当前位置:文档之家› 建筑门窗的抗风压计算书

建筑门窗的抗风压计算书

建筑门窗的抗风压计算书
建筑门窗的抗风压计算书

一、计算依据

二、风荷载计算

1、基本情况:门窗计算风荷最大标高取70米;根据工程所处的地理位置,其风压高度变化系数按C类算。平开窗的受力杆件MQ25-24a最大计算长度为2400mm,杆件两边的最大受力宽度为:1375mm,;推拉窗的受力杆件QLC30-25最大计算长度为:1960mm,杆件两边的最大受力宽度为1480mm。

2、风荷载标准值的计算

风荷载标准值ωk=βzμSμZωO (资料③P24式

ωk―风荷载设计标准值

βZ―高度Z处的阵风系数,(资料③P44表

μS―风荷载体型系数,取μS = (资料③P27表

ωO―基本风压,取ωO = (资料③全国基本风压分布图)

μz―风压高度变化系数, (资料③P25表)

风荷载标准值计算:

ωk=βzμSμZωO =×××=

三、主要受力构件的设计及校核

1、受力构件的截面参数

根据(BH^3-bh^3 )/12 Ix=(D4

3

建筑门窗的抗风压计算

一、概况

计算依据

风荷载标准按GB50009-2001《建筑结构荷载》的规定计算

任何材料制作的门窗玻璃按JGJ113-2003《建筑玻璃应用》的规定计算

玻璃幕墙按JGJ102-2003《玻璃幕墙工程技术规范》的规定计算

建筑外窗抗风强度计算方法

说明

门窗幕墙不是承重结构,是围护结构,应采用围栏结构的计算公式。

什么是围护结构呢?指建筑物及房间的围档物,包括墙壁、挡板等,按是否与室内外空气分割而言,包括内外围护结构,有透明与不透明之分。

中第条也是强制性条文。

“对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构具体规定。”

提出了几个问题:一、高层建筑,二、高耸结构,三、比较敏感的其他结构,四、有关的规范。如何理解和应用的问题。

高层建筑:定义、基准,可从下列资料中找到。

JGJ37-87 《民用建筑设计通则》

GB50096-99 《住宅设计规范》

GB50045-95 《高层民用建筑设计防火规范》

GBJ 16-87 《建筑设计防火规范》

JGJ 3-2002 《高层建筑混凝土结构技术》

有一句基本雷同的说法:在通则与防火等规范中指出为:

居住建筑大于10层(约30M)

公用建筑大于24M

在JGJ3中定义为:10层及10层以上或房屋高度大于28M的建筑物。

高耸结构

在GBJ135-90中规定,如电视塔、发射塔、微波塔、拉绳桅杆、石油化工塔、大气污染检测塔、烟囱、排气塔、碾井架等。

有的塔有可能使用门窗、幕墙,例如上海、北京等地电视塔等。

有关结构设计规范

JGJ113-2003中第条规定,计算的风荷载标准值小于时,应按采用,高层建筑风荷载标准值宜按计算值加大10%采用。

换句话讲,也就是玻璃承载能力要降低10%。风荷载标准值起点为;但比门窗产品抗风压检测标准GB7106-2002规定为要低,建议按门窗产品检测标准为准,较为妥善。

JGJ102-2003中第条规定,当计算结果小于也按取值计算。

二、风荷载计算标准值

风荷载标准值

垂直于建筑物表面上的风荷载标准值,应按下述公式式计算:

当计算围护结构时

WK=βgZ*μs*μz* W0

式中:WK为风荷载标准值;

μz为风压高度变化系数;

μs为风荷载体型系数;

βgZ为高度Z处的阵风系数;

W0为建筑物当地的基本风压。

风压高度变化系数μz(摘自GB 50009-2001 建筑结构荷载规范第条)

风压随高度的不同而变化,其变化规律与地面粗糙程度有关,对于平坦或稍有起伏的地形,风压高度变化系数应按地面粗糙度类别按下表确定。

离地面或海平面高度Z(米) 地面粗糙度类别

A B C D

5

10

15

20

30

40

50

60

70

80

90

100

150

地面粗糙度可分为A、B、C、D四类

A类:近海海面,海岛,海岸,湖岸及沙漠地区;

B类:田野,乡村,从林,丘陵以及房屋比较稀疏的乡镇及大城市郊区;

C类:有密集建筑群的城市市区;

D类:有密集建筑群且房屋较高的城市中心区。

将A、B、C、D四类数据化:

即当拟建房2km为半径的迎风半径影响范围内的房屋高度和密集度区分。取该地区主导风和最大风向为准。

以建筑物平均高度?来划分地面粗糙度。

当?≥18M为D类;

9M

?<9M为B类;

风荷载体型系数μs(摘自GB 50009-2001 建筑结构荷载规范)

外表面

正压区:按表采用,可风洞试验结果,也可按表条取,最不利表面+-=+

负压区:按条规定

对墙面,取-;

对墙角边,取-;

对屋面局部部位(周边和屋面坡度>10°的屋脊部位),取-;

对檐口、雨棚、遮阳板等突出构件,取-;

注:屋面、墙角边的划分:作用宽度,作用高度,起点应大于。

内表面

对封闭式建筑物,按外表面风压的正负情况取-或。

阵风系数βgZ(摘自GB 50009-2001 建筑结构荷载规范第条)

离地面高度(米) 地面粗糙度类别

A B C D

5

10

15

20

30

40

50

60

70

80

90

100

150

基本风压W0(摘自GB 50009-2001 建筑结构荷载规范附表D4)

围护结构按50年选取,专业规范另有规定的除外,例JGJ113-2003要加大10%等。全国主要城市的50年一遇风压(kN/m2)

城市名称风压值城市名称风压值城市名称风压值

建筑门窗的抗风压计算

一、计算依据 二、风荷载计算 1、基本情况:门窗计算风荷最大标高取70米;根据工程所处的地理位置,其风压高度变化系数按C类算。平开窗的受力杆件MQ25-24a最大计算长度为2400mm,杆件两边的最大受力宽度为:1375mm,;推拉窗的受力杆件QLC30-25最大计算长度为:1960mm,杆件两边的最大受力宽度为1480mm。 2、风荷载标准值的计算 风荷载标准值ωk=βzμSμZωO (资料③P24式7.1.1-1) ωk―风荷载设计标准值 βZ―高度Z处的阵风系数,(资料③P44表7.5.1) μS―风荷载体型系数,取μS =0.8 (资料③P27表7.3.1) ωO―基本风压,取ωO =0.7KPa (资料③全国基本风压分布图) μz―风压高度变化系数, (资料③P25表7.2.1) 风荷载标准值计算: ωk=βzμSμZωO =1.66×0.8×1.45×0.7=1.35KPa 三、主要受力构件的设计及校核 1、受力构件的截面参数 根据(BH^3-bh^3 )/12 Ix=0.0491(D4 点评(0)举报 sun.jack 发表于2005-8-31 | 只看该作者 楼 3 建筑门窗的抗风压计算 一、概况 1.1计算依据 风荷载标准按GB50009-2001《建筑结构荷载规范》的规定计算 任何材料制作的门窗玻璃按JGJ113-2003《建筑玻璃应用技术规范》的规定计算 玻璃幕墙按JGJ102-2003《玻璃幕墙工程技术规范》的规定计算 建筑外窗抗风强度计算方法 1.2说明 1.2.1门窗幕墙不是承重结构,是围护结构,应采用围栏结构的计算公式。 什么是围护结构呢?指建筑物及房间的围档物,包括墙壁、挡板等,按是否与室内外空气分割而言,包括内外围护结构,有透明与不透明之分。 1.2.2GB50009中第7.1.2条也是强制性条文。 “对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构设计规范具体规定。”提出了几个问题:一、高层建筑,二、高耸结构,三、比较敏感的其他结构,四、有关的结构设计规范。如何理解和应用的问题。 高层建筑:定义、基准,可从下列资料中找到。

浅基础地基承载力验算部分计算题

一、计算题 图示浅埋基础的底面尺寸为6.5m×7m,作用在基础上的荷载如图中所示(其中竖向力 ]=240kPa[。试检算地为主要荷载,水平力为附加荷载)。持力层为砂粘土,其容许承载力基承载力、偏心距、倾覆稳定性是否满足要求。 K≥1.5(提示:要求倾覆安全系数)0 [本题15分] 参考答案: 解: )(1

代入后,解得: ,满足要求 ),2满足要求( ), 满足要求(3 3kN,对应的偏心距e=0.3m×10。持力层的=5.0二、图示浅埋基础,已知主要荷载的合力为N容许承载力为420kPa,现已确定其中一边的长度为4.0m (1)试计算为满足承载力的要求,另一边所需的最小尺寸。 (2)确定相应的基底最大、最小压应力。 [本题12分] 参考答案: 解:由题,应有 )2(N=6×1m×3m,已知作用在基础上的主要荷载为:竖向力图示浅埋基础的底面尺寸为6三、32M。试计算:kNm。此外,持力层的容许承载力0kN,弯矩×=1.510 1)基底最大及最小压应力各为多少?能否满足承载力要求?( e的要求?(2)其偏心距是否满足ρ≤N不变,在保持基底不与土层脱离的前提下,基础可承受的最大弯矩是多少?此时3)若(基底的最大及最小压应力各为多少?

[本题12分] 参考答案: )解:(1 )(2 )3( ba,四周襟边尺寸相同,埋=某旱地桥墩的矩形基础,基底平面尺寸为7.4m=7.5m,四、hN=6105kN2m=,在主力加附加力的组合下,简化到基底中心,竖向荷载置深度,水平荷载HM=3770.67kN.m。试根据图示荷载及地质资料进行下列项目的检算:,弯矩=273.9kN(1)检算持力层及下卧层的承载力; (2)检算基础本身强度; )检算基底偏心距,基础滑动和倾覆稳定性。3 (.

某工程脚手架计算书设计方案(DOC6页)

脚手架计算书 、计算依据 ()《建筑施工扣件式钢管脚手架安全技术规范》() ()《建筑结构荷载规范》() ()海湾浪琴工程设计图纸及地质资料等 、脚手架的计算参数 搭设高度米(取最大高度,排),步距米,立杆纵距米,立杆横距米,连墙件为步跨设置,脚手板为毛竹片,按同时铺设排计算,同时作业层数。 脚手架材质选用φ×钢管,截面面积,截面模量×,回转半径,抗压、抗弯强度设计值,基本风压值ω,计算时忽略雪荷载等。 、荷载标准值 (1)结构自重标准值:(双排脚手架) (2)竹脚手片自重标准值:(可按实际取值) (3)施工均布活荷载: (4)风荷载标准值:ωμ·μ·ω 式中μ——风压高度变化系数,查《建筑结构荷载规范》 并用插入法得米为 μ——脚手架风荷载体型系数,全封闭式为 ω——基本风压值,为 则ω×××

、纵向水平杆、横向水平杆计算 (1) 横向水平杆计算 脚手架搭设剖面图如下: 按简支梁计算,计算简图如下: 每纵距脚手片自重×××× 每纵距施工荷载×× ×× 07.03 1.135775.0332=?=?b k G l N · 605.03 1.1395.433=?=?b Qk l N · ×× · 3.18310 08.510931.036 =??==W M σ< 横向水平杆抗弯强度满足要求。 mm a l EI M b 8.4)91100411003(1019.121006.22410931.0)43(242 245622=?-??????=-=υ

[] <[] 横向水平杆挠度满足要求。 (2) 纵向水平杆计算 按三跨连续梁计算,简图如下: 脚手片自重均布荷载×× 施工均布荷载×× ×××× · ×××× · ×× · 2.751008.510382.036 =??==W M σ< 抗弯强度满足要求。 mm EI ql a 3.21019.121006.2100150069.1677.0100677.0454 4 =??????==υ [] ≤[] 挠度满足要求。 (3) 横向水平杆与立杆连接的扣件抗滑承载力验算 横向水平杆传给立杆的竖向作用力:

建筑门窗抗风压性能计算书

建筑门窗抗风压性能计算书 I、计算依据: 《建筑玻璃应用技术规程》 JGJ 113-2009 《钢结构设计规范》 GB 50017-2003 《建筑外窗抗风压性能分级表》 GB/T 7106-2008 《建筑结构荷载规范》 GB 50009-2001 2006版 《未增塑聚氯乙烯(PVC-U)塑料门》 JG/T 180-2005 《未增塑聚氯乙烯(PVC-U)塑料窗》 JG/T 140-2005 《铝合金门窗》 GB/T 8478-2008 《建筑门窗术语 GB/T5823-2008》 《建筑门窗洞口尺寸系列 GB/T5824-2008》 《建筑外门窗保温性能分级及检测方法 GB/T8484-2008》 《建筑外门窗空气声隔声性能分级及检测方法 GB/T8485-2008》 《铝合金建筑型材第一部分:基材 GB5237.1-2008》 《铝合金建筑型材第二部分:阳极氧化型材 GB5237.2-2008》 《铝合金建筑型材第三部分:电泳涂漆型材 GB5237.3-2008》 《铝合金建筑型材第四部分:粉末喷涂型材 GB5237.4-2008》 《铝合金建筑型材第五部分:氟碳漆喷涂型材 GB5237.5-2008》 《铝合金建筑型材第六部分:隔热型材 GB5237.6-2008》 II、详细计算 一、风荷载计算 1)工程所在省市:河南 2)工程所在城市:新乡市 3)门窗安装最大高度z:20 米 4)门窗系列:永壮铝材-50外平开平开窗 5)门窗尺寸: 门窗宽度W=700 mm 门窗高度H=1400 mm 6)门窗样式图: 1 风荷载标准值计算:W k= βgz*μS1*μZ*W0 (按《建筑结构荷载规范》GB 50009-2001 2006版 7.1.1-2) 1.1 基本风压 W0= 400 N/m2 (按《建筑结构荷载规范》GB 50009-2001 2006版规定,采用50年一遇的风压,但不得小于0.3 KN/m2

2016基坑支护设计计算书模板(1)讲解

第一章工程概要 1.1 工程概况 工程概况,附上基坑周边环境平面图 1.2场区工程地质条件 附上典型的地质剖面图 1.3 水文地质条件 1.4 主要设计内容 分析评价了场地的岩土工程条件。 根据场地的工程地质条件、水文地质条件,充分考虑到周边地层条件,选择技术上可行,经济上合理,并且具有整体性好、水平位移小,同时便于基坑开挖及后续施工的可靠支护措施,通过分析论证选择合适的基坑支护方案。 对基坑支护结构进行了具体设计计算,其中包括土压力计算、钻孔灌注桩的设计计算及锚杆的设计计算、稳定性验算(根据具体选择的支护方式,按照规范的要求进行设计,计算,和验算)。当不能满足稳定性要求的时候,需要重新设计计算或者做必要的处理,直至达到稳定性的安全要求。 选择经济、实效、合理的基坑降水与止水方案。 基坑支护工程的施工组织设计与工程监测设计。 1.5 设计依据 (1)甲方提供资料,岩土工程勘察报告(列出详细的清单) (2)现行规范、标准、图集等(按照规定的格式列出详细的清单,必须是现行规范)

第二章基坑支护方案设计 2.1 设计原则(摘自规范) 2.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计 2.1.2 基坑支护结构极限状态可分为下列两类: a. 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; b.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。 2.1.3 基坑支护结构设计应根据表3选用相应的侧壁安全等级及重要性系数。 表2.1 基坑侧壁安全等级及重要性系数 安全等级破坏后果 1.10 一级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响很严重 1.00 二级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响一般 0.90 三级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行决定 2.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 2.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 2.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算:

土木工程专业毕业设计完整计算书

该工程为某大学实验楼,钢筋混凝土框架结构;建筑层数为8层,总建筑面积11305.82m2,宽度为39.95m,长度为60.56m ;底层层高4.2m ,其它层层高3.6m ,室内外高差0.6m 。 该工程的梁、柱、板、楼梯、基础均采用现浇,因考虑抗震的要求,需要设置变形缝,宽度为130mm 。 1.1.1设计资料 (1)气象条件 该地区年平均气温为20 C o . 冻土深度25cm ,基本风压m2,基本雪压 kN/m2,以西北风为主导方向,年降水量1000mm 。 (2)地质条件 该工程场区地势平坦,土层分布比较规律。地基承载力特征值240a f kPa 。 (3)地震烈度 7度。 (4)抗震设防 7度近震。 1.1.2材料 梁、柱、基础均采用C30;纵筋采用HRB335,箍筋采用HPB235;单向板和双向板均采用C30,受力筋和分布筋均为HPB235;楼梯采用C20,除平台梁中纵筋采用HRB335外,其余均采用HPB235。 工程特点 本工程为8层,主体高度为29m 左右,为高层建筑。其特点在于:建造高层建筑可以获得更多的建筑面积,缩小城市的平面规模,缩短城市道路和各种管线的长度,从而节省城市建设于管理的投资;其竖向交通一般由电梯来完成,这样就回增加建筑物的造价;从建筑防火的角度来看,高层建筑的防火要求要高于中低层建筑;以结构受力特性来看,侧向荷载(风荷载和地震作用)在高层建筑分析和设计中将起着重要的作用,因此无论从结构分析,还是结构设计来说,其过程都比较复杂。

在框架结构体系中,高层建筑的结构平面布置应力求简单,结构的主要抗侧力构件应对称均匀布置,尽量使结构的刚心与质心重合,避免地震时引起结构扭转及局部突变,并尽可能降低建筑物的重心,以利于结构的整体稳定性;合理地设置变形缝,其缝的宽度视建筑物的高度和抗震设防而定。 该工程的设计,根据工程地震勘探和所属地区的条件,要求有灵活的空间布置和较大的跨度,故采用钢筋混凝土框架结构体系。 本章小结 本章主要论述了本次设计的工程简况和工程特点,特别对于高层建筑的优点和框架结构中高层建筑的布置原则作了详细阐述。 2 结构设计 框架设计 2.1.1 工程简况 该实验楼为八层钢筋混凝土框架结构体系,建筑面积11305.82m2,建筑平面

上海某设计院高层计算书

第册/ 共册本册共页 计算书 CALCULATION DOCUMENT 工程名称:XXXX花园二期 工程编号:A-1-13 项目名称:13号楼 设计阶段:施工图 设计专业:结构 计算人: 校对人:

注:结构高度指室外地坪至檐口或大屋面(斜屋面至屋面中间高) 三. 设计依据 建筑地基基础设计规范(GB50007-2002) 建筑结构荷载规范(GB50009-2001) 建筑抗震设计规程(GB50011-2001) 混凝土结构设计规范(GB50010-2002) 高层建筑混凝土结构技术规程(JGJ3-2002) 建筑抗震设计规程(DBJ08―9―92)及1996年局部修订增补 地基基础设计规范(DGJ08-11-1999) 中国建筑西南勘察研究院提供的《仁恒河滨花园岩土工程详细勘察报告》 及补充资料 四. 可变荷载标准值选用(kN/㎡) 五.上部永久荷载标准值及构件计算 (一)楼面荷载 ·首层: 卧室、起居室、书房: 150厚砼板 3.75kN/m2 板面装修荷载 1.0kN/m2 板底粉刷或吊顶 0.50kN/m2 恒载合计 5.25kN/m2 厨房、普通卫生间: 150厚砼板 3.75kN/m2 板面装修荷载 1.1kN/m2 板底粉刷或吊顶 0.50kN/m2 恒载合计 5.35kN/m2 带采暖卫生间: 150厚砼板 3.75kN/m2 板面装修荷载 20x0.13=2.6kN/m2 板底粉刷或吊顶 0.50kN/m2 恒载合计 6.85kN/m2 门厅、电梯间: 150厚砼板 3.75kN/m2 板面装修荷载 20x0.07=1.4kN/m2 板底粉刷或吊顶 0.50kN/m2 恒载合计 5.65kN/m2 ·标准层: 卧室、起居室、书房: 110厚砼板 2.75kN/m2 板面装修荷载 1.0kN/m2

门窗抗风压计算书

门窗(MLC1524门扇) 设计计算书 设计: 校对: 审核: 批准: 洛阳豪美幕墙装饰工程有限公司二〇一六年五月十七日

目录 1 计算引用的规范、标准及资料 (1) 1.1 门窗及相关设计规范: (1) 1.2 建筑设计规范: (1) 1.3 铝材规范: (1) 1.4 玻璃规范: (2) 1.5 钢材规范: (2) 1.6 胶类及密封材料规范: (2) 1.7 门窗及五金件规范: (2) 1.8 相关物理性能等级测试方法: (3) 1.9 《建筑结构静力计算手册》(第二版) (4) 1.10 土建图纸: (4) 2 基本参数 (4) 2.1 门窗所在地区 (4) 2.2 地面粗糙度分类等级 (4) 2.3 抗震设防 (4) 3 门窗承受荷载计算 (4) 3.1 风荷载标准值的计算方法 (4) 3.2 计算支撑结构时的风荷载标准值 (6) 3.3 计算面板材料时的风荷载标准值 (6) 3.4 垂直于门窗平面的分布水平地震作用标准值 (6) 3.5 平行于门窗平面的集中水平地震作用标准值 (6) 3.6 作用效应组合 (6) 4 门窗竖中梃计算 (7) 4.1 竖中梃受荷单元分析 (7) 4.2 选用竖中梃型材的截面特性 (9) 4.3 竖中梃的抗弯强度计算 (9) 4.4 竖中梃的挠度计算 (9) 4.5 竖中梃的抗剪计算 (10) 5 玻璃板块的选用与校核 (10) 5.1 玻璃板块荷载计算: (11) 5.2 玻璃的强度计算: (12) 5.3 玻璃最大挠度校核: (12)

门窗设计计算书1 计算引用的规范、标准及资料 1.1 门窗及相关设计规范: 《铝合金结构设计规范》GB50429-2007 《玻璃幕墙工程技术规范》JGJ102-2003 《建筑玻璃应用技术规程》JGJ113-2009 《建筑幕墙》GB/T21086-2007 《铝合金门窗工程技术规范》JGJ214-2010 《铝合金门窗》GB/T8478-2008 《未增塑聚乙烯(PVC-U)塑料窗》JGT/140-2005 《塑料门窗工程技术规程》JGJ103-2008 《建筑幕墙工程技术规范》DGJ08-56-2012 1.2 建筑设计规范: 《地震震级的规定》GB/T17740-1999 《钢结构设计规范》GB50017-2003 《高层建筑混凝土结构技术规程》JGJ3-2010 《高处作业吊蓝》GB19155-2003 《工程抗震术语标准》JGJ/T97-2011 《混凝土结构设计规范》GB50010-2010 《混凝土用膨胀型、扩孔型建筑锚栓》JG160-2004 《建筑材料放射性核素限量》GB6566-2010 《建筑防火封堵应用技术规程》CECS154:2003 《钢结构焊接规范》GB50661-2011 《建筑工程抗震设防分类标准》GB50223-2008 《建筑工程预应力施工规程》CECS180:2005 《建筑结构荷载规范》GB50009-2012 《建筑结构可靠度设计统一标准》GB50068-2001 《建筑抗震设计规范》GB50011-2010 《建筑设计防火规范》GB50016-2014 《建筑物防雷设计规范》GB50057-2010 《冷弯薄壁型钢结构技术规范》GB50018-2002 《民用建筑设计通则》GB50352-2005 1.3 铝材规范: 《变形铝及铝合金化学成份》GB/T3190-2008 《建筑用隔热铝合金型材》JG175-2011 《建筑用铝型材、铝板氟碳涂层》JG/T133-2000 《铝合金建筑型材第1部分基材》GB5237.1-2008 《铝合金建筑型材第2部分阳极氧化、着色型材》GB5237.2-2008 《铝合金建筑型材第3部分电泳涂漆型材》GB5237.3-2008 《铝合金建筑型材第4部分粉末喷涂型材》GB5237.4-2008 《铝合金建筑型材第5部分氟碳漆喷涂型材》GB5237.5-2008 《铝合金建筑型材第6部分隔热型材》GB5237.6-2012 《铝及铝合金彩色涂层板、带材》YS/T431-2009 《铝型材截面几何参数算法及计算机程序要求》YS/T437-2009 《有色电泳涂漆铝合金建筑型材》YS/T459-2003

30米一体化景观塔受力计算书(30米--0.55风压)

30米一体化景观塔受力计算书 一、项目概况: 本工程位于广东省东莞市,为东莞铁塔30米一体化景观塔,设计3层平台+1层灯盘,共4层.每层平台设计内嵌天线3付,内嵌RRU3个.顶部安装集束天线.塔体截面采用圆形,连接方式为内法兰连接,塔体材质选择为Q345B. 二、设计依据: 1、设计依据: 《建筑结构可靠度设计统一标准》GB50068-2001 《建筑结构荷载规范》GB5009-2012 《构筑物抗震设计规范》GB50191-2012 《建筑抗震设计规范》GB50011-2010 《钢结构设计规范》GB50017-2003 《高耸结构设计规范》GB50135-2006 《移动通信工程钢塔桅结构设计规范》YD/T5131-2005 《钢结构单管通信塔技术规程》CECS236:2008 《钢结构工程施工质量验收规范》GB50205-2001 《移动通信工程钢塔桅机构验收规范》YD/T5132-2005 《塔桅钢结构工程施工质量验收规程》CECS80:2006 2、设计荷载: 根据建设单位提出的要求确定设计荷载.塔架设计基本风压0.55kN/M^2,设计地震烈度7度. 3、工程条件:

三、荷载计算: 1、塔段基本信息: 2、塔段几何信息: 3、塔体荷载计算: 下对边尺寸(mm)---参考值900上对边尺寸(mm)---参考值650下对边尺寸(mm)---设计值900上对边尺寸(mm)---设计值650中对边尺寸(mm)---设计值775设计分段数(Ln)6塔体高度H(m)30.0杆体是否插接否杆体套接间隙(mm)0杆体套接系数 0整体锥度比K参考值 (‰)88横截面形状 圆18角度0分段编号---(由低向高)123456分段长度(mm)70007000700030003000.03000.0分段壁厚(mm) 12 10 10 8 6 6 整体锥度比K设计值 (‰) 下对边调整 上对边调整

建筑外窗抗风压性能分级的取值

建筑外窗抗风压性能分级的取值 一.基本概述: 按照现行国家标准《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7106-2008、《建筑结构荷载规范》GB50009-2001(2006年版)的有关要求,工程设计者应对各类工业与民用建筑的外窗提供其抗风压性能(含相应的检测、鉴定)等级规定,这是满足建筑物环保和节能,同时又是确保使用可靠、安全的必备要求。为了使设计者选用的方便,现归纳、整理成以下资料供选用参考。二.建筑物外墙面及窗的抗风压计算: 1 按规范GB50009-2001(2006年版)中7.1.1条规定:垂直于建筑物表面上的风荷载标准值,用于围护结构时,应按下述公式计算:W==βgzμslμz w o( 1) 式中:βgz ---对应计算高度Z的阵风系数,与建筑物所处的区位(即地面粗糙度类别)和距地高度有关,工业建筑物多位于郊区(B 类),民用建筑多在市区(C类)重要建筑则在市中心区(D 类),查表可得到; μsl----建筑物局部风压体型系数,按GB50009的7.3.3条规 定:墙面正压区取(0.8+0.2);墙面负压区取(-1.0-0.2); 墙的边角区取(-1.8-0.2);屋面、檐口负压区取(-2.2); μz----风压高度系数,与建筑物所处的区位及距地高度有关, 查表可得到;

w o----基本风压值,按规范GB50009附录D中,对应n=50 栏查表可得到。 2.为了便于使用对上述公式作如下归并与简化: 首先,为解决工程中最常遇到的墙面窗,将μsl分别以1.0、1.2带入式(1)可得:W==1.0βgzμz w o(2) W==1.2βgzμz w o(3) 在工程设计中,由于风荷载的多向性,难以分出正压、负压区;而在施工安装中,同一式样、规格的外窗分类过细实无必要,因此实用中,以式(3)为墙面窗风压计算的通用公式。 同理,屋面、檐口负压区窗风压计算公式归并为 W==2.2βgzμz w o(4) 其次,阵风系数βgz 、高度系数μz两个系数,都与建筑物所处的区位(即地面粗糙度类别)以及距地高度有关,拟利用规范GB50009已有相关表格并使其合并,同时将式(3)中的常数1.2也融入,可得到:Ω= 1.2βgzμz(5) 也即建筑外墙面窗的风压值计算公式可简化为: W==Ωw o(6) 式中Ω----风压计算综合系数,与建筑物所处的区位和距 地高度有关,通过附表1 查得 最后,一旦取得项目建设所在地的基本风压值,即可利用附表1查到风压计算综合系数Ω,以两者相乘之积,即可得该建筑物外墙面窗的风压标准值。

建筑外窗抗风压性能计算书

建筑外窗抗风压性能计算书 I、计算依据 《建筑玻璃应用技术规程JGJ 113-2009》 《钢结构设计规范GB 50017-2003》 《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T7106-2008》《建筑结构荷载规范GB 50009-2012版》 《未增塑聚氯乙烯(PVC-U)塑料门JG/T 180-2005》 《未增塑聚氯乙烯(PVC-U)塑料窗JG/T 140-2005》 《建筑门窗术语GB/T5823-2008》 《建筑门窗洞口尺寸系列GB/T5824-2008》 《建筑外门窗保温性能分级及检测方法GB/T8484-2008》 《建筑外门窗空气声隔声性能分级及检测方法GB/T8485-2008》 《铝合金结构设计规范GB 50429-2007》 《铝合金门窗GB/T8478-2008》 《铝合金建筑型材第一部分:基材GB5237.1-2008》 《铝合金建筑型材第二部分:阳极氧化型材GB5237.2-2008》 《铝合金建筑型材第三部分:电泳涂漆型材GB5237.3-2008》 《铝合金建筑型材第四部分:粉末喷涂型材GB5237.4-2008》 《铝合金建筑型材第五部分:氟碳漆喷涂型材GB5237.5-2008》 《铝合金建筑型材第六部分:隔热型材GB5237.6-2012》 《聚氯乙烯(PVC-U)门窗增强型钢JG/T 131-2000》 《门、窗用未增聚氯乙烯(PVC-U) 型材GB/T 8814-2004》 《塑料门窗工程技术规程JGJ103-2008》 II、设计计算 一、风荷载计算 1)工程所在省市:北京 2)工程所在城市:北京市 3)所在地类型:D类(有密集建筑群且房屋较高的城市市区) 4)门窗安装最大高度z(m):85米 5)门窗类型:平开窗 6)窗型样式:

门窗抗风压计算

门窗抗风压计算 一种常见非标窗型的抗风压计算 有关塑料门窗抗风压计算,我们在前几期已对“常见典型塑料门窗”进行了探讨,并提出了一些基本公式。塑料门窗的窗型是多变的,我们还会遇到下面的窗型。 这时,杆件AB根据抗风压受力分解,将受到以下几种载荷作用: <1>上亮传递的梯形载荷: <2>CD杆传递的集中载荷: <3>下窗传递的不等双三角载荷: 按常规,AB杆件的挠度计算,由下面两个计算过程组成: <1>CD杆件传递的集中载荷挠度 <2>阴影面积总载荷,以矩形公式计算的挠度; 然后两挠度相加求和,即为总挠度。 根据推荐计算思路,我们有以下计算过程: <1>CD杆传递的集中力载荷产生的挠度; <2>上亮梯形载荷产生的挠度; <3>下窗不等双三角形载荷产生的挠度。 对于上面涉及的几种计算方法:集中载荷挠度公式、矩形载荷挠度公式和单梯形载荷挠度公式已有给出。为了进行较精确计算,我们在此将不等双三角形载荷挠度公式略以推导形式介绍给大家。 根据窗的常规结构,不等双三角形载荷简化与统一为以下关系: 这时有: QA=(13qa/6)q=ω·α α=L/6 当o≤x≤a时 M1=-(q/120a)X3+13qa/6 EIY1=-(q/120a)X5+(13qa/36)X3-(195qa3/24)X+D1(D1=O) 当a≤x≤a时当2a≤x≤4a时 M2=(q/6a)X3-qX2+(19qa/6)X-qa2/3 M3=-(q/6a)X3+qX2-(5qa/6)X-7qa2/3 EIY2=(q/120a)X5-(q/12)X4+193qa3/36-(193qa3/24)X-qa4/60 EIY3=-(q/120a)X5+(q/12)X4-5qa3/36+(7qa2/6)X2-(225qa3/24)X+31qa4/60 当4a≤x≤6a时 M4=(q/6a)X3-3qX2+(91qa/6)X-57qa2/3 EIY4=q/120aX5-(q/4)X4-91qa3/36-(57qa2/6)X2+(287qa3/24)X-331qa4/20 经解: EIY3=-(q/120L)X5+(q/12)X4-(5qL3/216)X3+(7qL2/216)X2-(225qL3/(24×216))X-31qL4/6 0×362 以中点挠度代表最大挠度则 fmax=y3|x=1/2=23.9L4/1920EI=-qL4/80f推=23.9L4/1920EI(直接给出)

浅基础设计计算书_

基础工程课程设计 柱下条形基础设计成果 成果:设计计算书、设计图纸 姓名: 学号: 学院:土木工程学院 专业:土木工程 年级: 2009级 指导老师: 完成时间: 2012年01月

课设简介 1. 课程设计目的 课程设计是高等教育中一直强调和重视的教学实践环节,《基础工程》课程设计是学生在学习《土力学》、《钢筋混凝土结构》和《基础工程》的基础上,综合应用所学的理论知识,完成浅基础和深基础(桩基础)的设计任务。其目的是培养学生综合应用基础理论和专业知识的能力,同时培养学生独立分析和解决基础工程设计问题的能力。 2. 课程设计基本要求 2.1 通过课程设计,要求学生对基础工程设计内容和过程有较全面的了 解和掌握,熟悉基础工程的设计规范、规程、手册和工具书; 2.2 在教师指导下,独立完成课程设计任务指导书规定的全部内容。设计 计算书要求计算正确、文理通顺,施工图布置合理、表达清晰,符合设计规范要求;

目录 课设简介 ............................................................................................. I 目录 ..............................................................................................II 第一章绪论………………………………………………………… 1.1工程概况……………………………………………………… 1.1.1地形………………………………………………………………1.1.2工程地质条件……………………………………………………… 1.1.3岩土设计技术参数………………………………………………… 1.1.4水文地质条件………………………………………………… 1.1.5轴线及上部结构作用何在………………………………………… 1.1.6岩土设计技术参数…………………………………………………第二章基础设计…………………………………………………… 2.1基础梁埋深及高度的确定…………………………………………… 2.2 确定地基承载力设计值…………………………………………… 2.3确定条形基础底面尺寸……………………………………………… 2.4软弱下卧层承载力验算……………………………………………… 2.5基础结构验算………………………………………………… 2.6基础梁配筋验算………………………………………………… 2.6.1正截面受弯钢筋计算……………………………………………… 2..6.2箍筋计算………………………………………………… 第三章翼板配筋计算………………………………………………3.1截面尺寸验算………………………………… 3.2 翼板横向钢筋计算及分布钢筋确定………………………………

外墙保温抗风压计算书

外墙外保温工程附件 抗风压计算书 一、拉伸粘结强度验算 根据《建筑结构荷载规范》(GB50009-2001)、《建筑抗震设计规范》(GB50011-2001)等规范,外保温粘贴面单位面积的系统组合荷载的理论数据仅为㎡。 耐水状态下EPS板与专用粘结砂浆之间28天拉伸粘结强度为=100KN/㎡。 考虑粘结砂浆在EPS板上的粘结面积为70%,则600x1200单张板拉伸粘结力为:面层重量及可变荷载引起的剪切力为㎡。 600x1200单张板所受剪切力为项目所在地100m高处最大负风压值为 安全系数K=拉伸粘接力/(剪切力+负风压引起拉拔力) K=(+)= 二、机械锚固强度验算 本工程结构类型为剪力墙结构,层数为17~21层,其中最高高度为米。根据国家行业标准JGJ149-2003的规定及天津地标DB29-88-2007《节能检测技术规程》要求,单个锚栓至少能提供不少于的抗拉强度,在不可预见的情况下,对确保系统的安全性起一定的辅助作用。(一)、计算参数 项目相关信息如下: 项目所在地:天津 地面粗糙度:C类 设计年限:50年 基本风压:㎡(50年一遇) 抗震烈度:7度 保温板挂高:20m、50m、100m 保温板分格尺寸:a=宽度=1200mm;b=高度=600mm (二)、20m处保温系统锚栓力学计算 1、20m高度处风荷载计算 由于保温板质量较轻,因此不用考虑地震产生的水平荷载。计算荷载时只考虑负风压产生的拉拔力。 1)、水平风荷载标准值 βgz:阵风系数,取βgz=,按《建筑结构荷载规范》GB50009-2001表:风荷载体型系数,取μs=,按《建筑结构荷载规范》GB50009-2001表:风压高度变化系数,取μz=,按《建筑结构荷载规范》GB50009-2001表:作用在幕墙上的风荷载标准值㎡,按《建筑结构荷载规范》GB50009-2001附表 Wk:作用在幕墙上的风荷载标准值 Wk=βgz*μs*μz* Wo=)、水平风荷载设计值 rw:风荷载分项系数,取rw=,由于保温系统属于是建筑外维护结构,因此参照相关的幕墙规范风荷载分项系数取值为. W:作用在幕墙上的风荷载设计值 W= rw*Wk=、20m处保温锚栓强度校核 由上述风压设计值以及保温板分格尺寸(1200x600mm)可以计算出单块保温板所受的风荷载的大小: F=a*b*W=普通锚栓强度校核 单个锚栓在不同基材上承载力标准值如下表格:

某建筑结构施工计算书

一、工程概况 1 2、建筑地点: 3、建筑规模: 1)建筑总面积: 4184m2 2)建筑层数:全楼三层,楼梯上屋面 3)结构形式:钢筋砼框架结构 4)层高: 3.9m 4、建筑特点 ①普通教室18间71.28 m2/班 ②大厅1间96.48m2 ③语音教室、微机教室各2间143.50 m2、133.99 m2含辅助房间:35.1 m2 ④阅览、会议室各1间129.4 m2128.2m2 ⑤活动室1间120.5 m2 ⑥行政办公室6间4间35.1 m2、1间46.8 m2、1间43.2 m2 ⑥教师办公室6间3间46.64m2、3间47.38 m2 ⑦收发室、门卫室各1间35.1 m2 ⑦配电室1间35.1 m2 ⑧教师休息室3间35.1 m2 ⑨楼梯共三个楼梯其中两个通向屋顶走廊为2.4m,2.1m宽 ⑩每层设男女卫生间,一,三层女卫生间两间,男厕一间,二层男厕两间,女厕一间5、建筑技术条件 (一)气象条件: 1)常年主导风向: 西北风 2)夏季主导风向: 西南风 3)平均风速: 夏季3.1m/s,冬季4m/s 4)基本风压:Wo=0.40KN/m2 5)基本雪压:So=0.35KN/m2最大积雪深度:11cm 6)最高气温:40.6℃最低气温:-9.3℃ 7)最冷月平均温度:4.5℃(1—2月) 8)最热月平均温度:29.7℃(7—9月) 9) 最大降雨量: 184.3mm(4—6月) 最大降雨量:50.4mm/小时 (二)工程地质条件 1)天然地面以下1m厚为填土,地基标准承载力为120KN/m2. 填土以下的2m厚为粘土,地基承载力为250KN/m2.粘土以下为中密粗砂层, 地基承载力为300KN/m2。 2)地下水位:天然地面以下4m处 3)地震设防烈度:6度 (三)施工条件 1)施工单位:南昌市第十建筑公司 2)施工人员:各工种工人数均不受限制,但要求不分工种劳动力不均衡系数K<1.6 3)材料供应:各种材料均可保证供应 4)预制构件和模板、钢筋骨架、门窗等半成品:可由公司构件厂供应(运距10公里)

门窗-抗风压计算报告

抗风压计算书 一、风荷载计算 1)工程所在省市:江苏省 2)工程所在城市:扬州市 3)门窗安装最大高度z(m):40 1 风荷载标准值计算:Wk = βgz*μS*μZ*w0 (按《建筑结构荷载规范》GB 50009-2001 7.1.1-2) 1.1 基本风压W0=400N/m^2 (按《建筑结构荷载规范》GB 50009-2001规定,采用50年一遇的风压,但不得小于0.3KN/m^2) 1.2 阵风系数计算: 1)A类地区:βgz=0.92*(1+2μf) 其中:μf=0.5*35^(1.8*(-0.04))*(z/10)^(-0.12),z为安装高度; 2)B类地区:βgz=0.89*(1+2μf) 其中:μf=0.5*35^(1.8*(0))*(z/10)^(-0.16),z为安装高度; 3)C类地区:βgz=0.85*(1+2μf) 其中:μf=0.5*35^(1.8*(0.06))*(z/10)^(-0.22),z为安装高度; 4)D类地区:βgz=0.80*(1+2μf) 其中:μf=0.5*35^(1.8*(0.14))*(z/10)^(-0.30),z为安装高度; 本工程按:C类有密集建筑群的城市市区取值。 βgz=0.85*(1+(0.734*(50/10)^(-0.22))*2) =1.72573 (按《建筑结构荷载规范》GB 50009-2001 7.5.1规定) 1.3 风压高度变化系数μz: 1)A类地区:μZ=1.379 * (z / 10) ^ 0.24,z为安装高度; 2)B类地区:μZ=(z / 10) ^ 0.32,z为安装高度; 3)C类地区:μZ=0.616 * (z / 10) ^ 0.44,z为安装高度;

九江某渔光互补发电项目光伏支架计算书

九江某渔光互补发电项目组件固定支架计算书 报告编写: 审核:

光电池阵列倾角按_20_考虑;风荷载为0.35 kN/m i ;雪荷载为0.40kN/m2。

1?结构材料1.1太阳能电池方阵支架、连接件、紧固件选用Q235B钢材制造,支架、连接件、紧固件的金属表面进行热镀锌处理,以防止风沙的冲刷和生锈腐蚀。风荷载为 2 2 0.35 kN/m ;雪荷载为0.40kN/m。 1.2 太阳能电池方阵支撑、斜梁分别采用一70x5抱箍、L50x50x4.0角钢,和C40x80x15x 2.5 C型钢,电池组件檩条采用C40x60x15x2.5 C形钢. 2.组件排布方案 组件按2 x 18竖向排布,立柱5件,立柱间距4.3米。 3.载荷计算(单阵列) 3.1 固定载荷:G 固定载荷主要包括电池组件及钢结构的自重G1(KN/n2) 电池组件重量G电池=26.5*36*10=9540N 檩条的重量为G檩条 =240.32x10=2403.2N G 电池+G 檩条=9540N+2403.2N=11943.2N 立柱以上钢结构重量G钢构=4471.54N 取总重量G= G 电池+G钢构=9540N+4471.54N=14011.54N=14.01KN G仁G/A=14.01/69.86=0.20KN/m2。 3.1.2 光伏池组件面积:A组件=(_1.956_mx_0.992_m x_36_=_69.86_m^2 3.1.3分配到每个支架模块上的重力为11943.2N/5=_2388.64_N 3.2.1风压荷重(W从阵列正前面吹来,风(顺风)的风压荷重为W ( N) 根据有关标准(GB50017-2003《钢结构设计规范》、GB50009-2012《建筑结构荷载规范》,计算获得风荷载: 设计风荷载为0.35 kN/m2,

建筑门窗的抗风压计算书

建筑门窗的抗风压计算 书 The manuscript was revised on the evening of 2021

一、计算依据 二、风荷载计算 1、基本情况:门窗计算风荷最大标高取70米;根据工程所处的地理位置,其风压高度变化系数按C类算。平开窗的受力杆件MQ25-24a最大计算长度为2400mm,杆件两边的最大受力宽度为:1375mm,;推拉窗的受力杆件QLC30-25最大计算长度为:1960mm,杆件两边的最大受力宽度为1480mm。 2、风荷载标准值的计算 风荷载标准值ωk=βzμSμZωO (资料③P24式 ωk―风荷载设计标准值 βZ―高度Z处的阵风系数, (资料③P44表 μS―风荷载体型系数,取μS = (资料③P27表 ωO―基本风压,取ωO = (资料③全国基本风压分布图) μz―风压高度变化系数, (资料③P25表) 风荷载标准值计算: ωk=βzμSμZωO =×××= 三、主要受力构件的设计及校核 1、受力构件的截面参数 根据( BH^3-bh^3 )/12 Ix=(D4 3 建筑门窗的抗风压计算 一、概况 计算依据 风荷载标准按GB50009-2001《建筑结构荷载》的规定计算 任何材料制作的门窗玻璃按JGJ113-2003《建筑玻璃应用》的规定计算 玻璃幕墙按JGJ102-2003《玻璃幕墙工程技术规范》的规定计算 建筑外窗抗风强度计算方法 说明 门窗幕墙不是承重结构,是围护结构,应采用围栏结构的计算公式。 什么是围护结构呢?指建筑物及房间的围档物,包括墙壁、挡板等,按是否与室内外空气分割而言,包括内外围护结构,有透明与不透明之分。 中第条也是强制性条文。 “对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构具体规定。” 提出了几个问题:一、高层建筑,二、高耸结构,三、比较敏感的其他结构,四、有关的规范。如何理解和应用的问题。 高层建筑:定义、基准,可从下列资料中找到。 JGJ37-87 《民用建筑设计通则》 GB50096-99 《住宅设计规范》 GB50045-95 《高层民用建筑设计防火规范》 GBJ 16-87 《建筑设计防火规范》 JGJ 3-2002 《高层建筑混凝土结构技术》 有一句基本雷同的说法:在通则与防火等规范中指出为: 居住建筑大于10层(约30M) 公用建筑大于24M 在JGJ3中定义为:10层及10层以上或房屋高度大于28M的建筑物。 高耸结构

浅基础设计综合训练计算书

柱下独立基础设计计算书 班级: 姓名: 学号: 指导老师:

一、设计资料 1.地形:拟建建筑场地平整 2.工程地质资料:自上而下依次为: ①杂填土:厚约0.5m,含部分建筑垃圾; ②粉质粘土:厚1.2m,软塑,潮湿,承载力特征值f ak=130KN/m2; ③粘土:厚1.5m,可塑,稍湿,承载力特征值f ak=180KN/m2; ④全风化砂质泥岩:厚2.7m,承载力特征值f ak=240KN/m2;(按碎石土处理) ⑤强风化砂质泥岩:厚3.0m,承载力特征值f ak=300KN/m2; ⑥中风化砂质泥岩:厚4.0m,承载力特征值f ak=620KN/m2; 3.水文资料为: 地下水对混凝土无侵蚀性。 地下水位深度:位于地表下1.5m。 4.上部结构资料: 上部结构为多层全现浇框架结构,框架柱截面尺寸为500×500 mm,室外地坪标高同自然地面,室内外高差450mm。 5.上部结构作用在柱底的荷载效应标准组合值为: F K=1496KN,M k=325KN·m,V k=83KN。 上部结构作用在柱底的荷载效应基本组合值为:F=1945KN,M=423KN·m,V=108KN。 6.材料:选择混凝土等级C25,钢筋HPRB335级,。

二、独立基础设计 1.选择基础材料:混凝土等级C25,钢筋HPRB335级,预估基础高度0.8m。 2:基础埋深选择:地下水对混凝土无侵蚀性。地下水位深度位于地表下1.5m。 取基础底面高至持力层下0.5m,本设计取③号土层为持力层,所以考虑取室外地坪到基础底面为0.5+1.2+0.5=2.2m。因此得基础剖面示意图如图所示: 3:求地基承载力特征值f a 根据e=0.58,查表得ηb=0.3,ηd=1.6。 基底以上土的加权平均重度为: γm=[18×0.5+20×1+(20—10)×0.2+(19.4—10)×0.5] /

相关主题
文本预览
相关文档 最新文档