当前位置:文档之家› 碳纳米管_壳聚糖复合材料_吴子刚

碳纳米管_壳聚糖复合材料_吴子刚

碳纳米管_壳聚糖复合材料_吴子刚
碳纳米管_壳聚糖复合材料_吴子刚

材料科学前言

09753班学生材料科学前沿论文题目(每人一题,错一字扣一分) 1、宇航用耐高温材料研究的新进展 2、高温相变换热材料的研究进展和应用 3、相变材料的研究进展及其在建筑领域的应用综述 4、复合材料在航空航天中的应用 5、浅谈航空新材料与飞机、发动机的发展 6、复合材料研究新进展 7、贵金属复合材料的成就与展望-贵金属复合材料体系 8、高温低热导率隔热材料的研究现状及进展 9、高温气凝胶超级绝热材料的研究现状 10、低温储能材料的制备及其影响因素 11、低温聚合物基复合材料研究进展 12、碳纤维及其复合材料的发展与应用 13、碳纤维复合材料在高新技术领域中的应用 14、泡沫铝材的生产及工艺研究进展 15、碳纤维复合材料在航空和汽车领域中的应用 16、原位合成钛基复合材料的最新进展 17、SiC纤维增强钛基复合材料界面强度研究进展 18、原位自生非连续增强钛基复合材料的研究现状与展望 19、超声波电镀镍及镍基复合镀层的研究进展 20、金属基复合材料涂层摩擦学的研究进展 21、金属基纳米复合材料的研究进展 22、晶须增强铝、镁金属基复合材料的研究进展 23、超轻镁锂基合金及其复合材料研究进展 24、镁基复合材料制备技术、性能及应用发展概况 25、镁基储氢复合材料的研究进展 26、纳米复合镁基储氢材料的研究进展 27、金属基复合材料蠕变性能的研究现状和展望 28、碳纳米管增强金属基复合材料的研究现状及展望 29、定向金属氧化法制备Al/Al2O3陶瓷基复合材料研究现状 30、基于产品生命周期的绿色制造技术研究现状与展望 31、碳纤维铜基复合材料的最新研究进展和应用 32、点焊电极用铜基复合材料的研究现状

尼龙_碳纳米管复合材料研究进展

基金项目:河南省教育厅自然科学基金项目(200510459101); 作者简介:李中原(1971-),男,博士研究生; 3通讯联系人:E 2mail :zhucs @https://www.doczj.com/doc/778286644.html,. 尼龙Π碳纳米管复合材料研究进展 李中原,刘文涛,许书珍,何素芹3,朱诚身3 (郑州大学材料科学与工程学院 郑州 450052) 摘要:碳纳米管(C NTs )由于其独特的结构,较高的长径比,较大的比表面积,且具有超强的力学性能和良好 的导热性,已经证明是塑料的非常优异的导电填料,聚合物基碳纳米管复合材料可望应用于材料领域的多个方面,尤其在汽车、飞机及其它飞行器的制造等军事和商业应用上带来革命性的突破。本文介绍了碳纳米管的结构形态和碳纳米管的制备、纯化、修饰方法及聚合物基碳纳米管复合材料的制备、性能,并综述了近几年来尼龙Π碳纳米管复合材料的研究进展及应用前景。 关键词:碳纳米管;尼龙;复合材料 引言 聚酰胺具有优良的机械性能、耐磨性、耐酸碱性、自润滑性等优点,居于五大工程塑料之首,被广泛用作注射及挤出成型材料,主要用于在机械、仪器仪表、汽车、纺织等方面,并将在轴承、齿轮、风扇叶片、汽车部件、医疗器材、油管、油箱、电子电器制品的制造方面发挥重要作用,尤其是作为汽车零部件及电器元件。由于酰胺极性基团存在极易吸水、尺寸稳定性差等缺点,使其应用受到了很大限制[1]。纳米复合材料是近年来发展十分迅速的一种新兴复合材料,被认为是21世纪最有发展前途的材料,已成为材料学、物理学、化学、现代仪器学等多学科领域研究的热点。热塑性塑料基纳米复合材料是研究最早、最多、应用最广的材料,聚合物Π蒙脱土纳米复合材料目前有的已实现了产业化[2]。碳纳米管由于其独特的结构、 奇异的性能和潜在的应用价值,在理论上是复合材料理想的增强材料。近年来聚合物Π碳纳米管复合材料的研究已成为纳米科学研究中的一个新热点。碳纳米管的发现可以追溯到1985年C 60 [3]的发现,1991年日本学者Iijima [4]在对电弧放电后的石墨棒进行显微观察时发现阳极上形成了圆柱状沉积,沉积主要 由柱状排列的平行的中空管状物形成,管状物的直径一般在几个到几十个纳米之间,而管壁厚度仅为几个纳米,故称之为碳纳米管C NTs (carbon nanotubes ),并在自然杂志上发表。碳纳米管具有超级的力学性能[5],在碳纳米管中,碳原子之间存在着三种基本的原子力包括:强的δ键合,C C 键之间的π键合以及多壁碳纳米管层与层之间的相互作用力,它们对碳纳米管的力学性能有着重要的贡献,理论和实验结果显示碳纳米管具有相当高的弹性模量,可达1TPa ,强度是钢的10~100倍,多壁碳纳米管MWC NTs (multiwalled carbon nanotubes )的轴向杨氏模量实验值为200G ~4000G Pa ,轴向弯曲强度为14G Pa ,轴向压缩强度为100G Pa ,并且具有超高的韧性,理论最大延伸率可达20%,密度却只有钢的六分之一。它耐强酸、强碱、耐热冲击、有优异的热,电性能;高温强度高、有生物相容性和自润滑性。在真空中2800℃以下不氧化,在空气中700℃以下基本不氧化,热传导是金刚石的两倍,导电性和铜一样。本文将从碳纳米管的纯化与修饰,尼龙Π碳纳米管复合材料的制备方法及其性能特征三方面对尼龙Π碳纳米管复合材料的研究进展进行总结。

碳纳米管

碳纳米管简介 潘春旭 =================================== 武汉大学 物理科学与技术学院 地址:430072湖北省 武汉市 武昌区 珞珈山 电话:027-8768-2093(H);8721-4880(O) 传真:027-8765-4569 E-Mail: cxpan@https://www.doczj.com/doc/778286644.html,;cxpan@https://www.doczj.com/doc/778286644.html, 个人网页:https://www.doczj.com/doc/778286644.html,/cxpan =================================== 1. 什么是碳纳米管? 1991年日本NEC公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空的碳纤维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管”。理论分析和实验观察认为它是一种由六角网状的石墨烯片卷成的具有螺旋周期管状结构。正是由于饭岛的发现才真正引发了碳纳米管研究的热潮和近十年来碳纳米管科学和技术的飞速发展。 按照石墨烯片的层数,可分为: 1) 单壁碳纳米管(Single-walled nanotubes, SWNTs):由一层石墨烯片组成。单壁管典型的直 径和长度分别为0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。 2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。形状象个同轴电缆。 其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典 型直径和长度分别为2~30nm和0.1~50μm。 多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相 比,单壁管是由单层圆柱型石墨层构成, 其直径大小的分布范围小,缺陷少,具有 更高的均匀一致性。无论是多壁管还是单 壁管都具有很高的长径比,一般为100~ 1000,最高可达1000~10000,完全可以 认为是一维分子图1 碳纳米管原子排列结构示意图 2. 碳纳米管的独特性质 1) 力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级。它是最强的纤维,在强度与重量之比方面,这种纤维是最理想的。如果用碳纳米管做成绳索,是迄今唯一可从月球挂到地球表面而不会被自身重量拉折的绳索,如果用它做成地球——月球载人电梯,人们来往月球和地球献方便了。用这种轻而柔软、结实的材料做防弹背心那就更加理想了。 除此以外,它的高弹性和弯曲刚性估计可以由超过兆兆帕的杨氏模量的热振幅测量证实。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa;对于多层壁,理论计算太复杂,难于给出一确定的值。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。

镁合金的发展及应用

1 / 8 镁合金的发展及应用 摘要:综述镁合金的特点及其在交通、航空航天、兵器方面的应用情况,并结合兵器零件的使用特点和性能要求,分析了镁合金在兵器装备中的应用前景, 展望 关键词:镁合金,特点,发展,应用 1 引言 镁合金的密度很小,是钢的四分之一、铝的三分之二,但镁合金的比强度却大于钢和铝,是最轻的金属结构材料。因此,镁合金在电子产品、汽车、航空航天等需要高比强度金属材料的领域具备广阔的发展前景。但是镁合金的化学活性高,在有机酸、无机酸和含盐的溶液中均会被腐蚀,且腐蚀速率较高,使得镁合金的应用受到了很大的限制。 镁合金是重要的有色轻金属材料,具有比强度、比刚度高,减振性、电磁屏 蔽和抗辐射能力强,易切削加工,易回收等一系列优点,广泛应用于航空航天、 2 镁合金的特点 (1)重量轻:镁合金的比强度要高于铝合金和钢/铁、但略低于比强度最高的纤维增强塑料;其比刚度与铝合金和钢/铁相当,但却远远高于纤维增强塑料。比强度(强度/密度之比值)、比耐力(耐力/密度之比值)则比铝、铁都要高。在实用金属结构材料中其比重最小(密度为铝的2/3,钢的1/4)。这一特性对于现代社会的手提类产品减轻重量、车辆减少能耗以及兵器装备的轻量化具有非常重要的意义。 (2)高的阻尼和吸震、减震性能:镁合金具有极好的吸收能量的能力,可吸收震动和噪音,保证设备能安静工作。镁合金的阻尼性比铝合金大数十倍,减震效果很显著,采用镁合金取代铝合金制作计算机硬盘的底座,可以大幅度减轻重量(约降低70%),大大增加硬盘的稳定性,非常有利于计算机的硬盘向高速、大容量的方向发展。 (3)良好的抗冲击和抗压缩能力:其抗冲击能力是塑料的20倍;当镁合金

镁基储氢材料

镁系储氢合金综述 08材控薛凯琳 摘要:镁与镁基合金具有储氢量大,质量小,资源丰富,价格低廉等优点,受到人们的广泛关注。本文介绍了镁系储氢合金的工艺、性能、应用及发展。 关键词:储氢材料,镁基合金,储氢性能,材料复合,镁基化合物 前言氢能是最清洁且储量丰富的能源,储氢材料的发展及应用对环境保护和能源开发有着重要的意义。镁基储氢合金是最有潜力的金属氢化物储氢材料,近年来已引起世界各国的广泛关注。镁及其合金作为储氢材料,具有以下几个特点:(1)储氢容量很高,MgH2的含氢量达到7.6(wt)% ,而Mg2NiH4的含氢量也达到3.6(wt)%;(2)镁是地壳中含量为第六位的金属元素,价格低廉,资源丰富;(3)吸放氢平台好;(4)无污这些缺点严重阻碍了镁染。但镁及其合金作为储氢材料也存在三个缺点:(1)吸放氢速度较慢,反应动力学性能差;(2)氢化物较稳定,释氢需要较高的温度;(3)镁及其合金的表面容易形成一层致密的氧化膜。以上基储氢合金的实用化进程。近年来,镁基复合储氢材料的研究取得了明显突破,本文简要介绍镁基复合储氢材料吸放氢性能的改善。 1 镁基储氢材料体系 最早开始研究镁基储氢材料的是美国布鲁克-海文国家实验室, Reilly和Wiswall在1968年首先以镁和镍混合熔炼而成Mg2Ni合金。后来随着机械合金化制备方法的出现,揭开了大规模研究镁基储氢材料的序幕。据不完全统计,到目前为止人们研究了近1 000多种重要的镁基储氢材料,几乎包括了元素周期表中所有稳定金属元素和一些放射性元素与镁组成的储氢材料。通过研究,发现这些镁基储氢材料可以分为单质镁储氢材料、镁基储氢合金和镁基储氢复合材料三大类。 1.1 单质镁储氢材料 镁可直接与氢反应,在300~400℃和较高的氢压下,反应生成MgH2: Mg+H2=MgH2 , △H=-74.6 kJ/mol 。 MgH2理论氢含量可达7.6%,具有金红石结构,性能较稳定,在287℃时的分解压为101. 3 kPa。因为纯镁的吸放氢反应动力学性能差,吸放氢温度高,所以纯镁很少被用来储存氢气。随着材料合成手段的不断发展,特别是机械合金化制备工艺的日益成熟,研究人员对单质镁储氢材料进行了新的研究。 1.2 镁基储氢合金 到目前为止,人们已对300多种重要的镁基储氢合金材料进行了研究。其中最具有代表性的是Mg-Ni系储氢合金,许多研究者围绕这一系列合金开展了大量的研究工作。在制备方法上,主要研究了熔炼法、粉末烧结法、扩散法、机械合金化法和氢化燃烧合成法等,并且对镁基储氢合金采用表面处理和热处理来进一步提高其动力学性能和循环寿命。 1.2.1 Mg-Ni系储氢合金 在Mg与Ni形成的合金体系中存在2种金属间化合物Mg2Ni和MgNi2,其中MgNi2不与氢气发生反应。Mg2Ni在一定条件下(1.4MPa、约200℃)与氢反应生成Mg2NiH4,反应方程式如下: Mg2Ni+2H2=Mg2NiH4,△H=-64.5 kJ/mol 。 反应生成的氢化物中氢含量为3.6%,其离解压为0.1MPa、离解温度为253℃。Mg2Ni理论电化学容量为999 mA·h·g- 1,但其形成的氢化物在室温下较稳定而不易脱氢。且与强碱性电解液(6 mol·L-1的KOH)接触后,合金表面易形成Mg(OH)2,阻止了电解液与合金表面的氢交换、氢转移和氢向合金体内扩散,致使Mg2Ni的实际电化学容量、循环寿命差。 1.2.2 镁与其它元素组成的镁基储氢合金 除了Mg-Ni系储氢合金以外,研究者们研究得比较多的还有Mg-Al系以及Mg-La系储氢合

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

镁基复合材料的性能及应用

镁基复合材料的性能及应用 罗文昌2013121532 摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。本文将综述镁基复合材料的不同制备方法及其对复合材料组织、结构、性能的影响,并提出镁基复合材料的研究和发展方向。 关键词:镁基复合材料;基体镁合金;性能;应用;发展 1.引言 现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。复合材料是将两种或两种以上不同性能、不同形态的组分材料通过复合手段组合而成的一种多相材料。近年来,金属基复合材料在许多领域得到了应用。目前金属基复合材料的制备方法已有很多,并在铁基、镁基、铜基、铝基、钛基等金属基复合材料中取得了比较大的成功。镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。根据镁基复合材料的特点,结合原有的金属基复合材料的制备工艺,材料工作者尝试了多种新的适合制备镁基复合材料的方法与工艺,对研制、开发镁基复合材料起到了很好的促进作用。 2.镁基复合材料的组织与性能 相对于传统金属材料和铝基复合材料,有关镁基复合材料的组织与性能的研究目前虽然已经取得了一定的成果,但还不够全面深入,力学性能数据分散性也比较大,仍处于探索性研究阶段。材料工作者对镁基复合材料的耐磨性能和疲劳断裂机理进行了研究,并围绕镁基复合材料的力学性能及物理性能做了一些工作。力学性能主要集中于复合材料的拉伸与压缩性能,时效特性,以及低温与高温超塑性等方面;物理性能有阻尼性能和储氢性能等研究内容。储氢镁基复合材料一般采用球磨法制备。高能球磨后,颗粒活化,镁颗粒与增强相颗粒以及颗粒内部的大量相界、微观缺陷的存在是材料具有优异氢化性能的主要原因。通过机械合金化工艺可以制备出具有优良储氢性能的复合材料,典型体系:Mg—Mg2Ni,而且若在研磨过程中辅以某些有机添加剂对提高材料的储氢性能有很大帮助,但较高的脱氢温度以及相对较慢的吸放氢速度限制了镁基合金实际应用。另外非晶态镁基复合材料的优良性能更是引起了人们的普遍兴趣。在实际应用中,由于镁基复合材料过硬的性能,镁基复合材料在在各领域中被广泛应用。镁基复合材料组织特征为增强体分布在基体合金中,同时引入了大量的界面以及高密度位错缠结,其晶粒度较基体合金也小,无论是高密度位错引起的位错强化,还是细化晶粒的作用都将提高和改善复合材料的拉伸强度和刚度等力学性能。另外,挤压变形、固溶时效以及其它一些工艺的运用和调整都将有利于进一步提高镁基复合材料力学性能镁基复合材料具有良好的阻尼性能(减振性能)、电磁屏蔽性能和储氢特性,是良好的功能材料,还具备密度小、贮氢容量高、资源丰富等优点。镁基贮氢复合材料正被日益重视,主要制备方法有多元合金化、机械合金化、多元复合等。 3.镁基复合材料的应用 从近期发展看,镁基复合材料并没有大规模地应用于常规结构件中,但它们在航空航天和汽车电子工业中的众多构件方面有着广阔的应用前景。 美国TEXTRON、DOW 化学公司用SiC /Mg复合材料制造螺旋桨、导弹尾翼、内部加强的汽

镁基复合材料的制备

书山有路勤为径,学海无涯苦作舟 镁基复合材料的制备 镁及镁合金虽具有密度低、比强度大、比刚度高和抗冲击性强等诸多优点。但是也有一些固有缺点,如硬度、刚度、耐磨性、燃点较低、不是一种良好的结构材料,使其应用受到相当大的制约。若向镁基体中添加陶瓷颗粒或碳纤维制成复合材料,则可以在很大程度上改善镁的力学性能,提高耐热和抗蠕变性能,降低热膨胀系数等。可作为复合材料增强相的颗粒有:氧化物、碳化物、氮化物、陶瓷、石墨和碳纤维等。制备镁基复合材料的工艺主要是:铸造法、粉末冶金法、喷射沉积法。铸造法 铸造法是制备镁合金复合材料的基本工艺,可分为搅拌混合法、压力浸渗法、无压浸渗法和真空渗法等。 搅拌铸造法(Stiring Casting) 此法是利用高速旋转搅拌器浆叶搅动金属熔体,使其剧烈流动,形成以搅拌旋转轴为中心的漩涡,将增强颗粒加入漩涡中,依靠漩涡负压抽吸作用使颗粒进入熔体中,经过一段时间搅拌,颗粒便均匀分布于熔体内。此法简便,成本低,可以制备含有Sic、Al2O3、SiO2、云母或石墨等增强相的镁基复化材料。不过也有一些难以克服的缺点:在搅拌过程中会混入气体与夹杂物,增强相会偏析与固结,组织粗大,基体与增强相之间会发生有害的界面反应,增强相体积分数也受到一定限制,产品性能低,性价比无明显优势。用此法生产镁基复合材料时应采取严密的安全措施。 液态浸渗法(Liquid infiltration process) 用此法制备镁基复合材料时,须先将增强材料与黏接剂混合制成预制坯,用惰性气体或机械设备作用压力媒体将镁熔体压入预制件间隙中,凝固后即成为复合材料,按具体工艺不同又可分为压力浸渗法、无压、浸渗法和真空浸渗

颗粒增强镁基复合材料概述

颗粒增强镁基复合材料 颗粒增强金属基复合材料由于制备工艺简单、成本较低微观组织均匀、材料性能各向同性且可以采用传统的金属加工工艺进行二次加工等优点,已经成为金属基复合材料领域最重要的研究方向。颗粒增强金属基复合材料的主要基体有铝、镁钛、铜和铁等,其中铝基复合材料发展最快;而镁的密度更低,有更高的比强度、比刚度,而且具有良好的阻尼性能和电磁屏蔽等性能,镁基复合材料正成为继铝基之后的又一具有竞争力的轻金属基复合材料。镁基复合材料因其密度小,且比镁合金具有更高的比强度、比刚度、耐磨性和耐高温性能,受到航空航天、汽车、机械及电子等高技术领域的重视。颗粒增强镁基复合材料与连续纤维增强、非连续(短纤维、晶须等)纤维增强镁基复合材料相比,具有力学性能呈各向同性、制备工艺简单、增强体价格低廉、易成型、易机械加工等特点,是目前最有可能实现低成本、规模化商业生产的镁基复合材料。 一、制备方法 1、粉末冶金法 粉末冶金法是把微细纯净的镁合金粉末和增颗粒均匀混合后在模具中冷压,然后在真空中将合体加热至合金两相区进行热压,最后加工成型得复合材料的方法。 粉末冶金的特点:可控制增颗粒的体积分数,增强体在基体中分布均匀;制备温度较低,一般不会发生过量的界面反应。该法工艺设备较复杂,成本较高,不易制备形状复杂的零件。 2、熔体浸渗法 熔体浸渗法包括压力浸渗、无压浸渗和负压浸渗。 压力浸渗是先将增强颗粒做成预制件,加入液态镁合金后加压使熔融的镁合金浸渗到预制件中,制成复合材料采用高压浸渗,可克服增强颗粒与基体的不润湿情况,气孔、疏松等铸造缺陷也可以得到很好的弥补。 无压浸渗是指熔的镁合金在惰性气体的保护下,不施加任何压力对增强颗粒预制件进行浸渗。该工艺设备简单、成本低,但预制件的制备费用较高,因此不利于大规模生产。增强颗粒与基体的润湿性是无压浸渗技术的关键。 负压浸渗是通过预制件造成真空的负压环境使熔融的镁合金渗入到预制件

镁合金压铸技术的几个主要问题

镁合金压铸技术的几个主要问题及其使用前景 1前言 镁合金材料1808年面世, 1886年始用于工业生产。镁合金压铸技术从1916年成功地将镁合金用于压铸件算起,至今也经历了八十余年的发展。人类在认识和驾驭镁合金及其制品的生产技术方面,经历了漫长的探索历程。从1927年推出高强度MgAl9Zn1开始,镁合金的工业使用获得了实质性的进展。1936年德国大众汽车公司开始用压铸镁合金生产“甲壳虫”汽车的发动机传动系统零件,1946年单车使用镁合金量达18kg左右。美国在1948~1962年间用热室压铸机生产的汽车用镁合金压铸件达数百万件。尽管如此,过去镁合金作为结构材料主要用于航空领域,在其它领域,世界上镁的主要用途是生产铝合金,其次用于钢的脱硫和球墨铸铁生产。 近年来, 由于人们对产品轻量化的要求日益迫切,镁合金性能的不断改善及压铸技术的显著进步,压铸镁合金的用量显著增长。特别是人类对汽车提出了进一步减轻重量、降低燃耗和排放、提高驾驶安全性和舒适性的要求, 镁合金压铸技术正飞速发展。此外,镁合金压铸件已逐步扩大到其他领域,如手提电脑外壳,手提电锯机壳,鱼钩自动收线匣,录像机壳,移动电话机壳,航空器上的通信设备和雷达机壳,以及一些家用电器具等。 镁主要由含镁矿石提炼。我国辽宁省大石桥市一带的菱镁矿储量占世界储量的60%以上,矿石品位高达40%以上。我国生产的镁砂和镁砂制品大量用于出口。充分利用我国丰富的镁砂资源进行深度开发,结合我国汽车、计算机、通讯、航天、电子等新兴产业的发展,促进镁合金压铸件的生产和使用,是摆在我国铸造工作者面前的一项任务。 2、压铸镁合金的研究 镁合金的密度小于2g/cm3,是目前最轻的金属结构材料,其比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;其比刚度和铝合金和钢相当,远高于纤维增强塑料;其耐腐蚀性比低碳钢好得多,已超过压铸铝合金A380;其减振性、磁屏蔽性远优于铝合金[1];鉴于镁合金的动力学粘度低,相同流体状态(雷诺指数相等)下的充型速度远大于铝合金,加之镁合金熔点、比热容和相变潜热均比铝合金低,故其熔化耗能少,凝固速度快,镁合

镁基储氢材料

镁系储氢合金综述 摘要:镁与镁基合金具有储氢量大,质量小,资源丰富,价格低廉等优点,受到人们的广泛关注。本文介绍了镁系储氢合金的工艺、性能、应用及发展。 关键词:储氢材料,镁基合金,储氢性能,材料复合,镁基化合物 前言氢能是最清洁且储量丰富的能源,储氢材料的发展及应用对环境保护和能源开发有着重要的意义。镁基储氢合金是最有潜力的金属氢化物储氢材料,近年来已引起世界各国的广泛关注。镁及其合金作为储氢材料,具有以下几个特点:(1)储氢容量很高,MgH2的含氢量达到7.6(wt)% ,而Mg2NiH4的含氢量也达到3.6(wt)%;(2)镁是地壳中含量为第六位的金属元素,价格低廉,资源丰富;(3)吸放氢平台好;(4)无污这些缺点严重阻碍了镁染。但镁及其合金作为储氢材料也存在三个缺点:(1)吸放氢速度较慢,反应动力学性能差;(2)氢化物较稳定,释氢需要较高的温度;(3)镁及其合金的表面容易形成一层致密的氧化膜。以上基储氢合金的实用化进程。近年来,镁基复合储氢材料的研究取得了明显突破,本文简要介绍镁基复合储氢材料吸放氢性能的改善。 1 镁基储氢材料体系 最早开始研究镁基储氢材料的是美国布鲁克-海文国家实验室, Reilly和Wiswall在1968年首先以镁和镍混合熔炼而成Mg2Ni合金。后来随着机械合金化制备方法的出现,揭开了大规模研究镁基储氢材料的序幕。据不完全统计,到目前为止人们研究了近1 000多种重要的镁基储氢材料,几乎包括了元素周期表中所有稳定金属元素和一些放射性元素与镁组成的储氢材料。通过研究,发现这些镁基储氢材料可以分为单质镁储氢材料、镁基储氢合金和镁基储氢复合材料三大类。 1.1 单质镁储氢材料 镁可直接与氢反应,在300~400℃和较高的氢压下,反应生成MgH2: Mg+H2=MgH2 , △H=-74.6 kJ/mol 。 MgH2理论氢含量可达7.6%,具有金红石结构,性能较稳定,在287℃时的分解压为101. 3 kPa。因为纯镁的吸放氢反应动力学性能差,吸放氢温度高,所以纯镁很少被用来储存氢气。随着材料合成手段的不断发展,特别是机械合金化制备工艺的日益成熟,研究人员对单质镁储氢材料进行了新的研究。 1.2 镁基储氢合金 到目前为止,人们已对300多种重要的镁基储氢合金材料进行了研究。其中最具有代表性的是Mg-Ni系储氢合金,许多研究者围绕这一系列合金开展了大量的研究工作。在制备方法上,主要研究了熔炼法、粉末烧结法、扩散法、机械合金化法和氢化燃烧合成法等,并且对镁基储氢合金采用表面处理和热处理来进一步提高其动力学性能和循环寿命。 1.2.1 Mg-Ni系储氢合金 在Mg与Ni形成的合金体系中存在2种金属间化合物Mg2Ni和MgNi2,其中MgNi2不与氢气发生反应。Mg2Ni在一定条件下(1.4MPa、约200℃)与氢反应生成Mg2NiH4,反应方程式如下: Mg2Ni+2H2=Mg2NiH4,△H=-64.5 kJ/mol 。 反应生成的氢化物中氢含量为3.6%,其离解压为0.1MPa、离解温度为253℃。Mg2Ni理论电化学容量为999 mA·h·g- 1,但其形成的氢化物在室温下较稳定而不易脱氢。且与强碱性电解液(6 mol·L-1的KOH)接触后,合金表面易形成Mg(OH)2,阻止了电解液与合金表面的氢交换、氢转移和氢向合金体内扩散,致使Mg2Ni的实际电化学容量、循环寿命差。 1.2.2 镁与其它元素组成的镁基储氢合金 除了Mg-Ni系储氢合金以外,研究者们研究得比较多的还有Mg-Al系以及Mg-La系储氢合

石墨烯增强镁基复合材料复合材料论文

摘要 碳纳米管、石墨烯具有优异的力学性能(高强度和高模量),是镁基复合材料理想的增强体。如何改善碳纳米管、石墨烯在镁基体中的分散性和提高界面结合强度,是制备高性能纳米碳/镁基复合材料的关键。采用粉末冶金和热挤压工艺制备了石墨烯(GNS)增强的AZ91镁基复合材料,测试了复合材料的力学性能,并用扫描电镜和能谱仪对复合材料断口形貌进行了观察和分析。采用粉末冶金+热挤压工艺+T4固溶处理分别制备了CNTs,MgO@CNTs(包覆MgO碳纳米管)、GNPs (石墨烯纳米片)和RGO(还原石墨烯)增强的AZ91镁基复合材料,研究了碳纳米管表面包覆MGO工艺,纳米碳材料(CNTs,Mg O@CNTs,GNPs和GO)含量对AZ91合金的组织和力学性能的影响。结果表明氧化石墨烯增强AZ91镁基复合材料的屈服强度、伸长率和显微硬度分别为225MPa,8%和70HV,比AZ91镁合金基体的分别提高了39.7%,35.4%和31.8%;而以石墨烯纳米片为增强相时复合材料的屈服强度、伸长率和显微硬度分别为192MPa,7%和60HV,比基体的仅提高了18.7%,9.9%和13.5%;通过以上两组实验对比,氧化石墨烯增强镁基复合材料无论在屈服强度抗拉强度,伸长率以及硬度上都是最好的。 关键词:碳纳米管、石墨烯纳米片、氧化石墨烯、AZ91镁合金

绪论 石墨烯(Graphene)是一种由碳原子以 sp2杂化方式形成的蜂窝状平面薄膜,是一种 只有一个原子层厚度的准二维材料,所以又 叫做单原子层石墨。因为具有十分良好的强 度、柔韧、导电、导热、光学特性,在物理 学、材料学、电子信息、计算机、航空航天 等领域都得到了长足的发展,作为目前发现 的最薄、强度最大、导电导热性能最强的一 种新型纳米材料,石墨烯被称为“黑金”, 是“新材料之王”,科学家甚至预言石墨烯 将“彻底改变21世纪”。 镁呈银白色,熔点649℃,质轻,密度为 1.74g/cm3,约为铜的1/4、铝的2/3;其化 学活性强,与氧的亲合力大,常用做还原剂。 粉状或细条状的镁,在空气中很易燃烧,燃烧 时发出眩目的白光。但极易溶解于有机和无机 酸中。镁能直接与氮、硫和卤素等化合。金属 镁无磁性,且有良好的热消散性。质软,熔点 较低。镁应用相当广泛,比如镁是燃烧弹和 照明弹不能缺少的组成物;镁粉是节日烟花必 需的原料。 目前,镁基复合材料大都主要是以镁化合物、铸镁或者镁合金为基体,以SiC颗粒或晶须、Al2O3颗粒或纤维、碳(石墨)纤维、镁合金、Al18B4O33颗粒或晶须、镁化合物等为增强相。 石墨烯(Graphene,GN),作为纳米碳材料的“明星”成员,它们具有极高的强度和韧性,其抗拉强度都可达到钢的100倍以上(大于50GPa),弹性模量可达到1TPa以上,远远超过纳米Si C的强度和弹性模量(420-450GPa),是迄今为止,强度和模量最高的材料之一,它们超强的力学性能可以极大地改善复合材料强度和韧性。此外,碳纳米管和石墨烯还具有超强的高温稳定性(在无氧3000℃条件下可保持很好的结构稳定性)和优异的导电和导热性能,超强的高温稳定性使它们非常有利于作为金属基复合材料的增强体。镁合金具有热稳定性高、导热性好、电磁屏蔽能力强和阻尼性能好等优点,已被广泛应用于移动电话、电脑、摄像机等电子产品中。在航空、航天方面,镁合金因密度小,比强度高可有效地减轻航

聚合物碳纳米管复合材料研究综述

聚合物/碳纳米管复合材料研究综述 摘要 综述了目前碳纳米管在填充聚合物来制备介电、导电、吸波、导热等复合材料方面的应用。对常见的几种聚合物/碳纳米管复合材料的制备工艺以及碳纳米管在聚合物中的分散方法进行了详细地阐述。最后对聚合物/碳纳米管在研究过程中存在的问题和未来的研究方向进行了相应地分析和展望。 关键词:碳纳米管; 逾渗理论; 复合材料; 制备工艺; 分散 Review of Research on Polymer /Carbon Nanotube Composite Abstract The current carbon nanotube-filled polymer compound to prepare the electricity,conductive,absorbing,thermal conductivity,and other aspects of application of composite materials are reviewed.Several common polymer / carbon nanotube composite preparation process as well as the dispersion of carbon nanotubes in polymer are elaborated.Finally,the polymer /carbon nanotube in the study process and future research is analyzed and prospected. Key words: carbon nanotubes; percolation theory; composite; preparation; dispersion

钛颗粒增强镁基复合材料的力学性能

钛颗粒增强镁基复合材料的力学性能1 丁浩,师春生,赵乃勤 天津大学材料科学与工程学院,天津(300072) E-mail:wadxr@https://www.doczj.com/doc/778286644.html, 摘要:本文采用粉末冶金方法制备了钛颗粒增强镁基复合材料,并对得到的复合材料的孔隙和硬度、拉伸强度、弹性模量、压缩强度等进行了分析、比较。得出了初压压力、质量分数、复压、合金化等对复合材料力学性能影响的规律。实验表明,用等静压方法压制的复合材料布氏硬度可达265HB,模压法制备的复合材料的抗拉强度可达到112MPa,优于基体的硬度和拉伸性能。此外,钛颗粒加入及粉末冶金的方法使复合材料的塑性降低,通过实验得到了复合材料的抗压强度40MPa。 关键词:粉末冶金,复合材料,镁,钛颗粒,力学性能 中图分类号:TG1 1.引言 镁是近来金属研究的热点之一。镁的储量丰富,密度小,比强度、比刚度、比模量都优于钢铁、铝、铜等金属材料,甚至超过很多聚合物材料[1]。但是镁的耐蚀性能和抗氧化性能很差,电极电位低,绝对强度、刚度、硬度及耐磨性都很低。所以,工程上常用Al、Zn等金属与其构成合金,或与增强相复合形成复合材料,达到改善镁的性能的目的。近年来,纯镁除了小部分用于化学功能外,大部分镁以镁合金或复合材料的形式应用于门窗、轮彀、自行车构件、汽车配件、仪表等。此外,镁合金作为生物材料已经成功地应用于人造骨骼、人造器官等人体植入材料,性能已基本符合人体需求[2,3]。在未来的生物材料领域,镁合金或复合材料将以其优异的性能发挥更多的功能[4]。 当前,常用于增强镁合金基体的增强相从形态上可分为颗粒(如:SiC颗粒、TiC颗粒)、晶须(如Al2O3晶须,Mg2B2O5晶须)以及纤维(如碳纤维、NiTi纤维)等。按照加入相的尺寸,可以分为纳米相(如纳米碳管)、微米相等[1]。常用的增强相为陶瓷相,陶瓷相一方面会增镁基复合材料近来受到了人们的关注。 P Perez和G Garces a使用粉末冶金的方法探索了金属Ti与金属Mg的复合材料[6,7]。Lu和Froyen等制备、研究了Ti增强镁铝合金的复合材料的显微组织和力学性能[8]。郗雨林等用钛合金增强MB15镁铝合金取得了很好的效果[9]。这些研究表明镁与钛的相容性很好。加之钛的诸多优点,如强度、硬度高,抗腐蚀性能极好,与镁不互溶,故能形成复合材料(镁钛二元相图见图1)等,选择钛增强镁及镁合金容易达到预定的效果。本文主要采用粉末冶金法制备金属Ti颗粒增强镁及镁合金基复合材料研究复合材料的组织结构对其力学性能的影响。 1本课题得到天津市科技发展基金(043186211)的资助。

碳纳米管纳米复合材料的研究现状及问题(一)

碳纳米管纳米复合材料的研究现状及问题(一) 文章介绍了碳纳米管的结构和性能,综述了碳纳米管/聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材料的发展趋势。 。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。 根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。 1聚合物/碳纳米管复合材料的制备 聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。 1.1溶液共混复合法 溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。Xuetal8]和Lauetal.9]采用这种方法制备了CNT/环氧树脂复合材料,并报道了复合材料的性能。除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。 1.2熔融共混复合法 熔融共混法是通过转子施加的剪切力将碳纳米管分散在聚合物熔体中。这种方法尤其适用于制备热塑性聚合物/碳纳米管复合材料。该方法的优点主要是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中。Jinetal.10]采用这种方法制备了PMMA/MWNT复合材料,并研究其性能。结果表明碳纳米管均匀分散在聚合物基体中,没有明显的损坏。复合材料的储能模量显著提高。 1.3原位复合法 将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。Jiaetal.11]采用原位聚合法制备了PMMA/SWNT复合材料。结果表明碳纳米管与聚合物基体间存在强烈代写论文的黏结作用。这主要是因为AIBN在引发过程中打开碳纳米管的π键使之参与到PMMA的聚合反应中。采用经表面修饰的碳纳米管制备PMMA/碳纳米管复合材料,不但可以提高碳纳米管在聚合物基体中的分散比例,复合材料的机械力学性能也可得到巨大的提高。 2聚合物/碳纳米管复合材料的研究现状 2.1聚合物/碳纳米管结构复合材料 碳纳米管因其超乎寻常的强度和刚度而被认为是制备新一代高性能结构复合材料的理想填料。近几年,科研人员针对聚合物/碳纳米管复合材料的机械力学性能展开了多方面的研究,其中,最令人印象深刻的是随着碳纳米管的加入,复合材料的弹性模量、抗张强度及断裂韧性的提高。

化工前沿讲座论文

关于氢化铝钠和纳米复合镁基储氢材料的研究氢化铝钠是最有研究应用前景的络合金属氢化物,从二十世纪五十年起被合成出作为一般还原剂。尤其是近来其储氧性能被发现。更是成为各国众多学者研究的热点。镁基储氢材料是很有发展潜力的一种。因为金属Mg 储氢量大(MgH 2 的含氢量( 重量, 以下同) 达到7. 6 %) 、重量轻( 密度仅为1. 7 g/ cm3) 资源丰富、价格便宜。 镁基储氢材料也是储氢材料中研究最早的, Reilly 和Wiseall 在1967 年 和1968 年相继发现, Mg 2Cu 和Mg 2 Ni 具有比纯镁好得多的吸放氢动力学性能。但 镁基材料存在的缺陷是其吸放氢动力学性能差, 需在300 ℃高温下方能有效吸 放氢。存在这些问题的原因主要是多数储氢合金的表面存在有金属氧化物、氢氧化物,阻碍了氢气在材料表面的分解和氢气向体相的扩散。因此, 科学工作者在积极地探求改善镁基材料储氢性质的方法。近年来采用合金元素或多元合金与镁或氢化镁进行复合, 使镁基材料的吸放氢动力学性能有了很大的改进。 一、NaAlH 4 简介 1.1络合金属氢化物 在一些离子型氢化物中,例如LiH等,由于H+的电荷少而半径大,离子型 氧化物故能在非极性溶剂中同B3+,Al3+,Ga3+,形成络合金属氢化物,例如NaBH 4 , LiAlH 4 。络合金属氢化物都是极强的还原剂,在干燥宅气中较稳定,遇质子溶剂 则发生猛烈的反应。常见的络合金属氢化物还有氢化铝钠(NaAlH 4 )、氢化铝钾 (KAlH 4 )等。对这些络合氢化物的研究现在主要集中在储氢性能上。 1.2氢化铝钠的基本性质 氢化铝钠(NaAlH 4)属于络合金属氢化物,NaAlH 4 是正四面体的空间结构,其 中Na+为平衡阳离子,AlH 4 -为络合离子体,Al位于络合离子体正四面体的中心, 而4个H原子则位于正四面体的间隔顶点上。NaAIH 4 是一种白色晶状固体,其熔点为185℃,不溶于乙醚,但易溶于四氢呋喃(THF)和乙二醇二甲醚等醚类溶剂。在常温下、干燥空气中可以稳定存在,遇水与潮气后会发生剧烈的反应,应密封保存或在惰性氛围下保存。 2、氢化铝钠的合成方法 2.1氢化铝锂的合成方法

相关主题
文本预览
相关文档 最新文档