’),ylabel(‘f(t)’);

数字信号处理基础书后题答案中文版

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、35000π =ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π =ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S === μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数 倍 -200 200 400 600 800 1000 1200 0.10.20.30.40.50.60.70.80.91 幅度 频

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)A是常数 8ππn 73Acos x(n)??? ? ??-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω= 73π, 所以314 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω= 81, 所以ω π2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0?+=是周期序列的条件是是有理数2π/w 0。 3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。 卷积和:①h(n)*求x(n),其他0 2 n 0n 3,h(n)其他03n 0n/2设x(n) 例、???≤≤-=???≤≤= ②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n ) x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)

数字信号处理习题集附答案)

第一章数字信号处理概述简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称位“抗折叠”滤波器。 在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理 理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字

长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混迭效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。 (b ) 对于kHz T 201=,重复(a )的计算。 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

数字信号处理习题集

数字信号处理习题集 第一章习题 1、已知一个5点有限长序列,如图所示,h (n )=R 5(n )。(1)用写出的 ()n δ()x n 函数表达式;(2)求线性卷积*。 ()y n =()x n ()h n 2、已知x (n )=(2n +1)[u (n +2)-u (n -4)],画出x (n )的波形,并画出x (-n )和x (2n )的波形。 3、判断信号是否为周期信号,若是求它的周期。3()sin 7 3x n n π π??=+ ???4、判断下列系统是否为线性的,时不变的,因果的,稳定的? (1),(2)2()(3)y n x n =-0()()cos() y n x n n ω=5、已知连续信号。()2sin(2),3002 a x t ft f Hz π π=+=(1)求信号的周期。 ()a x t (2)用采样间隔T=0.001s 对进行采样,写出采样信号的表达式。()a x t ?()a x t (3)写出对应于的时域离散信号的表达式,并求周期。?()a x t ()x n 6、画出模拟信号数字处理的框图,并说明其中滤波器的作用。

第二章习题 1、求下列序列的傅立叶变换。 (1), (2)11()333n x n n ?? =-≤ ? ?? [] 2()()()n x n a u n u n N =--2、已知理想低通滤波器的频率响应函数为:为整数,000(),0j n j e H e n ωωωωωωπ-?≤≤?=? <≤?? c c 求所对应的单位脉冲响应h (n )。 3、已知理想高通滤波器的频率响应函数为:,求所对应 0()1j H e ω ωωωωπ ?≤≤?=? <≤?? c c 的单位脉冲响应h (n )。 4、已知周期信号的周期为5,主值区间的函数值=,求该周期信号的 ()(1)n n δδ+-离散傅里叶级数和傅里叶变换. 5、已知信号的傅立叶变换为,求下列信号的傅立叶变换。 ()x n ()j X e ω(1) (2)(3)x n -*() x n -6、已知实因果信号如图所示,求和。 ()x n ()e x n ()o x n 7、已知实因果信号的偶分量为{-2,-3,3,4,1,4,3,-3,-2},求信号。 ()x n ()x n 8、已知信号,对信号采样,得到时域采样信号和时()cos(2100),300a s x t t f Hz π==?()a x t 域离散信号x(n),求: (1)写出信号的傅里叶变换. ()a x t

数字信号处理第二章上机题作业

数字信号处理作业实验题报告 第一章16.(1) 实验目的: 求解差分方程所描述的系统的单位脉冲响应和单位阶跃响应。 实验要求: 运用matlab求出y(n)=0.6y(n-1)-0.08y(n-2)+x(n)的单位脉冲响应和单位阶跃响应的示意图。 源程序: B1=1;A1=[1, -0.6, 0.08]; ys=2; %设差分方程 xn=[1, zeros(1, 20)]; %xn=单位脉冲序列,长度N=31 xi=filtic(B1, A1, ys); hn1=filter(B1, A1, xn, xi); %求系统输出信号hn1 n=0:length(hn1)-1; subplot(2, 1, 1);stem(n, hn1, '.') title('单位脉冲响应'); xlabel('n');ylabel('h(n)') xn=ones(1, 20); sn1=filter(B1, A1, xn, xi); %求系统输出信号sn1 n=0:length(sn1)-1; Subplot(2, 1, 2); stem(n, sn1, '.') title('单位阶跃响应'); xlabel('n'); ylabel('s(n)')

运行结果: 实验分析: 单位脉冲响应逐渐趋于0,阶跃响应保持不变,由此可见,是个稳定系统。

第二章31题 实验目的: 用matlab判断系统是否稳定。 实验要求: 用matlab画出系统的极,零点分布图,输入单位阶跃序列u(n)检查系统是否稳定。 源程序: A=[2, -2.98, 0.17, 2.3418, -1.5147]; B=[0, 0, 1, 5, -50]; subplot(2,1,1); zplane(B,A); %求H(z)的极点 p=roots(A); %求H(z)的模 pm=abs(p); if max(pm)<1 disp('系统因果稳定'), else,disp('系统因果不稳定'),end un=ones(1,800); sn=filter(B, A, un); n=0:length(sn)-1; subplot(2, 1, 2);plot(n, sn) xlabel('n');ylabel('s(n)')

数字信号处理习题及答案

三、计算题 1、已知10),()(<<=a n u a n x n ,求)(n x 的Z 变换及收敛域。 (10分) 解:∑∑∞ =-∞ -∞=-= = )()(n n n n n n z a z n u a z X 1 111 )(-∞=--== ∑ az z a n n ||||a z > 2、设)()(n u a n x n = )1()()(1--=-n u ab n u b n h n n 求 )()()(n h n x n y *=。(10分) 解:[]a z z n x z X -=? =)()(, ||||a z > []b z a z b z a b z z n h z H --=---= ?=)()(, ||||b z > b z z z H z X z Y -= =)()()( , |||| b z > 其z 反变换为 [])()()()()(1n u b z Y n h n x n y n =?=*=- 3、写出图中流图的系统函数。(10分) 解:2 1)(--++=cz bz a z H 2 1124132)(----++= z z z z H 4、利用共轭对称性,可以用一次DFT 运算来计算两个实数序列的DFT ,因而可以减少计算量。设都是N 点实数序列,试用一次DFT 来计算它们各自的DFT : [])()(11k X n x DFT = []) ()(22k X n x DFT =(10分)。 解:先利用这两个序列构成一个复序列,即 )()()(21n jx n x n w +=

即 [][])()()()(21n jx n x DFT k W n w DFT +== []()[]n x jDFT n x DFT 21)(+= )()(21k jX k X += 又[])(Re )(1n w n x = 得 [])(})({Re )(1k W n w DFT k X ep == [] )())(()(2 1*k R k N W k W N N -+= 同样 [])(1 })({Im )(2k W j n w DFT k X op == [] )())(()(21*k R k N W k W j N N --= 所以用DFT 求出)(k W 后,再按以上公式即可求得)(1k X 与)(2k X 。 5、已知滤波器的单位脉冲响应为)(9.0)(5n R n h n =求出系统函数,并画出其直接型 结构。(10分) 解: x(n) 1-z 1-z 1-z 1-z 1 9.0 2 9.0 3 9.0 4 9.0 y(n) 6、略。 7、设模拟滤波器的系统函数为 31 11342)(2+-+=++=s s s s s H a 试利用冲激响应不变法,设计IIR 数字滤波器。(10分) 解 T T e z T e z T z H 31111)(-------=

数字信号处理试题及参考答案

数字信号处理期末复习题 一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分) 1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。 (Ⅰ)原信号为带限 (Ⅱ)抽样频率大于两倍信号谱的最高频率 (Ⅲ)抽样信号通过理想低通滤波器 ①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ 2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。 ①Ωs②.Ωc ③.Ωc/2④.Ωs/2 3.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。 ①.R3(n) ②.R2(n) ③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1) 4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。 ①.有限长序列②.右边序列 ③.左边序列④.双边序列 5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。 ①当|a|<1时,系统呈低通特性 ②.当|a|>1时,系统呈低通特性 ③.当0

6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。 ①.2 ②.3 ③.4 ④.5 7.下列关于FFT的说法中错误的是( ① )。 ①.FFT是一种新的变换 ②.FFT是DFT的快速算法 ③.FFT基本上可以分成时间抽取法和频率抽取法两类 ④.基2 FFT要求序列的点数为2L(其中L为整数) 8.下列结构中不属于FIR滤波器基本结构的是( ③ )。 ①.横截型②.级联型 ③.并联型④.频率抽样型 9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ④ )。 ①.h[n]=-h[M-n] ②.h[n]=h[M+n] ③.h[n]=-h[M-n+1] ④.h[n]=h[M-n+1] 10.下列关于用冲激响应不变法设计IIR滤波器的说法中错误的是( ④ )。 ①.数字频率与模拟频率之间呈线性关系 ②.能将线性相位的模拟滤波器映射为一个线性相位的数字滤波器 ③.容易出现频率混叠效应 ④.可以用于设计高通和带阻滤波器 11.利用矩形窗函数法设计FIR滤波器时,在理想特性的不连续点附近形成的过滤带的宽度近似等于( ① )。 ①.窗函数幅度函数的主瓣宽度 ②.窗函数幅度函数的主瓣宽度的一半

《数字信号处理》课程实验题目

计电学院《数字信号处理》课程实验 适用专业:电子通信工程专业;实验学时:9 学时 一、实验的性质、任务和基本要求 (一)本实验课的性质、任务 数字信号处理课程实验是数字信号处理课程的有效的补充部分,通过实验,使学生巩固和加深数字信号处理的理论知识的理解和掌握,在实验过程中了解简单但是完整的数字信号处理的工程实现方法和流程。通过实践进一步加强学生独立分析问题和解决问题的能力、实际动手能力、综合设计及创新能力的培养。 (二)基本要求 掌握数字信号处理基本理论知识和滤波器设计及应用。 (三)实验选项

二、实验教学内容 实验一 1、实验目的和要求 1)加深理解时域采样定理、体会使用MATLAB的离散FT函数fft( )来解决涉及模拟信号的问题; 2)加深理解对带通信号的采样特性,学会采用MATLAB解决该问题; 3)加深理解在频率采样法中,过渡点对所设计滤波器特性的影响。 2、实验要求 1)提供MATLAB程序,画出每个步骤的曲线图; 2)写实验报告,包含有对所得结果进行分析和说明。 第一组:张毅雷凌峰白法聪覃昱滔刘强何新文 第二组:邓志强林盛勇李日胜黎少锋梁聪杨晨 实验二 1、实验目的和要求 (1)加深理解采用数字信号处理方法对模拟信号处理的过程、掌握使用MATLAB处理的方法;对一段音乐信号进行处理和输出;要求画出滤波前后语音信号时域波形、信号和滤波器的幅度频率特性曲线、相位频率特性曲线; (2)加深对截断效应的理解; (3)掌握使用MATLAB设计滤波器,并对语音信号处理的方法。对一段音乐信号进行处理和输出;要求画出滤波前后语音信号时域波形、信号和滤波器的幅度频率特性曲线、相位频率特性曲线。 2、实验要求 1)提供MATLAB程序,画出每个步骤的曲线图; 2)写实验报告,包含有对所得结果进行分析和说明。 第九组:汪涛张汉毅巫金敏张经中柳泽举 第六组:罗涛梁乐杰黄乃生 实验三 1、实验目的和要求 掌握采用MATLAB数字滤波器设计软件编制方法。软件要求在界面内有不同类型(高通低通带通带阻)滤波器的选择、或者只对低通滤波器采用不同方法设

《数字信号处理》第三版答案(非常详细完整)

答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试 成功!! 电子科技大学微电子与固体电子学钢教授著 数字信号处理课后答案 1.2 教材第一章习题解答 1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解: ()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6) x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+- 2. 给定信号:25,41()6,040,n n x n n +-≤≤-?? =≤≤??? 其它 (1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解: (1)x(n)的波形如题2解图(一)所示。 (2) ()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4) x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-

(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。 (4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。 (5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。 (1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()n m y n x m ==∑。 解: (1)令:输入为0()x n n -,输出为 '000' 0000()()2(1)3(2) ()()2(1)3(2)() y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--= 故该系统是时不变系统。 12121212()[()()] ()()2((1)(1))3((2)(2)) y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+- 1111[()]()2(1)3(2)T ax n ax n ax n ax n =+-+- 2222[()]()2(1)3(2)T bx n bx n bx n bx n =+-+- 1212[()()][()][()]T ax n bx n aT x n bT x n +=+ 故该系统是线性系统。

相关主题
文本预览
相关文档 最新文档