当前位置:文档之家› 骨组织修复材料

骨组织修复材料

骨组织修复材料
骨组织修复材料

生物材料——骨组织工程讨论组织工程(Tissue Engineering)是近年来正在兴起的一门新兴学科,组织工程一词最早是由美国国家科学基金会1987年正式提出和确定的。它是应用生命科学和工程学的原理与技术,在正确认识哺乳动物的正常及病理两种状态下结构与功能关系的基础上。研究、开发用于修复、维护、促进人体各种组织或器官损伤后的功能和形态生物替代物的科学。

组织工程的核心就是建立细胞与生物材料的三维空间复合体,即具有生命力的活体组织,用以对病损组织进行形态、结构和功能的重建并达到永久性替代。共基本原理和方法是将体外培养扩增的正常组织细胞,吸附于一种生物相容性良好并可被机体吸收的生物材料上形成复合物,将细胞-生物材料复合物植入机体组织、器官的病损病分,细胞在生物材料逐渐被机体降解吸收的过程中形成新的在形态和功能方面与相应器官、组织相一致的组织,而达到修复创伤和重建功能的目的。

骨组织构建

构建组织工程骨的方式有几种:①支架材料与成骨细胞;②支架材料与生长因子;③支架材料与成骨细胞加生长因子。

生长因子通过调节细胞增殖、分化过程并改变细胞产物的合成而作用于成骨过程,因此,在骨组织工程中有广泛的应用前景。常用的生长因子有:成纤维细胞生长因子(FGF)、转化生长因子(TGF-ρ)、胰岛素样生长因子(IGF)、血小板衍化生长因子(PDGF)、

骨形态发生蛋白(BMP)等。它们不仅可单独作用,相互之间也存在着密切的关系,可复合使用。目前国外重点研究的项目之一,就是计算机辅助设计并复合生长因子的组织工程生物仿真下颌骨支架。有人采用rhBMP-胶原和珊瑚羟基磷灰石(CHA)复骨诱导性的骨移植、修复大鼠颅骨缺损,证实了复合人工骨具有良好的骨诱导性和骨传导性,可早期与宿主骨结合,并促进宿主骨长大及新骨形成。用rhBMP-胶原和珊瑚复合人工骨修复兔下颌骨缺损,结果显示:

2个月时,复合人工骨修复缺捐赠的交果优于单纯珊瑚3个月时,与自体骨移植的修复交果无明显差异。

目前,用组织工程骨修复骨缺损的研究,已从取材、体外培养、细胞到支架材料复合体形成等都得到了成功。有人用自体骨髓、珊瑚和rhBMP-2复合物修复兔下颌骨缺损,结果表明:术后3个月,单独珊瑚组及空白对照组缺损未完全修复;珊瑚-骨髓组和珊瑚-rhBMP-2组及单独骨髓组已基本修复了缺损;而骨髓、珊瑚和rhBMP-2复合物组在2个月时缺损即可得到修复。我们用骨基质成骨细胞与松质骨基质复合物自体移植修理工复颅骨缺损的动物实验,也取得了满意的治疗效果。

带血管蒂的骨组织工程是将骨细胞种植于预制带管蒂的生物支架材料上,将它作为一种细胞传送装置。我们将一定形状的thBMP-2、胶原、珊瑚复合物植入狗髂骨区预制骨组织瓣,3个月时,复合物已转变成血管化骨组织。

组织工程骨的构建又可以分为体内构建和体外构建两种形式,体内构建是将成骨细胞-支架复合物植入体内,修复骨缺损。体外构建则是通过体外组织培养的方法应用水降解支架材料,接种成骨细胞,构建骨组织。体外构建虽然具有一些在体内构建难以实现的优点,但是在传统的静态培养条件下不能建造出厚度大于0.7cm的骨组织。生物反应器和灌注培养系统的先后出现,改善了细胞、组织在体外培养的条件,有助于模拟体内环境、获得营养、排除代谢产物和物质交换,和促进组织工程产品实现商品化。

一、骨组织工程支架材料

1、人工骨的支架材料功能

人的骨头在人体中起一支撑人体重量,维持人体力学平衡的功能,因此,人工骨的组织工程支架材料必须具备以下两个功能。

(1)有一定机械强度以支撑组织的高强度材料,以保证材料植入人体后,有支撑体的重量,不改变骨骼形状。

(2)有一定生物活性可诱导细胞生长、分化,并可被人体降解吸收。

在组织工程出现以前的第一种功能的材料为非降解性材料,仅起到支撑固定的作用。存在的一个问题是:在骨头愈合后,必须进行第二次手术取出这种材料。

第二种功能的材料主要是给细胞提供三维生长空间,其本身具有生活性,可诱导细胞分化生长和血管的长入,以形成活的骨组织,使

其具有人骨的功能和作用。

以上两面三刀个对骨支架材料要求的条件可以归结为:组织工程支架材料是具有一定强度并具有生物活性的可降解材料。

2、人工骨支架材料研究进展

人工骨支架材料可分为两类,即生物降解和非生物降解型。

早期的人工骨支架材料都是非生物降解型的,这类材料有:高聚物(碳素纤维,涤纶,特氟隆),金属材料(不锈钢,钴基合金,钛合金),生物惰性陶瓷(氧化铝,氧化锌,碳化硅),生物活性陶瓷(生物玻璃,羟基磷灰石,磷酸钙)等。

这些材料的特点是机械强度高(耐磨、耐疲功、不变形等,生物惰性(耐酸碱、耐老化、不降解)。但存在二次手术问题,因此人们开始研究使用可生物降解并具有生物活性的材料,这类材料有纤维蛋白凝胶、胶原凝胶、聚乳酸、聚醇酸及其共聚体、聚乳酸和聚羟基酸类、琼脂糖、壳聚糖和透明质酸等多糖类。

目前研究和使用的骨组织支架材料是降解材料或降解和非降解材料的结合。

组织工程面临的挑战

利用细胞和合成聚合物建造新器官存在着可怕的障碍,但却是可

以克服的。

组织工程正成为医学科学中欣欣向荣的新领域,仅仅在几年前,大多数科学家认为人类组织只能通过从捐献者那里直接移植或利用由塑料、金属和计算机芯片制造的完全人工部件进行替换。许多人认为完整的生物人工器官——由活细胞与自然的或人工的聚合物融合创造的混合物——永远不能制造出来,人类移植器官的短缺问题只能通过某种程度利用来自动物的器官而获得解决。

然而,现在世界各地实验室进行的创新性和富于想象力的工作表明,制造生物混合器官是完全可行的。开发组织工程产品的生物技术公司的销售额己接近40亿美元,并且每年的开支为此额的25%以上。不过,在这些投资通过可靠地减轻许多组织中的疾病所引起的人类痛苦而得到回报之前,组织工程必须克服某些重大的困难。

现成的细胞确定细胞的可靠来源是组织工程的首要前提。动物细胞是个可能的来源,但确保它们具有安全性依然是个令人关注的问题,因为免疫系统对其排斥的可能性很高。基于这些原因,人类细胞是首选对象。

最近,对人类胚干细胞一一能够发育成一系列组织从而形成人的细胞——的鉴别提供了解决此问题的一种方法。但是,从能够操纵培养中的胚干细胞到能够生产可用于创造或修复特定器官的完全分化细胞,

研究人员还有很长的路要走。

一个更直接的目标是从组织中分离出所谓的起源细胞。这种细胞向专化方向走了几步,但因为它们尚未完全分化,因而具有足够的灵活性可以补充几种不同类型的细胞。例如,克利夫兰临床诊所Arnold I.Caplan及其同事已从人类骨髓中分离出起源细胞,这种细胞在实验室中经过促导能够形成构成骨的成骨细胞或组成软骨的软骨细胞。与此类似的是,北卡罗来纳大学查珀尔希尔分校Lola Reid已在成人的肝中鉴别出了小卵形起源细胞,这种细胞在培养物中经过操纵后能够形成成熟的肝细胞(此细胞产生胆汁并消除毒素)或者衬垫胆管的上皮细胞。

培养“万能供体”细胞系可能又是一种方法。为了得到这种细胞,科学家要除掉或利用其他分子去盖住细胞表面的将供体细胞视为“异己”的蛋白质。马萨诸塞州Diacrin公司现正采用这种策略制造人类移植可以接受的某些类型的猪细胞。Diacrin公司还计划利用“掩盖”技术使细胞在不相配的人供体之间进行移植。该公司已获主管部门批准,就某些肝病开始进行掩盖人类肝细胞的人类试验。

从原理上讲,这些万能供体细胞不会遭到受体排异;它们能从来自许多不同组织的多种类型细胞中产生,并在培养物中不停生长直至需要之时。但尚不清楚万能供体细胞在大规模临床试验中的表现如

何。

寻找生产细胞和组织的最佳途径远非一帆风顺的事情。科学家只鉴定出了几种引导胚干细胞和起源细胞分化为专化细胞的生化信号,我们还不能从骨髓中分离出于细胞和起源细胞的培养物而同时又不让结缔组织细胞如成纤维细胞混入其中。(成纤维细胞是不需要的东西,因为它们分裂迅速并会超过干细胞培养物的生长。)

此外,科学家必须开发出在所谓生物反应器中大量培育细胞的更加先进的方法,生物反应器是安装了将营养物、气体(如氧气和二氧化碳)和废物控制在适当数量水平的搅拌器和传感器的培养室。现有的方法产生的细胞数量常常太少,或者产生的组织片常常比需要的薄。不过,新的解决方案已经出现。几年来,研究人员努力培育足够厚的软骨片以适合于医疗应用,例如取代膝盖中损伤的软骨。但是一旦软骨生长超过了一定的厚度,中心的软骨细胞就会离生长载体过远而吸收不到营养物和气体,无法对生长调节化学和物理信号作出反应,或者不能排去废物。麻省理工学院Gordana Vunjak—Novakovic 和Lisa Freed在生物反应器中的三维聚合物载体中培养软骨细胞,从而解决了这一问题。该载体相对疏松的结构和生物反应器的搅拌作用确保所有细胞均匀地附着于载体材料并得到培养媒体的滋润。随着组织在生物反应器中的生长,使其机械特性达到最佳将是极为关键的问题,因为许多组织在受到扩展、拉动或压缩作用时会作出反应,进行重构或改变它们的总体结构。例如,当组织工程软骨在把正在发育

的组织暴露给流体作用力的变动的转动器皿中进行培养时,它就会变得更大,从而包含更多的形成细胞外基质的胶原和其他蛋白质基质。基质是类似蜘蛛网的网状结构,作用是支撑细胞生长和构成组织。)以这种方式培育的软骨,包含了细胞外基质蛋白质,从而使其更稳固,更持久,对外力更易作出生理反应。

同样,加州大学圣迭戈分校John A.Frangos也揭示,在生物反应器中搅拌的珠状胶原媒体上培育的成骨细胞比在平坦的静止盘中培育的成骨细胞形成更多的骨无机物。现在杜克大学的Lawrn E.Niklason证实,如果让组织工程小动脉的培养基产生脉动(类似于搏动心脏所产生的血压),那么这些由内皮细胞(血管衬)和平滑骨细胞构成的管状组织工程小动脉就能展现更接近于自然管的机械特性。另外几个小组(包括我们小组在内)正在开发培养骨骼肌和心肌的方法,这些组织随着物理应力而变得越来越强健。

全关节植入材系由一金属像钛合金、不锈钢,钴铬合金和由超高分子量聚乙烯聚合的关节表面所组成。另外,弥补物可藉由骨泥来支撑与固定,其成分为聚甲基乙基酸甲酯(PMMA)。植入失败是由于骨泥松脱和随后发生植入材连接皮质骨相互移动。植入材松脱的原因,包括植入材与邻近的组织之间发生摩擦和微小移动形成磨损粒子,磨损粒子被发现于环绕植入材四周的组织中,此和局部发炎反应相关,将导致纤维组织形成或骨组织吸收和并发弥补物松脱。

由全关节置换手术中产生金属离子的迁移释放和巨噬细胞影响附近

及远处的淋巴结组织曾被报导。含有钴和铬或钛合金和聚乙烯粒子的巨噬细胞被证实与粒子迁移至淋巴结和并发淋巴结扩散有关。另外,聚甲基丙烯酸甲酯骨泥粒子藉由一慢性发炎反应证实与无菌的松脱有关。松脱的机制应包含粒子促使巨噬细胞活化和可导致骨头的再吸收发炎的介质释放。在观察于失败的全关节成形术的骨泥界面纤维薄膜,它包含有巨噬细胞,其细胞系与细胞内及细胞外的聚甲基丙烯酸甲酯粒子有关,巨噬细胞对微粒的反应藉由不同的可能机构将导致骨头的吸收,活化巨噬细胞将释放发炎介质,如含细胞浆移动及胶原酵素,其过程造成骨破坏。小的粒子(小于12μm)可被吞噬对骨的再吸收的关键因素。无论大或小的粒子均不对巨噬细胞产生毒性,这使人联想到延长发炎及纤维变性是与植入材的吞噬作用有关。一研究发现在膝关节比髋关节手术失败中大粒子发现频率较高,这反应了胫骨和膝盖骨聚乙烯植入材的碎裂与剥离比髋臼聚乙烯植入材有较高之比例。

一般来说,氢氧基磷灰石的沈淀会使长骨末端发生矿化软骨,且会在软骨生成的期间,让膜状骨形成细胞时外母体组织直接发生沈淀。这种即视之为矿化作用或钙化作用(因为钙就好比是跟磷酸盐与氢氧根离子会发生沈淀的状况一样)。然而,钙化也发生在多元化的循环系统及非循环系统化医学设备装置上。而且它是导致内瓣膜损坏的主要原因。一般非正常的矿化叫做异位,如心脏瓣膜一般所发生的组织钙化。

在正常钙化期间,骨骼母细胞会从无分别的原始间叶或无分别的软骨

细胞产生一个胶状母质之骨骼基质,以及它们会间接透过减少含有磷灰石矿物之母材囊泡来控制其矿化。而我们可在鸟类的肌腱上首先看到磷灰石局限于基质囊泡中,紧接着是在细胞质外基质,然后是在邻近的胶原纤维。有机的骨质矿化,很明显地是以胶原TypeⅠ的分子组织结构为基础排列方式,进而演变成1/4紧缩排列,这是因为矿物晶体一般在形成时会反映出胶原纤维的周期性排列结构(Arsenault, 1988)。另外,TypeⅠ胶原所扮演之角色以及软骨的钙化控制,涉及了胶原TypeⅠ及TypeⅩ之蛋白质醣和C-为蛋白酵素(Boskey, 1989)。蛋白甘油脂的突破或是改变它们软骨或骨头上的结构,都会增加钙化以及外层细胞的结构(Buckwalter, 1987)。

从先前治疗过患有戊二醛的猪动脉血管中得知,钙化是其临床上人工心脏血管主要损坏的原因,而且它亦是为了治疗患有戊二醛的牛心囊所组成之血管发生病变的重要因素。所以作为猪动脉血管,其在12~15年期间,损坏率高达50%的比率;而若损坏率超过75%时,则会导致钙化狭阻或钙化撕裂(Levy et al., 1991)。并且临床上与实验研究提到动力机械应力与应变会促进钙化的发生,尤其是在小叶叶面屈曲的区域面积。于是最早出现矿物沈淀是为了使被移植入的连结细胞以及细胞外的胶原组织可限定在固定的地方。当细胞植入期间增加,则与其有关的细胞大小及数目便会随即增加,而呈现出切割形式的胶原纤维。

有一个理论提及到,辅助型血管发生钙化的最早结论涵盖了经由曝露过的戊二醛所引起的细胞净化,以致细胞对钙化调整的能力丧失。

这会导致钙离子反而流入细胞内。尔后,又会引起磷与膜壁器官高度的反应。好比粒腺体会形成磷灰石一样。碱性活性磷酸酯脢,一般来讲就是在磷脂释出磷酸盐溶液中使磷酯接合剂发生水解,是出现于事先治疗过牛的心囊细胞组织中。(Levy et al., 1991 )。而碱性磷酸酯脢的活性闭塞会降低生物修复后所伴随而来的细胞组织钙化。

骨科植入材料

组织移植和合成的高分子材料备用来治疗损伤的机件和韧带,而关节置换主要是金属和高分子材料,固定组件包括骨板和螺丝用来强化骨头破裂,这些装置由金属制成,高分子材料尚在实验性地研究阶段。自然的组织和器官能藉由重建(remodel)其微观结构或巨观结构以调整到新的状况。因此,组织的机械疲劳是最小的,除非疾病妨碍自然恢复过程或者超过它们恢复的能力。

一般相信,成骨和蚀骨的活性(osteogenic and osteoclastic activity)与骨头在体内的正常活性有关,因此,成骨和蚀骨的活性能根据在体内施加的净力和动力而达到平衡,即如果施加较多荷重时,平衡会倾向较成骨活性以抵抗荷重,反之亦然(Wolff’s law),如所示,当然,植入物施加过多荷重使细胞伤害胜过增强其活性。

从历史的观点来说由铁、金、银、铂等制成的各种金属装置如线材和轴钉都因植入后的感染而无法成功地大量使用。近代植入物的发展大多集中在长骨和关节的修复。在1900年代初期,英国的Lane使用钢设计骨折平板,如,匹兹堡的Sherman将Lane骨板改进,消除尖

角来减少应力集中,并且使用韧性和延展性较佳的钒合金钢,钒钢在临床上使用数年,但因在体内的腐蚀问题而被放弃。接着在1924年由Zierold发现Stelliteò (Co-Cr基合金)是用作骨骼植入中最惰性的材料。之后18-8 (18 wt% Cr, 8 wt% Ni)和18-8sMo (2-4 wt% Mo)不锈钢以其抗蚀性而受采用,18-8s Mo在生理时盐水溶液中特别具抵抗力。后来,另一种称为Vitalliumò的不锈钢(19 wt% Cr, 9 wt% Ni)引入医疗中。(Vitalliumò的名称现在用为Co-基合金。)其它的金属如钽在1939年引入,但因机械性质不佳而在整型外科中未能普及。线、轴钉和螺丝(wires, pins, and screws)

固定是以压力或张力的方式达成,骨头应该被坚固地固定使其在恢复过程不会受到不必要的微观和巨观运动妨碍,外科技术通常包含使用金属固定装置,几乎所有的装置是用金属合金制成。

线

最简单但最多用途的植入物是各种金属线,用来将骨头的碎片固定在一起,线也用来固定髋关节置换中的大转子或长骨处长的倾斜或螺旋状骨折。金属的疲劳腐蚀是一般的问题,会使线在体内变弱,线的扭曲和打结会快速地使问题恶化,因为应力集中效应减少25%或更多的强度,变形区由于高应变能而比为变形区容易腐蚀,线的分类如。轴钉

Steinman轴钉也是多用途的植入物,且当用骨板有困难或当用其它方法无法得到适当的稳定性时,通常用针来做内固定,轴钉的尖端设计在锁到骨头时能容易贯穿骨头,轴钉的凹槽和螺丝的不同处是在

其凹槽的角度和螺丝相反,为三种尖端设计。

螺丝

螺丝广泛用于骨头碎片的固定或骨折平板的结合,说明不同设计的头和各部份,基本上分为二类:一是自攻型(self-tapping)和非自攻型(non-self-tapping)。不同的螺丝设计并不影响支撑力(holding power) (或拉出强度(pull-out strength)),可是V-形螺纹其螺纹和骨头间的放射状应力转移稍小于拱壁螺纹(buttress thread),显示后者较经得起纵向荷重。

切削刀口的倾斜角也是螺丝设计的要素几乎所有的骨螺丝是以正倾斜角制成,虽然需要较高的切削力,但是切削温度较低,负倾斜角则相反,故较硬的金属能承受较大切削负荷时,可以负倾斜角制造。拉出强度或支撑强度是在特定螺丝的选择上重要的因素,可是尽管设计上的差异,拉出强度只跟螺丝的尺寸(直径)有关,如所示,较大的螺丝有较高的拉出强度。

直接毗邻螺丝的组织最初通常会坏死并且再吸收,但假如螺丝确定固定后,死的组织会被活的组织取代,当微观或巨观运动存在时,胶质的纤维组织会形成被膜包覆住螺丝,这就是为什么病人恢复的骨头的负载需延缓直到螺丝和骨头确定固定。

骨板

皮质骨板

各种形式和尺寸的骨板示于。因为肢体中肌肉产生的力量很大,形成大的弯曲动量(bending moment),所以骨板必须要坚固,特别是

股骨和胫骨平板,各种装置弯曲动量对弯曲角(旋转)示于,骨板无法承受最大的弯曲动量,因此在治疗早期需限制病人的活动。骨头和骨板用螺丝适当固定是重要的,太紧可能造成骨头坏死和螺丝变形,使变形区因为腐蚀而失败。为使用骨板装置将折骨的两端压在一起,使用自压缩式(self-compresion)的骨板和螺丝系统亦能有相同的效果。海绵骨板

固定海绵骨时必须小心,因为其密度低且其刚性(stiffness)和强度远低于皮质骨,长骨末端固定的范例如所示,折骨以螺丝、骨板、螺栓和螺帽固定,但是大量使用反而增加感染的机会。有时海绵骨可以用简单的骨钉固定,如。因此固定方式的选择主要由外科医生决定,且选择性很大。

骨髓内装置

骨髓内装置是用来固定长骨的骨折,且紧紧地插入骨髓腔中,这种植入物内有弹簧能在骨头腔内产生弹力(elastic force)以避免装置旋转和牢固地固定骨折。

关节置换

人体之关节皆包括两个对立之平滑、软骨构造的关节面,其间以黏性的关节液填充润滑,可减少承受负荷时之摩擦力,而关节运动系由其附近之韧带、腱及肌肉之交互作用造成。有些关节如膝关节,其滑动平面间尚有纤维状、梁形之半月软骨,主要功能为使传递力量于较大的面积,减少关节所承受之应力。在各种程度的活动中关节的受力,

由于肌肉和人体活动的杠杆几何使最大的受力可以达到体重的8倍,因此生物机械分析需要应用到植入物的设计上,考虑会施加到植入物的荷重,才能设计具有足够强度和刚性的植入物。导致关节置换的主要因素是长骨间的关节表面退化,并且在行动中经常造成疼痛,临床上称之为退化性关节疾病,在其末期可以由X-光中关节内的距离缩小和关节部位在移动和转动时发生剧烈疼痛来加以诊断。关节置换,又称为关节成形术(arthroplasty),包含了人工支撑材料的置换,维持与骨头的相对位置,并且在病人的生活中不会被磨掉,置换包含对关节运动的运动学、一般关节支撑的荷重、构成人工关节可使用的材料和自然材料与人工材料的交互作用等的了解。

关节置换的广泛使用起源于Charnley在1960年代初期使用PMMA (polymethylmethacrylate)在植入物与骨头的固定上,到了1987年估计每年约有287,000的髋部和膝部产品,而每年约有5%的植入物会失败。

造成植入物失败的主要问题包括:组成部分从骨头松脱造成疼痛和无法动弹;脱臼或其它机械性的不稳定;感染;和由于组成部分的撞击或韧带限制造成的运动范围受限制。因此植入物和骨头间的界面接触破坏式临床失败的主因。

大部分的全关节置换是由金属(Ti-Al-V或Co-Cr合金)和高分子(超高分子量聚乙烯UHMWPE和PMMA)所组成,各种置换的确实设计是依据各种关节的构造决定。

髋关节置换

早期治疗髋关节障碍只包含髋臼杯(acetabular cup)或股骨头(femoral head),现在多使全髋关节置换(total hip replacement, THR),髋臼和股骨头的表面都加以置换,如图4-3所示,髋关节置换是由股骨部分和髋臼部分所组成,股骨部分为一球头嵌在骨干上,髋臼部分具有一骨臼能让球头置于其中,Co-Cr和Ti-Al-V被用来制造股骨部分,UHMWPE则覆盖骨臼,每一制造商都有各种骨干长度和设计类型。

THR的外科植入过程如下:切除患病的股骨头,将股骨的骨髓管钻孔并钻大使植入物的骨干得以插入,骨臼的软骨也需要钻孔,将准备好的PMMA骨水泥填入股骨的骨髓管中再插入骨干,髋臼部分也是以骨水泥黏合后,将人工球窝关节(ball-and-socket joint)接合便完成,为各种类型的髋关节植入物。

髋关节置换最困难的问题是植入物的固定,因为植入物位于海绵骨上,海绵骨的强度远弱于密质骨,也没有足够的小梁支撑所增加的荷重,另外植入物造成距骨区和股骨干(侧面)末端应力集中使得已经变弱的骨头再吸收,使用骨水泥能够提供所需的固定效果。

骨水泥不只提供植入物和骨头早期的贴附,同时能分散荷重,减少植入物在骨头上的应力集中,可是在邻近区域的骨头应力由于植入物存在而减小,如所示,在此区中减小应力所形成的应力遮蔽效应会造成近端区域的骨头再吸收而导致骨干的松脱或骨折,一般全髋关节植入在年长的病人中能维持10年。

有时骨水泥本身也会产生问题,单体蒸气会阻碍身体机能降低血压,高放热的聚合反应会提高局部温度造成细胞坏死,准备骨水泥填入空间造成的大量骨髓内腔会妨碍骨头的正弦曲线,使组织坏死和脂肪栓塞。

髋关节的球头和臼杯之间的摩擦也会产生问题,特别是在大荷重时,摩擦力矩对Co-Cr合金髋关节就显得很重要,不锈钢-PE和Co-Cr 合金-PE的组合比全金属系统能减少摩擦力矩和磨耗。虽然早期的髋关节置换感染机率高,但是手术过程的改善和术后使用抗生素有效的减少感染率

膝关节置换

膝关节置换的发展和接受度比髋关节慢,因为膝关节的几何形状和运动的生物力学较复杂,而且稳定性较低,膝关节退化的发生率高于其它关节。膝关节植入物可分为绞链式和非绞链式,自然的膝盖截面,典型的人工膝关节,植入物的选择需依据膝盖的健康情况、疾病类型和范围、与病人的活动范围。如同髋关节置换,膝关节置换的主要问题是松脱和感染,金属的背衬是以UHMWPE制成来减少磨耗问题,多孔被覆的植入物能够避免骨水泥带来的问题,多孔的表面允许骨组织内长(ingrowth)达到较佳的固定效果。在膝关节植入物中胫骨高丘表面的磨耗情形极为重要,亦是造成松脱的主因。

人工关节的问题

人工关节的主要问题是磨耗、腐蚀、和感染,磨耗和腐蚀所造成的松脱与金属离子释出问题在第四章已有介绍,被覆陶瓷涂层是公认能有效减轻影响的表面改质方法,如Al2O3与ZrO2之被覆已证实可减少磨耗及腐蚀;自Charnley提出无菌技术(clean-room techniques)的手术后,将原本10%的术后感染率降至2%以下,现代外科技术蓬勃发展,能够有效降低术后感染的发生。

在全髋关节置换中,除了人工球头与髋臼部位因磨耗导致松脱外,人工骨干与骨头的固定不良亦会造成松脱,使用PMMA骨水泥是主要的固定方式,但是PMMA所产生的问题,同时受到许多注意,因此无骨水泥(cementless)的固定方式备受瞩目。

Smith在1963年提出骨头能长入多孔陶瓷中,一些研究者发现如果多孔材料的孔洞尺寸为200 mm或更大时,骨组织能渗入约2000 mm,骨头内长到孔洞中可以分散机械荷重和减少因为应力集中的骨头坏死,增加固定效果,这些材料包括烧结的Ti和Ti-6Al-4V合金粉末、在Co-Cr棒上烧结Co-Cr合金粉末等。

控制表面活性的玻璃、玻璃陶瓷、和陶瓷材料是无骨水泥固定的另一选择,在此方法中植入物和骨头间藉直接化学键结固定,达到最佳的生物式固定,因此Hench依生物兼容性将生医材料分为四类:(1)近惰性(nearly inert);(2)多孔性(porous);(3)生物活性(bioactive);(4)可吸收性(resorbable),磷酸钙陶瓷具有极佳的生物活性,其中又以氢氧基磷灰石的性质最受瞩目,目前本实验室正积极地开发其电化学

沈积制程,希望能改善电浆喷涂所产生的高温相分解和附着不佳等缺点,刮痕试验显示可抵抗12-30 N之荷重,大幅改善附着力。

齿科材料(Dental Materials)

随着科技医疗的进步,现在的社会日益趋向高龄化。人类的希望是虽然年纪不断增长,身体的各个器官能够避免随之衰退老化。但是,有时候人会因一时不小心跌倒而骨折,或因为蛀牙而必须拔牙,因此免不了需要一些替代性的材料。

近年,生命科学(life science)的概念愈来愈普遍,生命现象相关使用之材料,亦即生医材料(biomaterials)的研究也愈形广泛。包括人工器官和牙科修复补缀物,当然也包括医药用材料和遗传工程使用之材料。

牙科材料(dental materials)包括间接材料和直接材料,制作牙科修复补缀物过程中使用的补助材料,因为与身体没有接触,称为间接材料。换言之,口腔内长期间使用的材料称为直接材料。直接材料所需性质包括:身体安全性、耐久性、机能性、适合性、审美性、操作性(成形性)、材料的安全性、经济性。

为了发挥修复补缀物适合性的最大限度和高的材料的尺寸精度,特别是作为间接材料,为了确保尺寸精度,必须膨胀、收缩等的变化要少。此外,也应考虑操作性和经济性。

为了牙齿的欠损和异常的回复和正常化,制作各式各样的修复补缀物,牙科材料的用途和分类。

生物用金属材料现况

作为医疗用材料包括:钛、不锈钢、钴合金、形状记忆合金、无机材料和高分子等各式各样之材料被使用。因为生医材料是使用于生物体,会与体液或其它组织接触,受力情形也比较复杂,因此,对材料的要求也非常严格,以下是生医材料必须具备的性质:

(1) 良好的耐蚀性

(2) 生化稳定性

(3) 适当的机械强度

(4) 容易加工制造

(5) 容易操作

(6) 价格合理

其中一般作为生物植入用金属材料包括:不锈钢、钴铬合金、钛及钛合金。其机械性质。

从1920年后就开始使用不锈钢作为生物材料,最初是所谓18-8不锈钢,后来又有所谓SUS316和SUS316L被开发使用。现在所使用的不锈钢规格,其中F1314及F1586是经过氮化处理改良力学的性质。不锈钢因为比较便宜,且容易取得,因此被广泛使用,但是作为生物材料其耐蚀性并非非常良好,长时间埋入体内会造成腐蚀现象,又因为含有镍元素会引起过敏。

钴铬合金比不锈钢耐蚀性优良,所以在生医使用也比较广泛,ASTM 生医用钴铬合金的规格,钴铬合金因为硬度高、耐磨耗性优良,所以被使用于人工关节用材料,但是也由于硬度高,增加了加工的困难度。

组织工程骨

骨组织工程化方法与研究进展 在人的体内,有一些器官和组织再生增值能力很弱或根本不具备,创伤与疾病往往会造成这些器官或组织的不可逆损伤。因此,人们希望用新的、具有生命力的活体组织置换病损组织,以永久性地替代其形态、结构和功能。组织工程学正是基于这样的目的而建立起来的一门新兴学科。目前,组织工程学在泌尿道、心血管、肝肾脏重建等方面都有了一定的进展,这里主要讨论组织工程骨。 骨髓中含有大量的骨前体细胞,在受到一定外界刺激后会分化生成成骨细胞,因此,一般骨折后机体能够自行修复。然而,过于强大的外力作用(如高坠、重物碾压等)会导致粉碎性骨折,由此引发的骨缺失很难自行修复。传统的骨修复通常采用自体骨移植、同种异体骨移植和植入人工替代材料的方法,然这样易造成其他并发症或排异反应引起的感染。骨组织工程的目的就是模拟骨折过程中骨修复的自然过程[1],即在预期部位通过对成骨前体细胞、支架、生物活性物质等的调控,促进骨组织愈合,使骨能够正常发挥维持机械运动、保护脏器及维持一定代谢的作用[8]。组织工程骨的主要优势在于其自体细胞来源所带来的低感染性和低致癌率。临床应用实践证明,生物衍生组织工程骨有良好的成骨能力,未见明显排斥反应及并发症[2]。 现今骨组织工程的治疗方法主要有三种,分别从组织工程三要素导入,即支架方法、生长因子方法和细胞方法: 1、支架方法 即体内合成。主要步骤是:先将预先成形的支架植入体内骨缺损部位,而后内源性成骨前体细胞在体内生长分化成为成骨细胞,支架则被重塑组织取代最后在体内自行降解。 此方法对于支架材料的选择有很高要求,所选材料须具有多孔的特性以助于骨的生成,如钛合金纤维、含磷酸三钙和羟基磷灰石的陶瓷等[1]。这种方法的主要缺点是材料生物活性差,无法用于骨缺损量较大和供血差的部位。 2、生长因子方法 直接在骨缺损部位使用成骨诱导因子,可用于骨缺损量较大和供血差的部位。然而据大量可行性试验分析,在灵长类动物中单纯使用该方法,要达到效果必须大剂量使用骨形成蛋白[3],这会给人体带来很大的风险。现该方法多与细胞方法结合使用[9],已获得了一定进展,这一点将在文章的稍后被提到。 3、细胞方法 将骨前体细胞直接移植到骨缺损部位,植入骨髓中所含的大量骨前体细胞可以导致大量骨的形成。通常从自体髂骨取得骨髓,复合适当生物材料后植入骨缺损部位。然在临床实践中,由于疾病等原因,部分患者骨源缺乏,有人通过抽取此类患者少量骨髓分离出其中的人骨髓间充质干细胞,并在体外对其进行扩增培养并诱导分化后,与自制的同种异体脱钙骨基质相复合,构建个体化的组织工程骨。通过临床观察已证实该组织工程骨有良好的生物安全性和成骨效能[6]。 最后讨论一下组织工程骨领域近年来的一个热门话题——组织工程骨的血管化。内部及周围血管的代谢供养能力对于骨的存活与生长起着决定性作用,因此在组织工程骨的内部及周围建立完整有效的血管网十分关键。对于小尺寸组织工程骨的供血主要依靠周围毛细血管,而大尺寸组织工程骨,特别是长骨的血管化,是目前临床上的一个难点。学术界对此作了大

组织工程学修复骨缺损的研究进展

12Sanche}R目1喵J.SongS.Cardezo-PelaezF.eta1.Adultbonenmr— Wwstrdnalceilsdifferentiateintoneura】cellsinvitro[J]JExpNeuml,2000,164(2):247~256 13D眩自waM.TakahashiI,EsakiM.el"dSciaticnelwedregenerationinratsindueedbytran旦plmatationofinvjtrodiffereattiatedbonemar-rowStl"or—cells[J]EurJNeurc8ci.2001.14(11):1771--177614BiaacoP,RiminucciM.Gronthc6S,etalBoner/1;arrowstlvmalstemceils:natttrc,biology,andpotentialappfications[J]JSci一∞,2001,19(3):180~192 15BiaekIB.W∞db哪DAdultratandhtwnanbonemamw8trord st£a'ncellsdifferentiateintoneumam[J]JBloodcel】sMolDis,2001。27(3):6324636 16Krattse135;Plasticityofrmrmw-derivedstemceils[J].JG朗e1k,2002.9(11):754--758 17I)emwaMCentralardperipheralne—eregenexationbynanspIanta—tionofSchwanncellsand删fferentiatedboneInamwstr【1『nalcells[J]JAnatSchumannequationSciInt,2002,77(1):12--25 18NaumannA.D口谢sJ.8taudenmaierR,吐正Meseachymal8t邮1 cells--anewpathwayfortissueenglneennginreoonsmlctivesurgery[J】JLaryngorhinnotologie,2002,81(7):521--527 19MimuraT,【kzawaM.KannoH,etalPenpheral r№m姆f啪一tkmbytrmmpiantationofbonemarrowsn℃n诅leeU<lerivedSchwanncellsinadultrats[J].JNⅢ%口g,2004,101(5):806--812 20CongerPA.Ming,ⅧJJPhenotypicalandfunctionalpropertiesofhtmmabone1Tlar/owm&enchynudprngemtoreell5[J]JcdlPhysi—01.1999,181(1):67—73 AnthologyofMedic—i—n—e—,Apr.2006,V01.25,No.2—21EglitisMA,MezeyEHematopoietlscellsdifferentiateintobothmi— crogliaandmacmgliainthebrainsofadultmice[J]JProcNatlA-cadSciUSA,1997,94(8j:4080--4085 22CuevasP.CarcallerF.Dujo,myM,eta1.PefipherMnemrrgcnera-tionbybonemarrowsⅡ0rrIalcalLq[J].JNeurokwicalReeearch,2002,24(7):634--635 23CuevasP.Carcel]erF,Garcia.Gorn觎I,etalBonemar工。wstrc前udcellimplantationforperipheralnerve地pair[J]JNeuralRes.2004,26(2):230—232 24KamadaT.KndaM。D%mM。etalTransplantationofhonemar-rowstmmalcdlderivedSohwann雌Usp工舢临axonzlregenerat;onandfunctionalrecovelTdtercotnfIletetransectionofedulxm∞indcord[J].JournalofNeurolmthologyandExperimentalNeurology, 2005,64(1):37--45 25BrockesJP.FieldsKL,RaftMC.StudiesonculturedratSohwann ceilsI.F5tablishmentofpurifiedpopulstinnsfromculturesofpe-6phendnetam[J].JBrainRes,1979,165(1):105--118 26EvansGRPefip|幢ralnm%-eⅫuIy:areviewandapproachtotissueengineeredconstruct5[J]JAlmtRec。2001,263(4):396~404 27EvansGRChallengestonerveregenexation[J].JSeminsurgOn— col,2000,19(3j:312--318 28MoeabebiA。FdlerP,Wih,gM,etdEffectofallngeneie Schwarmcalltronsplantationonperipheraln口wregea_leraticsa[J].J ExpNetlrol,2002.173(2):213--223 29R砾J,KapsC,BurmesterGR,eta1.Ste口nceilsforregenerativemedicine:advancesintheengineeringoftissuesandorgans[J]JNamrvd疆enschaften.2002。89(8):338~351 组织工程学修复骨缺损的研究进展 广西医科大学第一附属医院创伤骨科手外科(南宁530021)牛通综述赵劲民审校 骨缺损在临床上比较常见,其治疗特别是大段骨缺损的治疗是一个非常棘手的问题。近20多年来组织工程的发展为骨缺损的修复治疗开辟了一条崭新的道路。在修复骨缺损的过程中涉及到种子细胞、支架材料、细胞因子、组织工程化骨的构建和临床应用等一系列过程。本文就这些方面作一综述。 1种子细胞 种子细胞是组织工程学研究中最基本的问题。组织工程学种子细胞的来源是多渠道的,目前其来源主要有皮质骨、松质骨、骨膜、骨髓、骨外组织以及胚胎干细胞。皮质骨、松质骨、骨膜来源的成骨细胞能表达成骨细胞表型【“,且骨膜中含有较多的骨原细胞,而骨原细胞具有分化潜能可以增值分化为成骨细胞。因此成骨细胞是骨组织工程学研究较多的种子细胞之一。但是上述三者来源的成骨细胞存在较多的缺陷,如取材困难、来源有限、扩增能力有限及免疫排斥等,因而不能稿足骨组织工程的要求。胚胎千细胞具有分化为三个胚层的能力,体外培养后可分化为肠上皮细胞(内胚层)、软骨、骨、 平滑肌、横纹肌(中胚层)及神经细胞(外胚层)等,并且可以大量扩增和定向诱导为具体干细胞,应用这种千细胞可以进行多种移植。Buttery等¨J证实用含地塞米松、肛甘油磷酸、维生素C等培养液或与成骨细胞共同培养均可诱导ESCs向成骨细胞转化,因此胚胎干细胞可以作为骨组织工程学的种子细胞,但是存在免疫排斥较强的缺陷。于是寻找一种取材方便,对机体损伤小;体外培养中具有较强的增值和向成骨方向定向分化的能力;植人体内后能耐受机体免疫排斥,继续保持良好的生物学活性;安全性好的种子细胞变得非常必要。骨髓基质干细胞可以从骨髓中抽取并可以多次抽取,因此它的来源不受限制,取材方便,对供体损伤小,易于分离培养,并且具有体外增殖能力强,大量传代培养后仍具有成骨能力,成为目前应用最广泛的种子细胞。 2支架材料 支架材料也是组织工程中的重要组成部分,它为种子细胞提供了黏附、增殖、分化的空间结构和生长模板,并且可以引导组织再生,控制组织或器官的性状。支架材料可以有不  万方数据

骨组织工程的发展趋势

综述 Review 收稿日期:2010-01-04 作者简介:崔福斋,教授,博士生导师 0 引言 在世界范围内,由于创伤,肿瘤 和感染等原因造成的骨缺损每年都在折磨着众多的患者。自19世纪以来,人们一直采用骨移植术,通过植入自体骨,异体骨和人工骨替代材料来修复大范围骨缺损。然而这些 材料都各自存在着不可忽视的缺陷。这些骨移植材料,分别有来源有限,排异反应,与宿主骨的力学性能不匹配,以及使用寿命等方面的问题,导致它难以达到令人满意的骨修复效果。骨组织工程在这种背景下应运而生,给骨修复带来新的期盼。 1985年生物力学专家Y.C. Fung 向美国科学基金会(NSF)申请建立一个工程研究中心,名称为“活组 织工程中心”(Center for Engineering of Living Tissues)[1],然而当局并没有批准他的申请。1993年,Langer 和 Vacanti 在Science 上首次发表了题为“Tissue Engineering ”[2]的论文,并提出了组织工程的基本含义:应用工程学和生命科学的基本原理和技术,在体外构建具有生物功能的人工替代物,用于修复组织缺损,替代失去功能或衰竭的组织、器官的部分或全部功能。而骨组织工程就是利用细胞生物学和工程学原 理,研究开发修复和改善损伤骨组织形态和功能的生物替代物的一门科学,其发展速度在组织工程领域中是最快的。 骨组织工程基于种子细胞+生长因子+支架材料的概念,其中支架材料一方面作为种子细胞和生长因子的载体将其运送至缺损部位,另一方面还给新骨生长提供支撑的作用,是骨组织工程的关键,同时也是 全世界研究力量投入最多的地方。由于组织工程细胞相关标准需长期的论证和安全性验证,近年用自体细胞的组织工程策略备受关注[5]。

用于人工骨的材料

用于人工骨的材料 目前用于骨修复的生物材料分为以下几种:医用生物陶瓷、医用高分子材料、医用复合材料、纳米人工骨 一.医用生物陶瓷材料 生物活性陶瓷, 主要指磷灰石(AP) ,包括羟基磷灰石(HAP)和磷酸三钙( TCP)等。目前应用最多的是HAP。人骨无机质的主要成分是HAP,它赋予骨抗压强度, 是骨组织的主要承力者,人工合成的HAP是十分重要的骨修复材料,这是由于它的 组成性质与生物硬组织的HAP极为相似,并具有良好的生物相容性,可与自然骨形 成强的骨键合,一旦细胞附着、伸展,即可产生骨基质胶原,以后进一步矿化,形成骨组织。 α2磷酸三钙(α2TCP)骨水泥具有水合硬化特性,可作为一种任意塑型的新型人 工骨用于骨缺损填充。它在动物体内形成蜂窝状结构,动物组织可逐渐长入此蜂 窝状结构中,形成牢固的骨性键合[ 3 ]。β2TCP[ 4 ]属可吸收生物陶瓷,在体内 要被逐渐降解和吸收,但其强度较低,主要用于骨修复或矫正小的骨缺损或骨缺陷, 如骨缺损腔填充。尽管β2TCP植入体内可被降解和吸收,新骨将逐渐替换植 入体,但由于其降解和吸收速度与骨形成速度难达到一致,所以不宜作为人体承 力部件。目前磷酸钙陶瓷要用于作小的承力部件、涂层、低负载的植入体。二.医用生物高分子材料 高分子聚合物已被广泛用作骨修复材料,可降解聚乳酸( PLA)用于口腔外科,聚甲基丙烯酸甲酯( PMMA)骨水泥用于骨填充,聚乙醇酸( PGA)作为可吸收螺 钉用于骨固定。 生物降解材料制作的接骨材料,其弹性模量较金属更接近骨组织的弹性模量,有利于骨折愈合,且随着骨折的愈合,材料逐渐在体内降解,不需二次手术取出。PLA[ 5 ]是一类有应用价值的生物材料,它的降解速度取决于它的分子量、分子 取向、结晶度、物理及化学结构,但其降解的机制主要是因为酯键的水解。目前PLA主要用于骨外科部件,例如骨针、骨板。Minori et al[ 7 ]用不同分子量的PLA 和聚乙二醇( PEG)制成PLA2PEG 共聚物作为骨形成蛋白(BMP ) 的载体, 其 中PLA 6 5002PEG3 000共聚物具有一定的弹性,是较好的BMP载体。 三.医用复合材料 复合人工骨[ 13 ]的研究近年来取得了很大进展,其基本原理是将具有骨传 导能力的材料与具有骨诱导能力的物质如骨生长因子、骨髓组织等复合制备成复合人工骨,使它们既具有骨传导作用,又具有骨诱导作用。 3. 1 磷酸钙复合人工骨主要包括TCP及HAP与胶原、骨生长因子等复合人工骨。原位自体骨与磷酸钙人工骨混合植骨应用在脊柱侧凸畸形矫正术中, 是一种实用、简易、可靠的植骨方法。 3. 2 聚合物复合人工骨生物降解聚合物是近年生物材料研究领域中的一个 热点,通过技术工可合成各种结构形态,一定的生物降解特性的各种聚合物。但 它们无骨诱导活性,需与其它骨诱导因子复合应用才能取得良好效果。 3. 3 红骨髓复合人工骨骨髓由造血系统和基质系统两部分组成。健康红骨 髓的基质细胞中含有定向性骨祖细胞(DOPC)和可诱导性骨祖细胞( IOPC) 。DOPC 具有定向分化为骨组织的能力,IOPC在诱导因子(如BMP)作用下才能分化成骨。

口腔颌面部骨组织缺损修复材料进展

中国实用口腔科杂志2011年3月第4卷第3期 口腔颌面部骨组织结构是支撑面型的重要基础,发生在颌面部的外伤、肿瘤、先天畸形等是引发患者颌面部骨组织缺损的主要原因,而如何较好地对患者面型及骨组织缺损进行一期修复也是口腔颌面外科手术中亟待解决的重点和难点问题。近年来,随着手术技术的不断发展及生物材料在临床上日益广泛的应用,口腔颌面部骨组织缺损的修复治疗也得到了迅猛的发展。目前应用于临床的口腔颌面部骨缺损修复材料主要包括以下几类,综述如下。 1骨组织移植 1.1自体骨自体骨移植的优点是对宿主不存在免疫原性,不存在术后组织排斥或传染疾病的风险,预后较好。目前临床常用的移植骨包括髂骨、肋骨、腓骨等,尤其是带血管蒂的骨段移植后与周围血管吻合,为骨段的生长及愈合提供了充足的营养。缺点是存在供骨量不足及骨塑形的限制,难以应用于大范围组织缺损的修复,并且在手术过程中需要开辟第二术区,造成新的手术创伤,患者恢复慢。 1.2异体骨异体骨移植包括同种异体和异种异体两大类,主要取自他人或动物骨,经过特殊处理后应用于临床。优点是供骨量充足,术中不需要开辟第二术区,创伤小,有利于患者恢复。但异体骨虽经处理,仍存在免疫原性,移植后可能产生组织排斥或疾病传播及伦理学问题等。目前在临床上应用受到一定限制。 2骨替代材料 2.1金属材料金属材料应用于人体组织缺损修复历史悠久,主要有金、不锈钢固定装置等。近年来,人们发现金属钛具有与骨组织相匹配的硬度、弹性模量、良好的生物相容性和机械强度,能够与骨组织发生生物愈合[1-2],不产生排异反应。利用纯钛修复体修复下颌骨缺损在临床上也取得了较好的效果,具有良好的应用前景[3]。 2.2人工合成无机材料人工合成无机材料主要有羟基磷灰石(HA)、磷酸三钙(TCP)、生物陶瓷等,其主要的化学成分与人骨相似,在体内具有较好的生物相容性及骨诱导性,并能与新生骨直接结合。采用高温煅烧后,HA中生成少量TCP,制成双向陶瓷,TCP比HA能更好地被吸收和降解,有利于材料与机体间保持生物学平衡,TCP与HA对细胞无毒副反应,是理想的成骨细胞的载体[4]。若在载体内复合骨形成蛋白或其他细胞生长因子后,使其具备骨诱导活性,可在体内诱导成骨,但降解时间难以掌控,在材料制备过程中难以保证材料的孔隙率,不利于新生骨的长入和改建,影响移植材料与骨组织的融合。金钫等[5]利用陶瓷化骨结合成骨样细胞修复下颌骨缺损的动物实验也证明了此点。 2.3天然生物材料珊瑚是人们较早应用于临床修复颌 基金项目:国家自然科学基金(401011240108026) 作者单位:昆明医学院口腔医院口腔颌面外科,昆明650031通讯作者:陈希哲,电子邮箱:chenxizhe@https://www.doczj.com/doc/7816258886.html, 综述 口腔颌面部骨组织缺损修复材料研究进展 王琰综述,陈希哲审校 文章编号:1674-1595(2011)03-0175-03中图分类号:R78文献标志码:A 提要:口腔颌面部骨组织结构是支撑面型的重要基础,发生在口腔颌面部的外伤、肿瘤、先天畸形是引发患者口腔颌面部骨组织缺损的主要原因,而如何在一期对患者面型及骨组织缺损进行修复也是口腔颌面外科手术中亟待解决的重点和难点问题。本文主要总结了口腔颌面部骨组织缺损修复材料的发展。 关键词:口腔颌面部;骨缺损;修复材料 Reseach development of repair materials for oral and maxillofacial bone defects.WANG Yan,CHEN Xi-zhe. Department of Oral and Maxillofacial Surgery,Stomatology Hospital of Kunming Medical College,Kunming650031,Chi?na Summary:The oral and maxillofacial bone structure is an important basis for supporting face,and oral and maxillofa?cial trauma,tumor and congenital deformity are the cause of oral and maxillofacial bone defects.It is difficult as well as important in oral and maxillofacial surgery to make a proper repair of the patient's face and the bone defects.This paper summarizes the development of the repair materials for oral and maxillofacial bone defects. Keywords:oral and maxillofacial;bone defect;repair materials 175

骨组织工程

骨组织工程 骨组织工程本质上说,就是用一个有利于细胞黏附和保持其功能的支架,在特定的骨诱导因子作用下,与富含骨始祖细胞共同作用。但是,到今天,能够血管化,具有一定力学强度的能促进骨传导和骨诱导的构造物也仅仅只是理论上的证明。 对细胞功能,细胞外基质形成的了解对我们制备有利于细胞吸附,保持细胞功能的支架是非常重要的。随着人口老年化问题的突出,一些由疾病或者外伤引起的组织缺损极大的降低了人民的生活质量,在临床上,人工关节的置换在治疗风湿性关节炎,骨关节炎以及骨质疏松症方面取得不错的效果,也极大的提高病人的生活质量,但是由于侵蚀作用,力学性质的改变等也会导致非常严重的后果。临床上也期望能发展一种能促进骨组织在生的新的治疗方法,即通过骨组织工程来制备一种“活的”,能与周围正常组织相互作用的修补物。 一般用来产生新组织的方法,是通过合适的三维支架在生物反应器内,让从活体组织中取得细胞进行增殖。一般生物反应器可以通过一个半透膜来进行气体交换,通过旋转来获得微重力环境以及构建组织生长微环境。 另外的一种方法就是将没有接种上细胞的支架放到体内,让周围的细胞向其扩散生长或者在植入几天后将细胞注射到支架上,即将人体作为一种天然的生物反应器。 一般来说,对于骨组织工程来说,一般可以分为六个阶段, 1,制造可吸收的支架。 2,在静态的环境下,将成骨细胞或者软骨细胞接种到支架上面。 3,在动态的环境中培养改组织。 4,将成熟的组织在接近生理条件下进行培养,生物反应器。

5,进行手术移植。 6,对移植后的组织工程支架进行观察,是否被肌体同化或者需要重新建立。 临床需求 骨折的治疗一直是社会经济学关心的问题,在英国每年在这个方面的发费达9亿英镑,并且随着老年化问题的不断突出,费用在逐步增加。每年在英国有150,000例由于骨质疏松导致的骨折。特别是股骨头骨折具有更高的致残率和死亡率,一般来说不到一半的病人在手术后能回家生活。30%到50%的臀部骨折患者需要再次进行手术效正,同时有很大部分的别人需要进行骨修补。由于在重建手术方面,技术和方法上的缺少,使得能够通过骨组织工程而受益的病人数目大大增加。很显然,在一些缺损修补手术中,我们需要具有更好生物相容性,能与天然组织相互作用的整形外科移入物, 目前使用的治疗方法包括自体移植法和同种异体移植方法,他们主要使用血管化的腓骨和髂骨顶部以及其他部位的骨骼。虽然这是整形外科常用的方法,但是它们仍有许多限制条件。自体移植,一般来自髂骨顶部,成本很高,并且受病人供体部位的健康状态影响;异体移植容易产生感染或者其他的疾病。 大体上,组织工程包含3个要素,1干细胞或者前体细胞,2适当的生物学支架,3生长因子。这个3个方面的任何一个方面的限制或者发展都会对组织工程产生一定的影响。 干细胞 长期以来人们就认识到骨组织具有很强的再生能力,因为其内部细胞具有一些干细胞的性质。这些多功能基质干细胞主要位于骨髓中,它们能分化为纤维原细胞,成骨细胞,破骨细胞,以及组织网状细胞。并且由这些干细胞产生的能演变成特定细胞株的始祖细胞似乎可以在外观上转变。对于很多种物种来说,通过移植,在体外进行扩增的骨髓细胞可以治疗小的骨缺损并且产生新的成骨组织。特别是人

骨显微修复外科专家介绍

宋涛,主任医师,硕士研究生,西安市红会医院骨显微修复外科主任。现任中华 医学会显微外科学会委员、中华医学会骨科学分会第十一届委员会显微修复学组委员、 中华医学会第四届医疗鉴定专家库成员、中国医师协会显微外科医师分会第一届委员会 常务委员、中国医师协会显微外科医师分会软组织修复(皮瓣)专业委员会第一届委员 会委员、中国医药教育协会骨质疾病专业委员会第一届常务委员、中国医师协会骨科医 师分会中西医结合骨科工作委员会委员、中国医药教育协会骨病老年骨创伤分会委员、 中国中西医结合学会骨伤科专业委员会足踝学工作委员会委员、中国医药生物技术协会骨组织库分会委员、中国修复重建外科专业委员会骨延长专业学组委员、首届中国研究型医院学会骨科创新与转化专业委员会显微骨科学组委员、SICOT中国部显微修复专业委员会委员、亚太修复重建联盟中国部委员、陕西省骨与关节学会微生物与感染分会副会长、陕西省保健协会手外科与显微外科专业委员会副主任委员、陕西省保健协会骨创伤微创修复专业委员会常委、A0创伤中国区委员会陕西分会第一届委员、中国医药教育协会骨科专业委员会西安培训基地第一届常委、西安医学会针法微型外科副主任委员、西安医学会显微外科学分会副主任委员、西安医学会医疗技术鉴定专家库委员、西安医学院教授、《中华显微外科杂志》特邀编委等。对四肢各类创伤、畸形及病变等治疗经验丰富,擅长周围血管、神经损伤,尤其是臂丛神经损伤及周围神经损伤的修复与重建及应用显微外科技术治疗骨感染、骨髓炎。主持参与省、市级课题5项。在国家级杂志发表论文20余篇。发表《足踝部创伤与矫形》专著1部。 田力、宁, 副主任医师,硕士研究生。1991年毕业于第四军医大学。毕业后分配到新疆南疆军区解放军第18医院,先后在广州军区广州总医院、第一军医大学、北京军区 总医院骨科等进修学习,2008年从部队转业到西安市红会医院。擅长四肢骨与软组织损 伤的诊断与治疗,其是开放伤、严重创伤的保肢与重建治疗,各种周围血管神经损伤的 诊治,骨与关节常见疾患、骨髓炎、骨结核的治疗。发表专业论文20余篇。 张文韬,副主任医师,在职博士。现任中国医师协会显微外科医师分会骨修复专业委员会第一届委员、中国健康管理协会健康科普专业委员会第一届委员、陕西省保健 协会手外显微外科专业委员会常务委员等。在核心期刊发表文章10余篇。参与省、市级 科研数项,主持院级科研项目1项。擅长四肢组织缺损的显微修复、皮瓣转移修复皮肤软 组织损伤、四肢骨不连的显微修复、周围血管损伤、周围神经损伤的显微外科修复、手 部损伤治疗及功能重建等。 江仁奇,副主任医师,中华医学会会员,中国医师协会骨科医师分会会员。曾在 台湾花莲、大林慈济医院、北京积水潭医院及第四军医大学西京医院进修学习,主编专 著1部,发表SCI论文2篇,中文核心期刊论文20余篇,多次在COA大会发言。擅长四肢骨 不连、骨缺损、骨感染、四肢组织缺损、周围血管、神经损伤的显微外科修复及重建; 膝、髓人工关节初次置换及翻修术,对复杂关节内及其周围骨折的治疗有丰富的临床经 验。 ■■■刘洋,副主任医师,硕士研究生。连续多年在COA大会、SICOT、亚太显微等大会发言。发表中文及SCI论文10余篇,国家发明专利2项,实用新型专利1项,担任国家及 省市及专业委员以上学术职务7项。2016年《中华显微外科杂志》朱家恺全国显微外科■1青年医师病例英文竞赛(广州)全国三等奖。擅长骨科及显微修复重建外科的常见病和多发病的诊治如开放性骨折、感染、创面修复、复杂骨折等,多次参加骨科的疑难病I“例、危重病例的分析、诊治、讨论和抢救工作。 从飞,在职博士,副主任医师。现为中国显微外科医师协会青年委员、中国医药教育协会骨科分会西安委员会常委、陕西保健协会手显微外科协会委员、骨微创专业委 员、陕西省医师协会骨质疏松委员会委员等。在SCI及中文核心期刊、统计源期刊发表专 业论文20余篇。擅长四肢复杂开放骨折的同期修复重建及保肢治疗、肢体感染及慢性创 面的治疗、创伤后肢体功能障碍的晚期功能重建等。

人工工骨作为用于修复或替换人体硬组织的生物材料

人工工骨作为用于修复或替换人体硬组织的生物材料,必须具备独特的性能。人工骨材材料与一般工业材料的最大区别在于它们的使用环境不同:人工骨材料是在生物环境内工作,就是说,它要工作在温度为37℃左右、气压为latm*、pH值为7左右的苛刻条件下。所以,人工骨材料不但要具备适度的力学性能,即强度、延伸率、刚度和韧性,而且还要具备生物亲和性、可灭菌性、非毒性、机能性以及耐久性。同时,人工骨材料还必须具备独特微妙的结构,因为天然的骨头是一个多孔而又倾斜的结构体系。 本章将介绍目前人工骨材料的研究现状,特别是近年国际上在人工骨材料研究方面所取得的成果;同时,还将报告作者本人在人工骨材料研究领域所取得的成果。作者研制的多孔钛泡沫具有良好的生物亲和性,无毒,其机械性能与天然骨的机械性能相近。钛泡沫的结构与天然骨的结构一致,其孔空间允许新生骨芽细胞的生长侵人以及体液的传输,所以它不但能与自然骨形成生物性骨键合,与人体骨骼合而为一,而且能诱导新生骨生成,是一种具有良好临床应用前景的骨移植材料。 2.1人工骨材料的种类和特点 生物材料指任何用于治疗的、包括天然的和合成的、与人的细胞直接相接触的材料。人工骨就是用于修复或替换人体硬组织的生物材料。随着人口的急速高龄化,中青年创伤的增加以及天生缺陷和疾病的存在,社会对人工骨材料和医学制品的需求急速增长。老年人最常见的骨质疏松、疾病(如恶性肿瘤切除)、交通事故和火器创伤等都可能造成大型骨缺损。用来修复骨缺损的骨替代材料可以用自体骨移植、人工骨、诱导成骨材料和异体骨移植等,其中以自体骨移植效果最好。但自体骨来源有限,而且可能在供区造成继发性损失或并发症。而现有的人工骨、诱导成骨材料和异体骨移植等均达不到自体骨的效果,为此,进一步寻找尽可能达到或接近自体骨移植效果的理想人工骨材料是对基础研究和临床医学的挑战。 2.1.1 陶瓷材料 人体骨骼主要由胶原质(collagen)和羟基磷灰石(HA)组成,羟基磷灰石的分子式为Ca10(PO4)6(OH)2,其中钙的存在赋予骨骼以强度。骨的结构是一个精致复杂的多孔结构。骨的表层是皮质骨,其孔隙率比较低,约为5%~10%;表层以下是海绵骨,其孔隙率比较高,达50%一90%.骨结构如图2-1所示。骨的力学性能是依个人、年龄和骨的部位而改变的,表2-1所示总结了各种骨的机械性能及强度。 作为人工骨材料,其首要性能当然是在生物体内的耐腐蚀性和强度,但生物亲和性也是不可缺少的重要性能。近年的研究更是注重于人工骨材料的表面处理。 根据其与生物组织的反应,生物陶瓷可以作如表2-2所示的分类:①生物体内惰性型(和自家骨直接接触,也有可能在两者之间介入线纤维皮膜);圆生物体内活性型(自家骨与人工骨发生化学反应而结合);圆生物体内分解型(移植后,人工骨在生物体内分解并被新生骨所替代):作为人工骨材料,力学强度固然重要,然而,骨诱导能力、骨传导能力的具备,进而实现骨骼的修复和新生骨的形成更具魅力p 目前,很多研究都朝着这个方向即开发理想的人工骨材料而努力着。 2.1.2 高分子材料 近年来高分子材料作为人工骨材料也越来越受到重视。高分子材料包括天然的和人工合成的两大类,它们最突出的特点是柔软性、易加工性以及质量轻等。正是因为这些特点,高分子材料被广泛应用于生物领域,如血液的包装、输液系统、导(尿)管、血液回路、血液透析器等一次性使用器具,以及人工肾脏、人工肺、血浆交换膜等人工脏器[ 高分子材料如聚甲基丙烯酸甲酯(PMMA)即骨水泥和用于人工关节的高分子聚乙烯(polyethylene),这类材料的生物相容性较差,与骨组织之间有纤维组织间隔。 还有一类可生物降解的高分子材料以聚丙交酯(polylactide)和聚乙醇酸(polyglycolide)为代表。目前主要用于可降解内固定材料方面,作为植骨替代材料,多以复合材料的形式出现。

完整word版,关节软骨损伤组织工程修复

关节软骨损伤组织工程修复进展 关节软骨的损伤和病变是临床常见疾病,可以发生于任何年龄和性别。由于关节软骨没有血管、神经及淋巴组织,本身不含祖细胞,所以自身修复能力十分有限,一旦发生损伤,会导致关节肿胀和疼痛,加速骨关节炎的进展,必须进行修复或置换,如何有效地修复关节软骨损伤始终是医学界尚待解决的难题之一1。1987 年, 美国国家科学基金会(NSF)在加福利亚举行的专家讨论会上提出了“组织工程”的概念:运用工程科学和生命科学的原理和方法, 从根本上了解正常和病理的哺乳动物的组织结构与功能的关系, 并研究生物学替代物以恢复、维持和改进组织功能。Hunziker将其描述为是一种从结构和功能上重建哺乳动物组织的艺术。内容主要包括:(1) 细胞外基质替代物开发;(2) 种子细胞性质研究;(3) 组织工程化组织对各种病损组织的替代。软骨组织工程技术是在体外培养、扩增软骨种子细胞,并且以较高浓度将其种植于具有良好的生物相容性和降解性的支架材料上构建组织工程软骨,然后植入到组织缺损部位,完成组织的修复和重建。软骨组织工程的最终目的就是得到高质量的修复组织和长期有效的功能,为病人最终解决痛苦。从这种意义上看,组织工程方法是目前治疗关节软骨损伤最有希望的方法,是目前软骨损伤修复研究的主要方面。组织工程软骨的发展大致经历了三个阶段: 1.第一代组织工程软骨技术:骨膜覆盖自体软骨细胞移植。首先通过软骨活检取材后体外分离培养受体自己的软骨细胞,单层培养扩增,将扩增后的细胞再植回到软骨缺损部位。通常取胫骨内侧近端的骨膜,切成与缺损吻合的片状,缝合在缺损边缘,将骨膜移植覆盖缺损处表面以防止软骨细胞露出,自从瑞典的

软组织损伤、修复、以处理

软组织损伤、修复、以处理 (一)急性期(发炎反应): 1、会经历的症状:肿胀、发红、发热、休息时疼痛及功能丧失、测试关节活动度时动作会出现疼痛,而是病患在动作活动到范围末端前会出现防御性收缩;若伤及关节时会出现关节渗液 2、动作指引:①选择性的休息、冰敷、压迫和抬高;②)在无痛的关节体位下,执行温和的关节振动;③在疼痛限制范围内执行适当计量的被动运动,适当计量的间歇性肌肉收缩和电刺激;④按摩亚急性期(增生、修复与愈合): (二)亚急性期: 1、会经历的症状:①在允许的关节活动末端会产生疼痛;②水肿减少但仍然存在;③若伤及关节,关节渗液会减少但仍存在;④在固定不动的关节部位会产生软组织、肌肉或关节的挛缩;⑤因减少使用或疼痛产生肌肉无力;⑥患处或相关区域的功能性使用会减少 2、动作指引:①检测组织对动作产生的反应,若有疼痛或发炎加剧,需要降低动作强度;②逐渐增加关节每天自由活动时间,并且随着支持肌肉肌力增加,减少使用辅助器具;③在疼痛限制的范围内,由被动运动过度到主动协助式,再到主动关节活动;④会涉及的结构,逐渐增加疤痕的活动性;⑤若关节活动受限,逐渐增加相邻关节的活动;⑥刚开始时,在病患忍受的范围内进行多角度的等长收缩运动,并小心施加无力;⑦当关节活动度、关节内动作和愈合改善时,进展到增加重复次数的等张运动;⑧执行渐进的强化肌力运动及稳定运动,并监测患者的反应;⑨在不加剧症状的情况下愈合组织的恢复从事低强度的运动 (三)慢性期(恢复功能期): 1、会经历的症状:①软组织或关节挛缩及粘连会限制关节活动度或关节内动作;②肌肉表现力降低--无力、耐力及神经肌肉控制不良;③减少患处的功能性使用;④预期活动中无法正常的功能表现 2、动作指引:①针对紧绷组织执行牵拉技巧;②运动进展:由次到最大无力;阻力向心、离心收缩、承重和非承重的特定运动;由单一平面到多平面;动作由简单到复杂;近端控制下加强远端活动能力;安全的生物力学;以慢性执行运动,由低重复次数到高重复次数,逐渐增加强度、速度和时间

浅论下颌骨缺损修复及重建

技术市场 一、下颌骨修复重建方法的重要性及方法选择 下颌骨的重要作用在于它对面形、语言、咀嚼、呼吸等的支持,它的缺损会造成患者在生理、心理的影响,直接看到的是导致面部变形和严重的功能障碍。 下颌骨缺损修复重建的手术效果已经比较稳定可靠。近年来,坚强内固定技术发展很快,它首先应用于骨折的治疗,并显示出了独特的优点。有利于骨断段形成直接的骨愈合,对于骨折断端的愈合具有明显的促进作用,有利于缩短术后病人的恢复时间。对于移植骨愈合过程,移植骨的外形重塑及其术后功能效果都具有较明显的促进作用。 下颌骨修复重建的手术相对复杂,手术后存在着各种影响因素,导致术后并发症也相对复杂。因此,要进行恰当的临床处理,可以避免手术后并发症,提高手术成功率。 手术技术及手术设备的发展,使下颌骨缺损可以进行同期修复。下颌骨修复重建方法很多,如自体游离骨移植,骨替代物植入等。这些方法有利有弊,同时影响下颌骨缺损修复重建的效果还有很多其他相关因素。 医生在手术前应与病人进行充分的交流,通过交流了解患者各方面情况,尽量让病人了解哪种手术方式更适应病人治疗。移植骨的外形与下颌骨缺损类型是否匹配也是非常重要的影响因素。临床上经常采用的自体骨中肋骨及胖骨较细长,骼骨则较为宽厚。对于良性肿瘤切除后造成的较大范围的颌骨缺损的修复是非常好的选择。 恶性肿瘤手术后的缺损修复重建不适于选用游离骨移植,因为放疗及化疗能导致手术部位骨愈合受到影响,影响手术方式选择的重要因素还有恶性肿瘤切除后的软组织缺损。最经常采用的手术方法是钛功能重建板复合软组织瓣,并可以在术前或术后配合进行放疗。其他一些替代物由于排异性较大现在已很少采用,近年来许多新方法新材料也被引入了下颌骨缺损修复重建领域,但还没有作为常规方法用于临床选择。 二、在自体骨移植下颌骨重建中坚强内固定技术的应用 自体骨移植是下颌骨肿瘤切除后最经常采用的修复方法。影响骨移植手术成功的因素很多,重要的影响因素之一是移植骨的固定方法。传统的方法是使用钢丝进行固定,该技术移植骨固定不够牢固,影响移植骨的愈合,还会引起感染。随着技术的发展,坚强内固定技术被广泛应用于骨折的治疗,并显示出了独特的优点。 由于下颌骨特殊的解剖形态和功能运动方式,使自体骨移植下颌骨重建难度加大,为了保证在手术后下颌骨具有一定的功能活动度,促进骨愈合就必须保证移植骨的牢固固定及植骨部位与下颌骨之间的配合性。与骨折的愈合方式不同的是,移植骨部位是以一种“爬行替代”的方式愈合,对移植骨的愈合产生重要影响的是移植骨再血管化的时间及其再血管化的程度,移植骨的再血管化跟骨断端与移植骨之间必须牢固固定且必须符合不同部位下颌骨应力负载特点有关,对于骸状突无法保留的下颌骨游离缺损的修复必须在手术中依据健侧下颌升支高度决定患侧下颌升支高度,以保证下颌关节重建的精确性。移植骨的牢固固定对于下颌支及其解状突无法保留的病人非常重要。它可以创造更加有利于移植骨愈合的条件,保证骨接合部位的牢固固定,保证了移植骨愈合过程中的血供,及正常的咬合关系。 坚强内固定夹板类型及其固定部位的选择非常重要。必须依据下颌骨咀嚼时的应力线放置夹板的位置。在靠近牙槽部选用微型夹板,在下颌骨体部下缘采用小型夹板。夹板还必须放置在骨质坚实的部位,移植骨固定不牢导致手术失败。依据下颌骨外形,对于较大范围的下颇骨缺损可以选择较长多孔的固定夹板。 三、分析下颌骨重建术后的并发症 下颌骨术后缺损修复重建的并发症有多种,如果选择发不当的处理时机或者选择了错误的处理方法会降低下颌骨重建的手术效果,导致患者不同程度的痛苦,直至下颇骨重建失败。 并发症依据严重程度分为五级:重度、较重度、中度、较轻度、轻度。 异体骨移植最主要的问题是排斥反应。医生术后要对患者注意观察,要及时提醒病人手术不要马上咀嚼硬物,要注意延迟咀嚼。下颌骨手术后1个月内,手术部位的薪膜及其皮肤组织尚未长好,骨结合部位正处于再血管化阶段,同时手术后病人全身抵抗力较弱。咀嚼功能减弱,经常需采用鼻饲管进食流食,使患者抵抗力更差,极可能造成病人手术部位感染,所以手术后1个月内是患者出现并发症的高危时期,降低术后并发症的发生首先必须要保证手术方法选择得当,而且要贯彻到术前、术中和术后。只有这样才能获得较好的手术效果。作为医生必须要引起足够的重视,以便及时处理不良情况。 四、在下颌骨缺损修复重建中体内预成血管化骨的应用 体内预成血管化骨属于内源性组织工程化骨。将骨形成蛋白复合特定的载体植入体内的特定部位进行培养是目前最常采用的方法,经过一段时间的培养之后生成具有血管网并可携带一知名血管蒂的骨组织。然后将该骨组织取出,通过血管吻合技术修复骨组织缺损。这种方法解决了下颌骨术后低血管化区域骨组织重建的难题。 体内预成血管化移植骨适合重建的特点是可获得较多的新骨,能较大范围修复下颌骨缺损;可以控制体内预成血管化骨的形状,使种植物与周围的肌肉组织中的多能间充质有最大范围的接触;适合坚强内固定螺钉的锚入;预成血管化骨的移植成活率更高,它表现为由外部从方向随机进入新骨,决定了预成血管化骨的血供更好,提高了移植的成活率;另外,可以携带部分肌肉组织用于相应下颌骨区软组织缺损的修复,不会造成供骨区软组织的缺损。 浅论下颌骨缺损修复及重建 范大伟 (伊通满族自治县第一人民医院) 摘要:本文主要分析和探讨有关下颌骨缺损修复重建中修复方法选择、固定方法以及术后并发症的相关问题。为临床提供十分重要的依据。 关键词:下颌骨重建并发症 225 现代营销

骨组织修复材料

生物材料——骨组织工程讨论组织工程(Tissue Engineering)是近年来正在兴起的一门新兴学科,组织工程一词最早是由美国国家科学基金会1987年正式提出和确定的。它是应用生命科学和工程学的原理与技术,在正确认识哺乳动物的正常及病理两种状态下结构与功能关系的基础上。研究、开发用于修复、维护、促进人体各种组织或器官损伤后的功能和形态生物替代物的科学。 组织工程的核心就是建立细胞与生物材料的三维空间复合体,即具有生命力的活体组织,用以对病损组织进行形态、结构和功能的重建并达到永久性替代。共基本原理和方法是将体外培养扩增的正常组织细胞,吸附于一种生物相容性良好并可被机体吸收的生物材料上形成复合物,将细胞-生物材料复合物植入机体组织、器官的病损病分,细胞在生物材料逐渐被机体降解吸收的过程中形成新的在形态和功能方面与相应器官、组织相一致的组织,而达到修复创伤和重建功能的目的。 骨组织构建 构建组织工程骨的方式有几种:①支架材料与成骨细胞;②支架材料与生长因子;③支架材料与成骨细胞加生长因子。 生长因子通过调节细胞增殖、分化过程并改变细胞产物的合成而作用于成骨过程,因此,在骨组织工程中有广泛的应用前景。常用的生长因子有:成纤维细胞生长因子(FGF)、转化生长因子(TGF-ρ)、胰岛素样生长因子(IGF)、血小板衍化生长因子(PDGF)、

骨形态发生蛋白(BMP)等。它们不仅可单独作用,相互之间也存在着密切的关系,可复合使用。目前国外重点研究的项目之一,就是计算机辅助设计并复合生长因子的组织工程生物仿真下颌骨支架。有人采用rhBMP-胶原和珊瑚羟基磷灰石(CHA)复骨诱导性的骨移植、修复大鼠颅骨缺损,证实了复合人工骨具有良好的骨诱导性和骨传导性,可早期与宿主骨结合,并促进宿主骨长大及新骨形成。用rhBMP-胶原和珊瑚复合人工骨修复兔下颌骨缺损,结果显示: 2个月时,复合人工骨修复缺捐赠的交果优于单纯珊瑚3个月时,与自体骨移植的修复交果无明显差异。 目前,用组织工程骨修复骨缺损的研究,已从取材、体外培养、细胞到支架材料复合体形成等都得到了成功。有人用自体骨髓、珊瑚和rhBMP-2复合物修复兔下颌骨缺损,结果表明:术后3个月,单独珊瑚组及空白对照组缺损未完全修复;珊瑚-骨髓组和珊瑚-rhBMP-2组及单独骨髓组已基本修复了缺损;而骨髓、珊瑚和rhBMP-2复合物组在2个月时缺损即可得到修复。我们用骨基质成骨细胞与松质骨基质复合物自体移植修理工复颅骨缺损的动物实验,也取得了满意的治疗效果。 带血管蒂的骨组织工程是将骨细胞种植于预制带管蒂的生物支架材料上,将它作为一种细胞传送装置。我们将一定形状的thBMP-2、胶原、珊瑚复合物植入狗髂骨区预制骨组织瓣,3个月时,复合物已转变成血管化骨组织。

相关主题
文本预览
相关文档 最新文档