当前位置:文档之家› 高温条件下硫及环烷酸腐蚀(交流资料)

高温条件下硫及环烷酸腐蚀(交流资料)

高温条件下硫及环烷酸腐蚀(交流资料)
高温条件下硫及环烷酸腐蚀(交流资料)

高温条件下硫及环烷酸腐蚀

交流资料

一:硫及环烷酸含量划分

二:硫及环烷酸组分

三:腐蚀机理

四:腐蚀影响因素

五: 腐蚀速率的确定

一:硫及环烷酸含量划分

硫元素在绝大多数原油中都存在,但其浓度随原油不同而不同。在有些原油中,环烷酸和硫组分同时存在。因此,在应对硫及环烷酸腐蚀时,有必要区分对待硫组分及环烷酸含量不同的原油。

原油含硫量划分

S<0.1% 超低硫原油

0.1%≤S<0.5 % 低硫原油

0.5%≤S<1.0 % 含硫原油

S≥1.0% 高硫原油

原油含环烷酸量划分

TAN<0.5 mgKOH/g 低酸原油

TAN≥0.5 mgKOH/g 高酸原油

原油种类划分

针对原油中的硫和环烷酸含量不同,可以划分为:

(1)低硫、低酸原油

(2)高硫、低酸原油

(3)高硫、高酸原油

(4)低硫、高酸原油

在高温下,其对钢材的腐蚀性依次增强。

二:硫及环烷酸组分

硫含量及环烷酸含量是指其在原油中的总含量,并不能绝对真实地反映其对钢材的腐蚀。

1:原油中的硫组分可以分为活性硫和非活性硫;

活性硫:能与钢起反应的叫活性硫,主要有以下五种: 硫化氢

硫醇

元素硫

硫醚

二硫化物

在高温下,其对钢材的腐蚀性增强。

非活性硫:主要是噻吩硫, 通常不能与钢起反应;但在高温下(400℃左右),非活性硫会受热分解出活性更强的活性硫。

2:原油中石油酸主要是由脂肪酸、芳基酸和环烷酸组成,其中环烷酸占85%以上,环烷酸又包括一环、二环、三环、四环、五环、六环。六环以上的环烷酸较少见。一环、二环、三环较多,二环最多。

高酸原油的各馏分中,单环及双环环烷酸的含量较高,馏分越重,多环或带芳环的环烷酸含量越高。

三:腐蚀机理

最常出现硫化物和环烷酸腐蚀的加工装置是常减压蒸馏装置,以及二次加工装置的进料系统,如加氢处理、催化裂化、延

迟焦化装置的进料系统。

高温硫腐蚀是一种均匀腐蚀,通常在204℃(400℉)以上发生。根据加工原油性质不同,这种腐蚀有时与环烷酸腐蚀同时存在。而环烷酸腐蚀通常为局部腐蚀。

高温硫腐蚀机理

高温下,S、硫化物直接与金属材料表面的铁发生化学反应:

H

2S+Fe→FeS+ H

2

S+Fe→FeS

硫在80℃时开始对钢材均匀腐蚀,腐蚀速率最高,400小时后速度明显减慢,这与生成F e S保护膜有关。从200℃开始硫腐蚀速率又增加,250℃加快,350-460℃达到最强烈程度,这是因为非活性硫化物受热分解出活性更强的活性硫。

?在高温硫环境下,碳钢及低合金钢会形成硫腐蚀保护层,其受保护程度取决于环境状况。在足够高的温度及/或硫含量下,腐蚀保护层的保护性能会变差,腐蚀加速进行。

?硫化物在碳钢表面生成FeS,在温度<50℃时,生成的FeS疏松,没有保护性;当温度在100-150℃,FeS具有一定的致密性,具有较好的保护性。

?含铬5%以上合金钢被高温硫化氢腐蚀后,能在钢材表明形成三层垢壳,外层是多层FeS;中间是致密的Cr2O3;而内层是致密而且比较稳定的尖晶石型化合物FeCr2O4.

高温硫腐蚀是一种均匀腐蚀,主要是引起金属材料的均匀减薄。

由硫或硫化物直接与金属材料表面的铁发生化学反应而引起。

环烷酸腐蚀机理

环烷酸会在与其沸点相同的油品中冷凝,造成该馏分对金属材料的腐蚀。

一般认为环烷酸腐蚀的反应机理如下:

2RCOOH+Fe→Fe(RCOO)

2+H

2

2RCOOH+FeS→Fe(RCOO)

2+H

2

S↑

环烷酸不但能与铁直接作用产生腐蚀,还能与硫腐蚀产物如硫化亚铁反应,生成可溶于油的环烷酸铁,当环烷酸与腐蚀产物反应时,不但破坏了具有一定保护作用的硫化亚铁膜,同时游离出硫化氢又可

进一步腐蚀金属:

H

2S+Fe→FeS+ H

2

因此,在金属表面上,凡是保护膜破坏的地方就会暴露出新的金属表面,使腐蚀继续进行。

?环烷酸在蒸馏过程中大多存在于高沸点组分中,如常压重汽油、常压渣油以及减压汽油中,但通常具有腐蚀性的组分都蒸馏至减压侧线物流中,低沸点组分中环烷酸含量较低。

在低酸值组分中,腐蚀形式通常为坑蚀。在高酸值高流速组分中,腐蚀形式通常为冲蚀—沟流腐蚀。环烷酸可以改变或破坏金属材料表面保护层(硫化物或氧化物),这样就会引起持续剧烈硫腐蚀,或者环烷酸本身直接对基体材料形成腐蚀。

四:腐蚀影响因素

高温硫腐蚀

高温环境下的硫腐蚀速率与硫组分浓度、介质温度、介质流速以及金属材料性能有关。

?硫腐蚀与介质物流中的硫含量(通常以重量百分比wt%计)有关。硫含量越高,腐蚀速率也越高;

?通常在204℃(400℉)以上时发生高温硫腐蚀。介质温度越高,则高温硫腐蚀速率越大;

?介质流速越快,则高温硫腐蚀速率越大;如果流速>30米/秒,腐

蚀速率会成倍增加;

?硫腐蚀在气液两相均会发生;

?关于材料

(1) 在高温硫环境下,碳钢及低合金钢虽然会形成硫腐蚀保护层,但受环境状况限制。

(2) 在使用碳钢时,为改善材料冲击韧性而加入少量硅(Si)元素会改善材料的抗腐蚀性能,如含硅元素ASTM A106,要比不含

硅元素的材料(如A 53、API5L)抗腐蚀性能好。

(3) 在钢中适度增加铬含量会提高材料抗高温硫腐蚀性能。在高温硫环境下通常采用5%Cr、7%Cr或9%Cr合金钢;含有1-1/4 Cr

及2-1/4 Cr的材料,其使用效果通常不会令人满意。

(4) 在硫含量及温度特别高的情况下,通常采用12%Cr(410、410S、405SS)及304系列不锈钢。

高温环烷酸腐蚀

高温环境下的环烷酸腐蚀速率与TAN、介质温度、介质相态、介质流速、介质流态、介质硫含量以及金属材料性能有关。

?TAN越大,腐蚀速率也越高;

注:TAN是用来表示原油中环烷酸浓度的指标。最新的研究结果表明:原油的总酸值与原油的腐蚀性并不呈正比关系,这可能与原油中环烷酸的化学结构有很大的关系,因此根据酸值只能粗略地比较原油的腐蚀性。一般认为:当原油的酸值在0.3mgKOH/g时,环烷

酸腐蚀的问题就应当引起注意,当原油的酸值大于或等于0.5mgKOH/g时,在一定的温度下,就会发生明显的腐蚀。

?环烷酸腐蚀通常发生的温度范围为400°F~750°F(204~400℃)。不过在此温度范围以外,也有有关环烷酸腐蚀的报告。

<220 ℃,无水情况,无腐蚀;有水情况下腐蚀会随温度升高加剧;

270~280℃,达到酸沸点,腐蚀最严重;

350~400℃,由于FeS膜高温融解,腐蚀重新加剧

>400℃,环烷酸分解或者蒸馏进入气相,腐蚀减弱。

注意:在环烷酸热分解时,会有低级有机酸或二氧化碳生成,它们会影响冷凝水的腐蚀性。

?硫腐蚀在气液两相均有发生,而环烷酸仅在液相中才具有腐蚀性。

环烷酸受相变的影响十分强烈,有相变时比纯液相腐蚀更严重,特别是气液相变边界和气相变液相的凝结过程腐蚀最为激烈。

?判定腐蚀的另一个重要因素是物流速度,特别是在存在环烷酸腐蚀的情况下。由于硫化物保护层被冲刷掉,则流速越高,腐蚀速率也越高。这种影响在流速很高的气液两相流中尤为明显。在高温、高流速时,即便在酸值很低的情况下(如0.3KOHmg/g),含环烷酸介质对碳钢仍有很高的腐蚀速率。根据国外资料,如果流速>30米/秒,腐蚀速率会成5倍增加。

?流态是影响环烷酸腐蚀的非常重要的因素。在管道的弯头、三通和

泵中会产生湍流,湍流会加速管件、设备的腐蚀。据报道,在这样的

条件下,包括炉管、弯头、管线的腐蚀速度可增大两个数量级。

?在硫含量特别低的情况下,环烷酸腐蚀有可能更为严重。由于来不

及形成硫化物保护层,即使TAN比较低也是如此。

国外报道低硫的海湾原油需要高钼含量合金,而高硫的加利福尼亚

原油在同样温度及酸值条件下却不需要高钼含量合金,证明高硫含

量能抑制环烷酸腐蚀。所以,低硫高酸值原油的腐蚀性可能更强。?关于材料

(1) 碳钢以及低铬合金钢(1.25~2.25% Cr)对环烷酸腐蚀最敏感。(2) 在低酸值条件下,304系列不锈钢对环烷酸具有一定的抗腐蚀性。(3) 在高酸值条件下,需要采用含钼(Mo)奥氏体不锈钢(如316、317 SS)。实践证明,为了获得抗环烷酸腐蚀的最佳效果,需要

在316系列不锈钢中最少加入2.5%的钼。

(4) 各种合金耐含酸原油腐蚀比较

根据国外资料报道,各种合金耐含酸原油腐蚀能力如下:?CS 1.25Cr-0.5Mo 2.25Cr-0.5Mo

?5Cr-0.5Mo 7Cr

?9Cr-1Mo 304LSS 321SS 347SS

?316SS

?317SS

?6% Mo Alloys

?Alloy 625 Alloy276

注:注意316SS的含钼量

五:腐蚀速率的确定

高温硫腐蚀

在确定了介质硫含量以及温度后,根据修正后的McMonomy曲线确定腐蚀速率;

高温环烷酸腐蚀

在确定了工艺介质最高温度、介质硫含量、TAN以及介质流速后,根据腐蚀评估数据表确定腐蚀速率;

注:在有关环烷酸腐蚀的各种论文中,对于腐蚀速率与环烷酸不同组分之间的对应关系还没有被广为接受的定论。通常,含环烷酸组分的腐蚀速率,只是用来对腐蚀速率进行数量级的分级。一旦从某一表格中选定适当的腐蚀速率:如果流速>100fps(英尺/秒),则应乘以系数5。

经修正的McMonomy曲线

浅谈含硫原油的腐蚀及保护措施

浅谈含硫原油的腐蚀及保护措施 摘要:炼油设备的腐蚀不但给炼油厂造成经济损失,而且对环境也会产生污染。设备腐蚀带来的资源消耗是一种巨大的浪费。本文将就炼油厂设备腐蚀的原因以及解决方法展开讨论。 关键词:炼油厂;炼油设备;腐蚀原因;防护措施 随着从中东、西北地区从中亚进口含硫原油数量的大幅度增加,以及国内含硫油田的开发,原油平均含硫量逐年增高。原油硫含量的增加,使加工高硫原油的设备,包括进口的不锈钢设备和管道,发生严重的硫腐蚀。正常生产中由于硫腐蚀时常引发破裂、燃烧、爆炸等恶性事故,同时还导致严重的环境污染。 原油中所含硫和硫化物的总量称之为原油的硫含量,其中的硫化物主要是有机硫化物,也有少量的单质硫和硫化氢,其主要类型有:单质硫S,硫化氢H2S,硫醇RSH,硫醚RSR,二硫化物RSSR。可以和金属直接反应生成硫化物叫做活性硫,如单质硫、硫化氢和硫醇: S+Fe→FeS H2S+Fe→FeS+H2 RCH2CH2SH+Fe →FeS+RCH=CH2+H2 一.低温湿硫化氢腐蚀 在低温下H2S只有溶解水中才具有腐蚀性。通常低温下由于金属表面存在着水或水膜,而铁发生腐蚀反应: H2S+Fe→FeS+H2 在搅动H2O中的悬浮S时可使pH值下降到1.8,认为这是S在H2O中的歧化反应引起的:4S+4H2O →3H2S+H2SO4 硫与钢的直接接触,起到有效阴极的作用而加速腐蚀。在水溶液中硫引起碳钢腐蚀的反应为: 阳极过程: Fe→ Fe2++2e—Fe+H2O→ Fe(OH)++H++2e— 阴极过程:Sn+2e →Sn2- Sn2-→S2-+S n-1 二.高温硫化物腐蚀 腹有诗书气自华

海洋腐蚀环境与换热器表面处理选型

海洋腐蚀环境 海洋腐蚀环境包括海洋大气腐蚀环境和海水腐蚀环境, 1﹑海水腐蚀环境 海水是一种复杂的多组分水溶液,海水中各种元素都以一定的物理化学形态存在。海水是一种含盐量相当大的腐蚀性介质,表层海水含盐量一般在3.20%-3.75%之间,随水深的增加,海水含盐量略有增加。盐分中主要为氯化物,占总盐量的88.7%.由于海水总盐度高,所以具有很高的电导率,海水中pH值通常为8.1-8.2,且随海水深度变化而变化。若植物非常茂盛,CO2减少,溶解氧浓度上升,pH值可接近10;在有厌氧性细菌繁殖的情况下,溶解氧量低,而且含有H2S,此时pH值常低于7。海水中的氧含量是海水腐蚀的主要影响因素之一,正常情况下,表面海水氧浓度随水温大体在5~10mg/L范围内变化。海水温度一般在-2℃-35℃之间,热带浅水区可能更高。海水中氯离子含量约占总离子数的55%,海水腐蚀的特点与氯离子密切相关。氯离子可增加腐蚀活性,破坏金属表面的钝化膜。 2﹑海洋大气腐蚀环境 大气腐蚀一般被分成乡村大气腐蚀,工业大气腐蚀和海洋大气腐蚀。乡村地区的大气比较纯净;工业地区的大气中则含有SO2,H2S, NH2和NO2等。大气中盐雾含量较高,对金属有很强的腐蚀作用。 海洋环境对金属腐蚀同其它环境中的大气腐蚀一样是由于潮湿的

气体在物体表面形成一个薄水膜而引起的。这种腐蚀大多发生在海上的船只、海上平台以及沿岸码头设施上,腐蚀现象是非常严重的,除了在强风暴的天气中,在距离海岸近的大气中的金属材料也强烈的受到海洋大气的影响。海洋大气中相对湿度较大,同时由于海水飞沫中含有氯化钠粒子,空气的相对湿度都高于它的临界值。空气中所含杂质对大气腐蚀影响很大,海洋大气中富含大量的海盐粒子,这些盐粒子杂质溶于铜带表面的水膜中,使这层水膜变为腐蚀性很强的电解质,加速了腐蚀的进行,与干净大气的冷凝水膜比,被海雾周期饱和的空气能使铜的腐蚀速度增加几倍。 海洋环境对金属腐蚀的影响因素 1﹑盐度 盐度是指100克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海洋环境中遭到严重腐蚀。 2﹑含氧量 海洋环境对金属腐蚀是以阴极氧去极化控制为主的腐蚀过程。 海水中的含氧量是影响海洋环境对金属腐蚀性的重要因素。氧在海

硫磺腐蚀与防护

硫磺回收装置管道的腐蚀与防护 摘要:论述了硫磺回收装置的反应过程,分析了硫磺回收装置管道腐蚀生成的原因与部位,腐蚀的类型,提出了防护的措施与手段。并简要对比了青岛和大连两套硫磺回收装置的管道选材。 关键词:硫磺回收 管道 腐蚀 一、概述 近年来,随着国家对环境保护的重视,以及加工进口高含酸原油,硫磺 回收装置越来越多,且规模趋于大型化。我公司设计的有大连27万吨/年,天津20万吨/年,青岛22万吨/年硫磺回收装置。深入研究硫磺装置腐蚀机理,搞好管道选材,节约投资费用,保证装置长周期安全运行具有重要的意义。 硫磺回收装置的工艺包主要有Tecnip 工艺和Luigi 工艺。都是采用Clause 部分燃烧法工艺,其原则工艺流程如图1所示。 2级硫3级硫酸性气分液罐酸性气燃烧炉1级硫冷吸 收 自装置外来的酸性气经过酸性气分液罐后进入焚烧炉燃烧产生过程气,过程气经过三级冷凝两级反应后进入尾气加热炉,温度加热到2930

进入加氢反应器,过程气在催化剂作用下进一步反应后经尾气废热锅炉减温后进入急冷塔将温度降至390后进入尾气焚烧炉焚烧后排入烟囱。硫磺装置共在三个地方发生了化学反应 1.自装置外来的酸性气在燃烧炉,与空气按一定比例混合燃烧,反应方 程如下: H2S+1/2O2→H20+1/2S H2S+3/2O2→H20+SO2 2H2S+CO2→2H20+CS2 因此从燃烧炉出来的过程气主要成份是SO2和未燃烧完的H2S。 2.过程气在反应器里在催化剂作用下进一步反应 2H2S+SO2→3S+2H20 CS2+2H20→ CO2+2H2S 因此从Clause出来的过程气主要成份是的CO2和H2S。 3.在加氢反应器,过程气中的SO2在2800~3300和H2混合,在催化剂作 用下发生放热反应生成H2S。 SO2+H2→H2S +2H20 二、腐蚀原因及防护措施 从以上的反应过程及其反应产物可以看出,硫磺回收装置中含有H2S、SO2、CS2、COS、水蒸汽和硫蒸气等,这些气体对管道产生不同程度的腐蚀。根据腐蚀机理的不同,硫磺回收装置管道的腐蚀主要有低温硫化氢腐蚀、露点腐蚀、高温硫腐蚀及电化学腐蚀。 1. 低温湿硫化氢腐蚀

海洋环境下混凝土的腐蚀性介绍

海洋环境下混凝土的腐蚀性介绍 上海海事大学尹若元摘编2010-04-22 关键字:混凝土腐蚀海洋环境浏览量:113 作为一种节能、经济、用途极为广泛的人工耐久性材料,混凝土是目前世界上使用最广泛的建筑材料之一,在工业、运输、民用等领域有着广泛的应用。用混凝土建造的建筑物和构筑物在使用期间常常受到腐蚀介质的侵蚀,特别是在海洋环境中。海洋环境是混凝土结构所处的最恶劣的外部环境之一。海水中的化学成分能引起混凝土溶蚀破坏、碱-骨料反应,在寒冷地区可能出现冻融破坏,海浪及悬浮物对混凝土结构会造成机械磨损和冲击作用,海水或海风中的氯离子能引起钢筋腐蚀。国内外大量调查表明:海洋恶劣环境下的混凝土构筑物经常过早损坏,寿命一般在20~30年,远达不到要求的服役寿命(一般要求服役寿命100年以上)。损坏的构筑物需花大量财力进行维修补强,且造成停工停产,带来巨大经济损失。因此,研究海洋环境下混凝土的腐蚀机理,提高海洋环境混凝土耐久性,保护内部钢筋免于腐蚀,建造低价格高性能的混凝土就显得尤为重要。 近年来,国内外的学者相继开展了一些针对混凝土材料化学腐蚀的研究,本文从试验研究和数值模拟两方面对当前受腐蚀混凝土的力学研究现状进行简要介绍。 一、试验研究 蒋钰鹏[1]通过对酸性地下水环境中不同配比的混凝土强度进行分析,并和标准养护的未腐蚀材料对比,研究酸性环境对不同配比混凝土强度的影响规律,提出对存在酸性腐蚀条件的土质,基础混凝土工程应采取以下预防措施:(1)混凝土的密实度和抗渗性是防止腐蚀的关键,提高基础混凝土的设计强度,合理选用水泥型号,使用高标号水泥,并适当掺用高效减水剂(缓凝型除外),降低水灰比。(2)加强混凝土施工中的现场管理,严格控制施工质量,确保混凝土按规程振捣,确保混凝土的密实度,表面必须抹光压实。 (3)施工前要制定混凝土养护方案,科学地进行养护。(4)适当增加钢筋保护层的厚度,厚度应大于50 mm,并在施工中严格控制。(5)混凝土基础施工前对基槽进行处理,加入石灰等降低酸度,并加厚垫层。(6)对完成的混凝土基础结构在回土覆盖前,可采用混凝土密封剂进行防护,使用前要对混凝土表面进行清理。张伟勤等[2]研究了混凝土在盐卤的干湿循环环境中,受单一化学腐蚀破坏材料的损伤及强度、质量损失的规律,研究表明研制的高性能混凝土(HPC)在淡水、卤水中干湿循环能力全部优于普通混凝土

尾部受热面的积灰、磨损和低温腐蚀的预防和检修

论文 锅炉尾部受热面的积灰、磨损和腐蚀 的预防和检修 关键词:受热面积灰磨损腐蚀预防处理 作者:高俊义 单位:佳木斯第二发电厂生技处 住址:黑龙江省佳木斯市前进区 时间:2003年7月

锅炉尾部受热面的积灰、磨损和腐蚀 的预防和检修 高俊义 (佳木斯第二发电厂黑龙江省佳木斯市 154008) 摘要:大容量锅炉尾部受热面的积灰、磨损和腐蚀时有发生,对锅炉机组的安全、经济、稳定运行产生很大影响,本文主要阐述了大容量锅炉受热面积灰、磨损和腐蚀的原因、预防措施及发生这些缺陷后的一些处理方法。 关键词:受热面积灰磨损腐蚀预防检修 The boiler suffers the prevention for of accumulating the ash, wear awaying with corrosion of hot with fix GaoJunYi Summary:Big capacity boiler tail department some for reason for suffering the safety for of accumulating the ash, wear awaying with decaying having take placing, to boiler machine set of hot, economy, stabilizing circulating producing very big influence, this text primarily discussing the big capacity boiler suffering the hot area ash, wear awaying with corrosion, prevention measure and take placing these blemishs empress handle the method. Key phrase:Suffer the hot Accumulate the ash Wear away Decay Prevention Maintain 1前言 我国电站锅炉和工业锅炉以燃煤为主,而动力用煤质量偏劣,含灰量和含硫量等均较高,容易形成受热面的沾污、积灰、腐蚀和磨损。这将会给锅炉带来很多的问题,如积灰的清除、传热条件变差、受热面的寿命下降等问题。目前,随着锅炉容量的增大,炉内沾污、结渣、腐蚀等问题更为严重。这是由于如下众多的因素引起的:炉膛容积增大,清灰困难,烟道尺寸增大,烟速和烟温容易分布不均匀;

锅炉的硫腐蚀资料

锅炉的硫腐蚀 指烟气中的水蒸气和硫燃烧后生成的三氧化硫结合成的硫酸对锅炉的腐蚀。 最常见的硫腐蚀是发生在锅炉尾部受热面上的低温硫腐蚀。 低温硫腐蚀常发生在空气预热器的冷端及给水温度低的省煤器中。在受热面的温度低于烟气的露点时,烟气中的水蒸气和硫燃烧后生成的三氧化硫结合成的硫酸会凝结在受热面上,严重地腐蚀受热面并造成“堵灰”。 当烟气中只含水蒸气而不含三氧化硫时,烟气露点实际上指的是烟气中水蒸气霹点,即烟气中水蒸气的结露(凝结)温度。这个温度与烟气中所含水蒸气的分压有关。水蒸气分压越高,露点温度也越高。不同燃料燃烧生成烟气的水蒸气露点大致如下表所示。 烟气的水蒸气露点 由上表可以看出,烟气中水蒸气露点温度不超过50℃,比锅炉的排烟温度低得多,因而单纯的水蒸气是很难在受热面上结露的。 烟气中如果有三氧化硫,情况就大不相同了。 燃料中硫燃烧后,生成二氧化硫。在过量空气系数较大,过量氧气较多而温度又不太高的条件下,少量二氧化硫继续氧化生成三氧化硫: )/(8.19122322mol kJ SO O SO +?+ 这个反应是个可逆的放热反应,在温度高、氧量少的情况下很难进行;即使温度不高,供氧充足,生成的三氧化硫也很有限。国内外实测数据表明,三氧化硫转化率[烟气中SO 3体积/(SO 3+SO 2)体积)对链条炉为1%~2%;对抛煤机炉为0.5%~1.5%;对煤粉炉为0.5%~1%;燃油炉为0.5%~2%。烟气中的二氧化硫对受热面没有明显的腐蚀作用。三氧化硫的含量虽然很小,但它能与烟气中的水蒸气结合成硫酸蒸气,会显著地提高烟气的露点温度。只要有极少量的硫酸蒸气存在,烟气的露点(酸露点)就会提高到100℃以上。露点温度的提高意味着硫酸蒸气遇到温度较高的壁面就可能结露,酸露不仅腐蚀金属壁面,而且会使烟气中的灰分凝结在金属壁面上,灰分越积越多,最后堵塞烟气通道。 为了避免低温硫腐蚀,可采用下列技术措施: (1)用热空气或蒸汽加热冷空气,提高空气预热器入口的空气温度,从而提高预热器壁面温度使之高于露点温度。 (2)采用低氧燃烧方式,减少SO 3的生成量。 (3)采用玻璃、陶瓷等的耐腐蚀材料,来制造冷端空气预热器。 除了低温硫腐蚀外,还有高温硫腐蚀。 高温硫腐蚀指烟气中所含碱金属的复合硫酸盐以液态在过热器等高温受热面上沉积所造成的腐蚀。它是一种汽侧的腐蚀,和所用燃料有关。燃油中的钒、钠和硫,煤中的碱性化合物及磷酸盐等挥发后凝结在较冷的金属上,与二氧化硫或三氧化硫作用而成为硫酸盐粘在金属面上造成腐蚀。一般采用加入氧化镁、白云石、钙、铝、硅等添加物的方法,造成高熔点的化合物,以防止其沉积。

常见垃圾焚烧锅炉的腐蚀成因与防范对策

常见垃圾焚烧锅炉的腐蚀成因与防范对策 焚烧,是城市生活垃圾处理的三大方法之一,其关键设备——生活垃圾焚烧锅炉诞生已有100多年历史。当今,采用焚烧技术处理生活垃圾,已成为众多发达国家和地区城市最重要的垃圾处理方式。 深圳市于1988年在国内建成第一座生活垃圾焚烧厂——深圳市政环卫综合处理厂,在此基础上成功进行引进垃圾焚烧锅炉提高蒸汽参数的技术改造,实现了向垃圾发电厂职能转变;与杭州锅炉厂合作开发国产150t/d垃圾焚烧炉,实现了焚烧锅炉的国产化.改革开放以来,国内已建成深圳清水河、龙岗和珠海、温州垃圾焚烧发电厂。目前上海浦东、江桥和杭州、宁波、厦门、广州等地正在筹建城市生活垃圾焚烧处理设施,垃圾焚烧工艺越来越受到有关地区和主管部门的重视。 生活垃圾焚烧锅炉是垃圾化学能转换为热能的关键设备,其工艺过程是将生活垃圾作为固体燃料,投入焚烧锅炉内,在高温条件下,垃圾中的可燃质与空气中的氧发生剧烈化学反应,放出热量,转化为高温燃烧气体和性质稳定的固态炉渣,完成生活垃圾的减容、灭菌过程,实现无害化处理。高温烟气通过余热锅炉产生蒸汽用于发电、供热,实现垃圾化学能向热能、电能的转换。生活垃圾焚烧锅炉与传统的燃煤、燃油锅炉相比较,其金属受热面因腐蚀导致事故频率要高得多,占其汽水系统事故频发率第一位。出于发电效益要求,目前垃圾焚烧锅炉工质已从低参数饱和蒸汽向中温中压过热蒸汽参数过渡。垃圾锅炉既要满足发电工质参数要求,又要避免工质过热段金属受热面超温,产生高温腐蚀现象,认真探讨垃圾锅炉腐蚀成因并研究其防范对策,对垃圾焚烧锅炉和整个电厂的安全运行,具有重要意义。 1垃圾锅炉独有的运行特征

(1)垃圾焚烧锅炉是以焚烧处理生活垃圾为目的,对生活垃圾进行焚烧,实现其减量化、无害化和余热利用的热力设备,其基本考核指标是日处理垃圾数量、焚烧后炉渣的热灼减率、余热锅炉工质参数和锅炉效率等。在额定出力范围内,锅炉蒸发量随垃圾处理量和垃圾发热量变化在一定范围内波动,锅炉蒸发量决定发电出力。垃圾焚烧锅炉热效率一般在80%以下,低于普通工业锅炉和电站锅炉。垃圾发电厂用电率一般为25%~35%,远高于普通火力发电厂。 (2)作为锅炉燃料的生活垃圾成分比较复杂,由各种不同类别固体废弃物混合构成,低位发热量较低,当前国内经济较为发达的城市一般为3350~6280kJ/kg;含水率高,一般为50%~70%;组分成分变化大,燃烧难以控制等特点。发达城市或地区的生活垃圾中橡胶、塑料所占比重较大,在焚烧过程中产生HCL、SOx等酸性气体,若不加以控制,会在锅炉金属受热面产生高温腐蚀和低温腐蚀。 (3)二恶英(Dioxin)类是垃圾焚烧过程中产生的有害物质,具有极强的致癌性。出于对该类物质排放控制要求,垃圾焚烧锅炉的运行除满足蒸汽品质外,还要求二恶英类必须在炉内充分裂解,垃圾焚烧锅炉运行还必须满足如下三T+E的燃烧工况: ①温度:Temperature炉膛烟气温度控制在850~950℃; ②时间:Time烟气在上述温度条件下停留2秒以上; ③湍流+空气:Turbulence + Excess air要求炉膛内烟气有足够的湍流强度,焚烧炉出口烟气含氧量控制在6%~12%。炉排型垃圾焚烧锅炉过剩空气系数一般为1.6~2.0,远大于普通工业锅炉与电站锅炉。 2常见的生活垃圾焚烧锅炉腐蚀成因 生活垃圾作为燃料,具有含水率高,低位发热量低,组分成分变化大等特点,在运行过程中,其特有的燃烧工况对锅炉的金属受热面产生腐蚀,主要有以下几方面原因:

过热器高温腐蚀机理分析-赵梦瑾

过热器高温腐蚀机理分析 赵梦瑾 摘要:介绍了锅炉过热器高温硫腐蚀和水蒸汽氧化腐蚀的过程机理,分析导致腐蚀不断进行的主要因素,并提出防治措施,促进锅炉安全经济运行。 1 前言 过热器用于回收烟气中的热量,提高锅炉效率。炉膛出口烟气温度比较高,为1000~1100℃,经过过热器后温度降至700~800℃。过热器在锅炉受压部件中承受的温度最高。高温硫腐蚀和水蒸汽氧化腐蚀是过热器管两种主要腐蚀形式,其中外壁高温硫腐蚀已受到较多关注。近年来由水蒸气氧化腐蚀而引发爆管以及剥落下来的坚硬氧化皮微粒造成的汽轮机固体颗粒侵蚀的事故日益突出,水蒸汽氧化腐蚀问题也越来越引起重视。 2 高温硫腐蚀 2.1 机理 高温积灰所生成的内灰层含有较多的碱金属,这些碱金属与飞灰中的铁铝等成分以及烟气中通过松散外灰层扩散进来的氧化硫进行较长时间的化学作用便生成碱金属的硫酸盐等复合物,复合硫酸盐附着在管壁上,对管子金属进行氧化腐蚀。在腐蚀发生过程中,从机理上讲主要会有如下几种反应发生[1]: (1)在燃烧过程中,FeS2及有机硫化物与氧发生反应; 4FeS2 +11O2→2Fe2O3+8SO2 RS(有机硫化物)+ O2→SO2 2SO2+ O2→2SO3 (2)在高温条件下,煤中钠和钾被氧化成Na2O和K2O; (3)Na2O和K2O与烟气中或沉积在管壁上的SO3发生反应生成碱性硫酸盐; Na2O+ SO3→Na2SO4 K2O+ SO3→K2SO4 (4)碱性硫酸盐、氧化铁与SO3反应形成复合硫酸盐; 3Na2SO4+Fe2O3+ 3SO3→2Na3Fe(SO4)3 3K2SO4+Fe2O3+ 3SO3→2K3Fe(SO4)3 (5)在高温条件下,处于熔融状态的复合硫酸盐与管子金属发生下列反应。 4Na3Fe(SO4)3 +12Fe→3FeS+ 3Fe3O4 +2Fe2O3 +6Na2SO4+ 3SO2 4K3Fe(SO4)3 +12Fe→3FeS+ 3Fe3O4 +2Fe2O3 +6K2SO4+ 3SO2 这些复合硫酸盐在550~750℃范围内以熔化状态贴附在管壁上,并随着烟气的流动而被带走,造成管壁表面粗糙,而后面新生成的硫酸盐就越易在这些粗糙表面优先附着,又会重复上述的腐蚀反应。这是一个恶性循环过程,周而复始,随着腐蚀的进行,管壁就会被逐渐蚕食。当被侵蚀的金

高温硫化氢腐蚀

2、腐蚀案例分析——1号柴油加氢T202进料线腐蚀穿孔 (1)事件情况 1号柴油加氢装置汽提塔T202进料管线于2009年2月20日凌晨3:30时左右出现穿孔泄漏,装置随即降压生产,经测厚检查发现T202进料管线整段高温部位管线已整体减薄,最薄处为1.6mm,装置停工把该段管线更换。 图7.1 1号柴油加氢装置汽油管段(φ219×6)减薄穿孔图7.2 减薄管线剖开形貌 (2)管道使用情况 40万吨/年柴油加氢精制装置由原茂名石化设计院设计,建设公司安装。该装置主要是以二次加工粗柴油或高含硫直馏粗柴油为原料,通过加氢精制,生产储存安定性和燃烧性能都较优良的柴油组分,副产少量粗汽油和瓦斯。装置的加工流程灵活,也可以直馏煤油为原料,生产优质灯油或航煤。并考虑了切换焦化粗汽油为原料,生产车用汽油调和组分的可能性。 装置于1991年4月基本建成,7月正式投产。装置在2003年2月份的大修中进行了扩能改造,柴油处理能力已达到60万吨/年。2006年8月,装置改造成以焦化汽油为原料,生产高质量的乙烯原料石脑油,目前汽油加氢精制能力为40万吨/年。 汽提塔T202进料线流程如图7.2所示,已部分预热的低分油(含汽油,H2S,H2)经反应产物第一换热器E201与反应产物换热,热塔进料与另一路90℃左右的冷进料混合后得到170℃左右的塔进料油进入汽提塔T202。此段流程于2003年3月大修时改造完成,原先设计的流程为经反应产物第二换热器E202换热后进入T202,见图中虚线部位,按原流程换热后温度约为250℃;改造后流程为经反应产物第一换热器E201换热,换热后温度大大提高,达到280-320℃。

华电 动力工程及工程热物理

华电动力工程及工程热物理 复试内容,电厂热力设备运行。15回忆。汽轮机冲动式和反动式做功原理和结构的不同?低温腐蚀和高温腐蚀?锅炉烟气从炉膛出来到空气预热器经过哪些设备,温度范围,已经对设备运行的影响?什么是质量流量,质量流量的使用范围?什么是两相流动,造成两相流动不稳定的原因?煤水比对锅炉运行时温度压力的影响,并画出示意图?画出超临界循环的TS图,并说明循环特性?稳定燃烧的措施?300MW的汽轮机,速度变动率5%,迟缓率0.1%,求变动最大范围?什么是调频叶片,以A0型为例说明调频叶片的安全准则? 面试题目,锅炉烟气在过热器和再热器处成分有什么不同?为什么电站采用朗肯循环不用卡诺循环?有没有比卡诺循环更高效率的循环?对中国未来能源状况以及发展的看法。 只能记住这么多了,希望对大家有帮助。 我是18年考研,考的华北电力大学,动力工程专业,数学135分,传热学132分。之前在论坛看到过很多写的比较好的帖子,受益颇丰,一直想考上了把自己的经验方法分享给大家,避免大家在考研途中走弯路。主要讲下考研误区,数学学习方法等,仅供参考,切忌生搬硬套模仿。一、考研几大误区 为什么要讲这个考研误区呢,因为考研成功的原因方法各有不同,但失败的原因大致相同。 u过度消耗身体 俗话说身体是革命的本钱,一定要爱惜自己的身体。每天保持合理的作息时间,保持一定的体育锻炼。说下两个起早的例子,我从7-11月,每天都是6点起,学到晚上10点回宿舍,不过暑假保持每晚30分钟夜跑,每周游一次泳。我有个同学考北京理工的同学,从6月份到10月份,每天早上6点起,学到晚上10回宿舍,洗完澡,吃个宵夜,又从11点学到晚上1点睡觉。最后,他没考上,我考上了。也有两个考上华科的同学,完全佛系考研,从不起早,每天8:30——9点什么时候醒,什么时候起,一个上午学习时间都不超过3个小时,最后也考上了。我说这个的例子,只想和大家说两点,第一个一定要远离低质量的勤奋,不要死搬硬套模仿别人的方法,适合自己的才是最好的。能早起,而且上午的效率高就早起,要起早一次而整个上午都打瞌睡就得不偿失了;第二个一定要注意锻炼身体,考研是场持久战,千万不要因为身体原因倒在了12月。 过分依赖视频 视频是在任何时候都是辅助作用,不要看视频占据大多数时间。比如一天数学学习6个小时,看视频最好控制在2个小时以内,不要超过学科学习时间的1/3。大家有没有觉得,看视频觉得在指点江山,自己什么都懂,然而做题来漏洞百出。这就是缺乏训练,没有自己的思考,无论多简单的题,一定要自己动手算,注重基础。 资料贪多 资料我觉得买一个老师的就足够了,不要所有的都买,题在精而不在多。就拿数学而言,大部分经典题目在不同的习题集都会重复出现,前期把课本和某一本习题集研究透彻,就很厉害了。 没有计划,盲目比进度 这个是考研的大忌,很多人每天也在图书馆学习,但每天都是看到哪算哪,这就是假装考研,反正我每天也学了,最后也不管考不考得上,至少心理上有安慰了。真正想考上的,都会计划好每个月,每个星期甚至每天各个学科该做些什么,而不是看到盲目和

锅炉高温腐蚀及防止措施

锅炉高温腐蚀及防止措

锅炉高温腐蚀及防止措施 锅炉的高温腐蚀主要发生在燃用高硫煤的锅炉水冷壁管和过热器管束上。锅炉运行时在烟温大于700°C的区域内,在高温高压条件下受热面与含有高硫的腐蚀性燃料和高温烟气接触,极易发生高温腐蚀。高压锅炉水冷壁管的硫腐蚀主要是由于煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子,产生腐蚀。通常高压锅炉水冷壁管向火侧的正面腐蚀最快,减薄得最多,若发生爆管都在管子的正面爆开,管子的侧面减薄得较少,而管子背火侧儿乎不减薄,这种腐蚀给锅炉水冷壁管造成很大威胁,严重时,往往儿个月就得更换部分管段,给锅炉的安全经济运行带来很大危害。而锅炉过热器管的高温腐蚀主要是由于液态的灰黏结在过热器管壁上而引起腐蚀。 1高温腐蚀的主要原因 1.1燃烧不良和火焰冲刷 持续燃烧不良和脉动火焰冲击炉墙时,导致燃烧不完全,在燃烧器区域附近的火焰中心处,当未燃尽的焰流冲刷水冷壁管时,由于煤粉具有一定的棱角,煤粉对管壁有很大的磨损作用,这种磨损将加速水冷壁保护层的破坏,在管壁的外露区段,磨损破坏了由腐蚀产物形成的不太坚固的保

护膜,烟气介质便急剧地与纯金属发生反应,这种腐蚀和磨损相结合的过程,大大加剧了金属管子的损害过程。 1. 2燃料和积灰沉积物中的腐蚀成分 燃用含硫量高的煤粉时,煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子:FeS2-FeS+[S],而烟气中存在的一定浓度的H2S与S02化合, 也产生自由硫原子:2H2S+S02-2H20+3[S]。自由硫原子与约350°C温度的水冷壁管相遇,发生反应:Fe+[S]-FeS, 3FeS+5O2-Fe3O4+3SO2,产生腐蚀。 其次,燃料中的硫及碱性物会在炉内高温下反应生成硫酸盐,当这些硫酸盐沉积到受热面上后会再吸收S03,生成焦硫酸盐,如Na2S2O7和K2S207o焦硫酸盐的熔点很低,在通常的锅炉受热面壁温下呈熔融状态, 与Fe203更容易发生反应,生成低熔点的复合硫酸 盐:3Na2S04+Fe203+3S03-→2Na3Fe(S04)3, 3K2SO4+Fe2O3+ 3S03-2K3Fe(SO4)3,当温度在550°C~700°C时,复合硫酸盐处于融化 状态,将管壁表面的Fe203氧化保护膜破坏,继续和管子金属发生反应,造成过热器管的腐蚀。

锅炉硫腐蚀原理

锅炉的硫腐蚀 指烟气中的水蒸气和硫燃烧后生成的三氧化硫结合成的硫酸对锅炉的腐蚀。 最常见的硫腐蚀是发生在锅炉尾部受热面上的低温硫腐蚀。 低温硫腐蚀常发生在空气预热器的冷端及给水温度低的省煤器中。在受热面的温度低于烟气的露点时,烟气中的水蒸气和硫燃烧后生成的三氧化硫结合成的硫酸会凝结在受热面上,严重地腐蚀受热面并造成“堵灰”。 当烟气中只含水蒸气而不含三氧化硫时,烟气露点实际上指的是烟气中水蒸气霹点,即烟气中水蒸气的结露(凝结)温度。这个温度与烟气中所含水蒸气的分压有关。水蒸气分压越高,露点温度也越高。不同燃料燃烧生成烟气的水蒸气露点大致如下表所示。 烟气的水蒸气露点 由上表可以看出,烟气中水蒸气露点温度不超过50℃,比锅炉的排烟温度低得多,因而单纯的水蒸气是很难在受热面上结露的。 烟气中如果有三氧化硫,情况就大不相同了。 燃料中硫燃烧后,生成二氧化硫。在过量空气系数较大,过量氧气较多而温度又不太高的条件下,少量二氧化硫继续氧化生成三氧化硫: 这个反应是个可逆的放热反应,在温度高、氧量少的情况下很难进行;即使温度不高,供氧充足,生成的三氧化硫也很有限。国内外实测数据表明,三氧化硫转化率[烟气中SO3体积/(SO3+SO2)体积)对链条炉为1%~2%;对抛煤机炉为0.5%~1.5%;对煤粉炉为0.5%~1%;燃油炉为0.5%~2%。烟气中的二氧化硫对受热面没有明显的腐蚀作用。三氧化硫的含量虽然很小,但它能与烟气中的水蒸气结合成硫酸蒸气,会显著地提高烟气的露点温度。只要有极少量的硫酸蒸气存在,烟气的露点(酸露点)就会提高到100℃以上。露点温度的提高意味着硫酸蒸气遇到温度较高的壁面就可能结露,酸露不仅腐蚀金属壁面,而且会使烟气中的灰分凝结在金属壁面上,灰分越积越多,最后堵塞烟气通道。

硫腐蚀

1硫腐蚀的特点 硫腐蚀贯穿于炼油全过程。原油中的总硫含量与腐蚀性之间并无精确的对应关系,主要取决于含硫化合物的种类、含量和稳定性。如果原油中的非活性硫易转化为活性硫,即使硫含量很低,也将对设备造成严重的腐蚀。这就使硫腐蚀发生在炼油装置的各个部位。因此,硫腐蚀涉及装置多,腐蚀环境多种多样,含硫化合物的转化关系复杂,给硫腐蚀的动力学和热力学研究、防腐蚀措施的制定以及加工含硫原油的设备选材带来很多困难。 在原油加工过程中,硫腐蚀不是孤立存在的。硫和无机盐、环烷酸、氮化物、水、氢、氨等其它腐蚀性介质共同作用,形成多种复杂的腐蚀环境。 从腐蚀环境考虑硫腐蚀可分为高温(大于240℃)化学腐蚀、低温硫化氢电化学腐蚀以及两种比较特殊的腐蚀——硫酸露点腐蚀和连多硫酸腐蚀;从腐蚀形态考虑,硫腐蚀又可分为均匀腐蚀、点蚀、缝隙腐蚀、应力腐蚀开裂(SCC)以及由湿硫化氢引起的氢鼓泡(HB)、氢致开裂(HIC)、含硫化合物应力腐蚀开裂(SSCC)和应力导向氢致开裂(SOHIC)等。2低温轻油部位的腐蚀与防护 原油中存在的H2S以及有机含硫化合物在不同条件下逐步分解生成的H2S,与原油加工过程中形成的腐蚀性介质(如HCl,NH3等)和人为加入的腐蚀性(或可引起腐蚀的)介质(如乙醇胺、糠醛、水等)共同形成腐蚀性环境,在装置的低温部位(特别是气液相变部位)造成严重的腐蚀。典型的有常减压蒸馏装置常、减压塔顶的HCl+H2S+H2O型腐蚀环境;催化裂化装置分馏塔顶的HCN+H2S+H2O型腐蚀环境;加氢裂化和加氢精制装置流出物空冷器的H2S+NH3+H2+H2O型腐蚀环境;干气脱硫装置再生塔、气体吸收塔的RNH2(乙醇胺)+CO2+H2S+H2O型腐蚀环境等。 2.1HCl+H2S+H2O型腐蚀环境 这种腐蚀环境主要存在于常减压蒸馏装置塔顶循环系统和温度低于150℃的部位,如常压塔、初馏塔、减压塔顶部的塔体、塔板或填料以及塔顶冷凝冷却系统。一般气相部位腐蚀较轻,液相部位腐蚀较重,气液相变部位即露点部位最为严重。 2.1.1腐蚀状况 HCl和H2S的沸点都非常低(标准沸点分别为-84.95℃和-60.2℃)。因此,在原油加工过程中形成的HCl和H2S均伴随着油气集聚在常压塔顶。在110℃以下遇到蒸汽冷凝水会形成pH值达1~1.3的强酸性腐蚀介质,对设备产生腐蚀。对于碳钢为均匀腐蚀,对于0Cr13钢为点蚀,对于奥氏体不锈钢则为氯化物应力腐蚀开裂。 有资料表明,在无工艺防腐蚀条件下,碳钢的腐蚀速率可达2 mm/a,常压塔碳钢管壳式冷却器管束进口部位腐蚀速率高达6.0~14.5 mm/a,腐蚀形态为均匀腐蚀;常压塔顶的Cr13浮阀出现点蚀,腐蚀速率为1.8~2.0 mm/a。某炼油厂曾使用Cr18-Ni8钢作常压塔顶衬里,5年后出现大面积氯化物应力腐蚀开裂。某炼油厂使用1Cr18Ni9Ti钢作常压塔顶空冷器管束,投用90天后管子与管板胀接过渡区全部发生脆断。采用工艺防腐蚀后,常压塔顶空冷器管束腐蚀速率为0.1~0.3 mm/a,管壳式冷却器碳钢管束腐蚀速率为0.8 mm/a。某炼油厂常压塔顶管壳式冷却器管束使用1Cr18Ni9Ti钢,在加强工艺防腐蚀措施后,使用5年后发生应力腐蚀开裂。 2.1.2工艺防腐蚀措施 对于原油蒸馏塔顶的腐蚀控制技术,除搞好深度电脱盐外,仍然是“三注”,即在系统中注水、注缓蚀剂和注中和剂。过去注入氨水是产生铵盐垢下腐蚀的主要原因,占设备破坏的80%,其腐蚀速率是均匀腐蚀的20倍。垢下沉积物中硫化铁占70%~80%,其它是[wiki]焦炭[/wiki]和重质烃。硫化铁是原油蒸馏塔顶系统中溶解度最小的盐,其溶解性取决于pH值和含硫化合物浓度。腐蚀机理是由于干净或微覆盖区之间形成电位差电池。但传统观点认为,中和盐引起了塔顶的许多问题。这些盐水解使pH值为4,过量使用中和剂提高pH值,会

锅炉尾部受热面低温腐蚀分析及预防

锅炉尾部受热面低温露点腐蚀分析及预防 徐州天能姚庄煤矸石热电有限公司孙乐场 [摘要] 借徐州天能姚庄热电公司锅炉尾部受热面腐蚀一事,分析了烟气中SO3的形成和硫酸蒸汽的凝结是工业锅炉运行时低温段受热面管道腐蚀发生的根本原因。介绍了低温受热面管道的腐蚀过程,并对降低腐蚀提出了可行的预防措施 [关键词] 省煤器空预器腐蚀露点措施 0引言 响应节能减排、资源综合利用号召,徐州天能姚庄热电公司3台SHF20-2.45/400-SⅡ型燃煤锅炉技改为SHS20-2.45/400-QJ型燃焦炉煤气锅炉。运行一年后,3台炉空预器、省煤器出现不同程度的损坏。经检查分析省煤器、空气预热器的损坏,低温露点腐蚀是主要原因,在受热面的温度低于烟气的露点时,烟气中的水蒸气和硫燃烧后生成的三氧化硫结合成的硫酸会凝结在受热面上,严重地腐蚀受热面。 1低温腐蚀机理 1.1三氧化硫及硫酸的生成 焦炉煤气中含有硫,硫与空气中的氧气作用生成SO2,在炉膛内SO2继续被氧化,生成SO3,SO3与水蒸气结合生成硫酸蒸气的概率很大,硫酸蒸气将在温度比较低的空气预热器上凝结。硫酸浓度为零时,纯水沸点为45.45℃,随浓度增高,沸点也随之升高。烟气中只要含有少量硫酸蒸气,就会使露点大大超过纯水的露点;当硫酸蒸气的浓度为10%时,露点可达190℃左右。尽管烟气中硫酸蒸气的浓度很低,凝结下来的液体中的硫酸浓度却可以很高。因此,必须严格控制烟气中SO3含量,即控制燃料中的硫含量。 1.2 三氧化硫的生成及转化率的确定 烟气中三氧化硫生成的机理极其复杂。一般以为一部分是在工艺生产过程中产生的,一部分是在尾部烟道中产生的。 在工艺生产过程中,主要是原子氧的作用而生成三氧化硫,而原子氧主要是在燃烧反应中形成的。如: CO+O2→CO2+O H+O2→OH+O

锅炉高温腐蚀及防止措施

摘要:锅炉的高温腐蚀对锅炉的安全经济运行危害极大,文章对产生锅炉高温腐蚀的几种主要原因进行了分析和探讨,提出一些防止锅炉高温腐蚀的措施,以求对锅炉的安全经济运行有所裨益。 关键词:锅炉;高温腐蚀;措施 锅炉的高温腐蚀主要发生在燃用高硫煤的锅炉水冷壁管和过热器管束上。锅炉运行时在烟温大于700℃的区域内,在高温高压条件下受热面与含有高硫的腐蚀性燃料和高温烟气接触,极易发生高温腐蚀。高压锅炉水冷壁管的硫腐蚀主要是由于煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子,产生腐蚀。通常高压锅炉水冷壁管向火侧的正面腐蚀最快,减薄得最多,若发生爆管都在管子的正面爆开,管子的侧面减薄得较少,而管子背火侧几乎不减薄,这种腐蚀给锅炉水冷壁管造成很大威胁,严重时,往往几个月就得更换部分管段,给锅炉的安全经济运行带来很大危害。而锅炉过热器管的高温腐蚀主要是由于液态的灰黏结在过热器管壁上而引起腐蚀。 1 高温腐蚀的主要原因 1.1 燃烧不良和火焰冲刷 持续燃烧不良和脉动火焰冲击炉墙时,导致燃烧不完全,在燃烧器区域附近的火焰中心处,当未燃尽的焰流冲刷水冷壁管时,由于煤粉具有一定的棱角,煤粉对管壁有很大的磨损作用,这种磨损将加速水冷壁保护层的破坏,在管壁的外露区段,磨损破坏了由腐蚀产物形成的不太坚固的保护膜,烟气介质便急剧地与纯金属发生反应,这种腐蚀和磨损相结合的过程,大大加剧了金属管子的损害过程。 1.2 燃料和积灰沉积物中的腐蚀成分 燃用含硫量高的煤粉时,煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子:FeS2→FeS+[S],而烟气中存在的一定浓度的H2S与SO2化合,也产生自由硫原子:2H2S+SO2→2H2O+3[S]。自由硫原子与约350℃温度的水冷壁管相遇,发生反应:Fe+[S]→FeS,3FeS+5O2→Fe3O4+3SO2,产生腐蚀。 其次,燃料中的硫及碱性物会在炉内高温下反应生成硫酸盐,当这些硫酸盐沉积到受热面上后会再吸收SO3,生成焦硫酸盐,如Na2S2O7和K2S2O7。焦硫酸盐的熔点很低,在通常的锅炉受热面壁温下呈熔融状态,与Fe2O3更容易发生反应,生成低熔点的复合硫酸盐:3Na2SO4+Fe2O3+3SO3→2Na3Fe(SO4)3,3K2SO4+Fe2O3+ 3SO3→2K3Fe(SO4)3,当温度在550℃~700℃时,复合硫酸盐处于融化状态,将管壁表面的Fe2O3氧化保护膜破坏,继续和管子金属发生反应,造成过热器管的腐蚀。 另外,燃料中含有氯化物也是使炉管损耗的一个重要原因。它们与烟气中的水、硫化氢等反应生成硫酸盐和Hcl气体,由于Hcl的存在可以使金属表面的保护膜遭到破坏,从而加大对管壁的腐蚀。燃料中含氯量增加,对金属的腐蚀速率也随之增加。当灰中含氯低于0.2%时,不致产生明显的腐蚀;当含氯量达到0.6%时,将造成高的腐蚀率。 2腐蚀产物的矿物组成 腐蚀产物内层的物相组成主要为铁的硫化物和氧化物,中间层和外层为铁硫化物,铁氧化和铝硅酸盐;对各层的组成进行半定量分析发现:由内而外铁硫化物的含量降低,其含量分别为74 %、64 %、54 %;铝硅酸盐含量增加,其含量分别为中间层22 %、外层28 %;铁氧化物内层含量较高为26 %,由于受到铝硅酸盐的影响,中间层和外层的含量有所降低,含量分别为14 %、18 %,最外层受炉膛中氧气的氧化其铁氧化物的含量要比中间层高。铁的硫化物和氧化物为腐蚀的产物,而硅铝质组分来自于粘附的燃煤飞灰颗粒,其腐蚀类型是硫化物型腐蚀。

高温条件下硫及环烷酸腐蚀(交流资料)

高温条件下硫及环烷酸腐蚀 交流资料 一:硫及环烷酸含量划分 二:硫及环烷酸组分 三:腐蚀机理 四:腐蚀影响因素 五: 腐蚀速率的确定 一:硫及环烷酸含量划分 硫元素在绝大多数原油中都存在,但其浓度随原油不同而不同。在有些原油中,环烷酸和硫组分同时存在。因此,在应对硫及环烷酸腐蚀时,有必要区分对待硫组分及环烷酸含量不同的原油。 原油含硫量划分 S<0.1% 超低硫原油 0.1%≤S<0.5 % 低硫原油 0.5%≤S<1.0 % 含硫原油 S≥1.0% 高硫原油 原油含环烷酸量划分 TAN<0.5 mgKOH/g 低酸原油 TAN≥0.5 mgKOH/g 高酸原油

原油种类划分 针对原油中的硫和环烷酸含量不同,可以划分为: (1)低硫、低酸原油 (2)高硫、低酸原油 (3)高硫、高酸原油 (4)低硫、高酸原油 在高温下,其对钢材的腐蚀性依次增强。 二:硫及环烷酸组分 硫含量及环烷酸含量是指其在原油中的总含量,并不能绝对真实地反映其对钢材的腐蚀。 1:原油中的硫组分可以分为活性硫和非活性硫; 活性硫:能与钢起反应的叫活性硫,主要有以下五种: 硫化氢 硫醇 元素硫 硫醚 二硫化物 在高温下,其对钢材的腐蚀性增强。 非活性硫:主要是噻吩硫, 通常不能与钢起反应;但在高温下(400℃左右),非活性硫会受热分解出活性更强的活性硫。

2:原油中石油酸主要是由脂肪酸、芳基酸和环烷酸组成,其中环烷酸占85%以上,环烷酸又包括一环、二环、三环、四环、五环、六环。六环以上的环烷酸较少见。一环、二环、三环较多,二环最多。 高酸原油的各馏分中,单环及双环环烷酸的含量较高,馏分越重,多环或带芳环的环烷酸含量越高。 三:腐蚀机理 最常出现硫化物和环烷酸腐蚀的加工装置是常减压蒸馏装置,以及二次加工装置的进料系统,如加氢处理、催化裂化、延 迟焦化装置的进料系统。 高温硫腐蚀是一种均匀腐蚀,通常在204℃(400℉)以上发生。根据加工原油性质不同,这种腐蚀有时与环烷酸腐蚀同时存在。而环烷酸腐蚀通常为局部腐蚀。 高温硫腐蚀机理 高温下,S、硫化物直接与金属材料表面的铁发生化学反应: H 2S+Fe→FeS+ H 2 ↑ S+Fe→FeS 硫在80℃时开始对钢材均匀腐蚀,腐蚀速率最高,400小时后速度明显减慢,这与生成F e S保护膜有关。从200℃开始硫腐蚀速率又增加,250℃加快,350-460℃达到最强烈程度,这是因为非活性硫化物受热分解出活性更强的活性硫。

海洋平台的腐蚀及防腐技术_胡津津

第23卷第6期2008年12月 中国海洋平台CHINA OFFSHORE PL A TFORM Vol.23No.6Dec.,2008 收稿日期:2008-08-26 作者简介:胡津津(19792)女,工程师,从事非金属材料研究。 文章编号:100124500(2008)0620039204海洋平台的腐蚀及防腐技术 胡津津, 石明伟 (上海船舶工艺研究所,上海200032) 摘 要:概括了海洋平台不同区域的腐蚀环境和腐蚀规律,对海洋平台重防腐涂料的选择要求及配套体 系进行简要叙述。针对海洋平台的长效防腐防护要求,介绍了几种具有长效的防腐材料和防腐技术特点,包括 海洋平台热喷涂长效防腐蚀技术、锌加保护技术、海洋平台桩腿防腐套包缚技术等,为我国对海洋平台长效防 腐防护技术的研究提供参考。 关键词:海洋平台;防腐;热喷涂;锌加技术;防腐套 中图分类号:T G 17 文献标识码:A CORROSION AN D ANTICORROSION TECHNOLOG Y IN OFFSH ORE PLATFORMS HU Jin 2jin , S H I Ming 2wei (Shanghai Ship building Technology Research Instit ute ,CSSC 200032,China ) Abstract :This paper summarizes t he corro sion environment and rules of t he different zones in off shore platforms ,also briefly int roduces t he requirement s and systems of t he an 2 ticorro sion coating.According to t he long 2term anticorro sion requirement s in off shore plat 2 forms ,t he paper int roduces several long 2term anticorro sion technology ,including t hermal spraying ,adding zinc protection and anticorrosion technology wit h platform legs wrapped etc , which will provide some references to t he research of t he long 2term anticorrosion technology in off shore platforms. K ey w ords :off shore platform ;anticorro sion ;t hermal spraying ;adding zinc technolo 2 gy ;anticorrosion wrap 海洋平台是一种海上大型工程结构物。其钢结构长期处于盐雾、潮气和海水等环境中,受到海水及海生物的侵蚀,而产生剧烈的电化学腐蚀。腐蚀严重影响海洋平台结构材料的力学性能,从而影响到海洋平台的使用安全[4]。而且由于海洋平台远离海岸,不能像船舶那样定期进坞维修保养,因此海洋平台的建造者及使用者都非常重视海洋平台的防腐问题。如何对海洋平台结构进行长效防腐,以及开发研究海洋平台结构长效防腐的新材料、新技术及新工艺都具有十分重要的意义。 1 海洋平台的腐蚀规律 1.1 海洋环境的腐蚀区域界定 海洋平台的使用环境极其恶劣,阳光暴晒、盐雾、波浪的冲击、复杂的海水体系、环境温度和湿度变化及海洋生物侵蚀等使得海洋平台腐蚀速率较快。海洋平台在不同的海洋环境下,腐蚀行为和腐蚀特点会有比

相关主题
文本预览
相关文档 最新文档