当前位置:文档之家› 碳纤维表面改性及其在尼龙复合材料中的应用研究进展

碳纤维表面改性及其在尼龙复合材料中的应用研究进展

碳纤维表面改性及其在尼龙复合材料中的应用研究进展
碳纤维表面改性及其在尼龙复合材料中的应用研究进展

工 程 塑 料 应 用

ENGINEERING PLASTICS APPLICATION

第47卷,第7期2019年7月

V ol.47,No.7Jul. 2019

141

doi:10.3969/j.issn.1001-3539.2019.07.026

碳纤维表面改性及其在尼龙复合材料中的应用研究进展

张顶顶1,张福华1,杨吉祥1,李晓峰1,李彦希2,曾骥1

(1.上海海事大学海洋科学与工程学院,上海 201306; 2.浙江四兄绳业有限公司,浙江台州 317016)

摘要:对近几年碳纤维(CF)表面改性及其在CF 增强尼龙(CFRPA)复合材料中的应用研究情况进行了综述,将CF 表面改性方法划分为干法改性、湿法改性和纳米材料多尺度改性三大类。其中干法改性包括气相氧化法、等离子体氧化法和辐照处理;湿法改性包括液相氧化法、阳极电解氧化法和上浆处理法;纳米材料多尺度改性包括石墨烯、碳纳米管等纳米材料改性。比较了各种表面改性方法的优缺点,并对CFRPA 复合材料中CF 表面改性技术的发展进行了展望。

关键词:

碳纤维;尼龙;复合材料;界面结合;表面改性中图分类号:TQ327.3 文献标识码:A 文章编号:1001-3539(2019)07-0141-06

Research Progress on Surface Modification of Carbon Fiber and Its Application in Polyamide Composites

Zhang Dingding 1, Zhang Fuhua 1, Yang Jixiang 1, Li Xiaofeng 1, Li Yanxi 2, Zeng Ji 1

(1. College of Ocean Science and Engineering , Shanghai Maritime University , Shanghai 201306, China ;

2. Zhejiang Four Brothers Rope Co. Ltd., Taizhou 317016, China)

Abstract :Research situations of surface modification of carbon fiber (CF) and its application in CF reinforced polyamide (CFRPA) composites in recent years were reviewed. Accordingly ,the surface modi ?cation of CF can be classi ?ed into dry modi ?ca-tion methods ,wet modi ?cation methods and nanomaterials multi-scale modi ?cation methods. The dry modi ?cation methods include gas phase oxidation ,plasma oxidation and irradiation treatment ,the wet modi ?cation methods include liquid phase oxidation ,anodic electrolytic oxidation and sizing treatment , the nanomaterials multi-scale modi ?cation methods include graphene modi ?cation and carbon nanotube modi ?cation. The advantages and disadvantages of various surface modi ?cation methods were compared ,and the development of CF surface modi ?cation technology in CFRPA composites was prospected.

Keywords :carbon ?ber ;polyamide ;composite ;interfacial bonding ;surface modi ?cation 碳纤维(CF)增强热塑性树脂复合材料具有轻质高强,耐腐蚀和出色的热稳定性等优点,已广泛应用于航空航天、汽车、建筑等行业[1–6]。尼龙(PA)作为一类典型的热塑性树脂与CF 形成的复合材料具有优异的综合性能。CF 增强PA (CFRPA)复合材料与热固性复合材料相比具有可回收性、易于加工、成型时间短、抗冲击性好等优点[7–9]。CFRPA 复合材料的力学性能首先取决于CF 和PA 树脂基体自身性质。同时,纤维与基体之间的界面粘结性很大程度上决定了复合材料的最终力学性能。

然而,未经任何处理CF 表面是非极性的[10–11],表面活性官能团极少、化学惰性较强,但PA 树脂基体因含有大量的

酰胺键通常表现为极性,造成了CF 与PA 树脂基体之间浸润性较差,界面粘结力较弱,限制了CFRPA 复合材料在更多领域的应用。因此,要想扩大CFRPA 复合材料应用范围,获得力学性能更为优异的CFRPA 复合材料就必须对CF 表面进行改性。通过对CF 表面改性可以有效增大CF 表面的粗糙度,同时在其表面引进大量的活性官能团,改善纤维与基体之间的浸润性,进而提高纤维表面与基体之间的机械嵌锁力和化学键合力,使得所受应力在纤维与基体界面之间得到有效传递。

基于PA 复合材料的CF 表面改性方法可以分为以下三大类:干法改性、湿法改性和纳米材料多尺度改性。干法

基金项目:上海市自然科学基金项目(15ZR1420500)

通讯作者:张福华,博士,副教授,主要从事复合材料应用基础研究 E-mail :fhzhang@https://www.doczj.com/doc/7714238863.html, 收稿日期:2019-03-12

引用格式:张顶顶,张福华,杨吉祥,等.碳纤维表面改性及其在尼龙复合材料中的应用研究进展[J].工程塑料应用,2019,47(7):141–146.

Zhang Dingding ,Zhang Fuhua ,Yang Jixiang ,et al. Research progress on surface modification of carbon fiber and its application in polyamide composites[J]. Engineering Plastics Application ,2019,47(7):141–146.

尼龙工程材料的改性

尼龙工程材料的改性 摘要: 尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。因此对尼龙66的改性受到人们的广泛关注。国内外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。 1.尼龙改性的研究进展 对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。 1.1共混改性 在尼龙改性研究中,高分子合金是最常用的一种手段。其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。就尼龙合金而言,主要的研究集中在以下几个方面。1.1.1尼龙与聚烯烃(PO)共混改性 聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。 在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。根据聚合物共混理论,理想的体系应该是两组分部分既相容,又各自成相,相间存在一界面层,在层中两种聚合物的分子链相互扩散,有明显的浓度梯度。通过增大共混组分间的相容性,进而增强扩散,使相界面弥散,界面层厚度加大,是获得综合性能优异共混物的重要条件。

碳纤维表面改性

碳纤维表面处理研究现状

碳纤维表面处理研究现状 摘要:综述了碳纤维的应用领域,当前国内外的碳纤维的生产状况,分析了各种碳纤维表面处理的研究现状以及各方法的优缺点。分析结果表明:国外对我国碳纤维生 产进行了技术封锁,我国工业化碳纤维生产与日本等国有较大差距。电化学氧化法对碳纤维表面处理效果较好,处理后碳纤维表面活性基团数量明显增多,生产条件易于控制,该方法很好应用于工业生产。 关键词:碳纤维;表面处理;电化学氧化法; 引言 随着国防科技要求的不断提高,航天航空、军事武器等高科技设备对材料的性能要求的提高,碳纤维复合材料以其耐高温,耐摩擦、导电、导热、耐腐蚀、高比强度等特点被广泛的应用于这些领域。国外碳纤维材料生产研发较早,现今以日本,美国等国家的生产技术领先于世界。 碳纤维按其加工的先驱体不同可以分为:粘胶基碳纤维、沥青基碳纤维、聚丙烯腈基(PAN)碳纤维。碳纤维作为一种增强相与金属、陶瓷、树脂等结合使复合材料的性能得到很大提高。碳纤维表面的活性基团较少,表面光滑,为更好的与基体材料结合,需要在材料复合前对纤维进行一定表面处理。碳纤维表面处理按当前的研究现 状可以分为氧化法和非氧化法。在此对纤维的生产状况做出一些介绍以及纤维表面处理的各种方法做比较。 1碳纤维应用领域及国内外生产状况 碳纤维复合材料具有卓越的物化性能,被广泛应用于航天航空、国防军事、体育用品、风能发电、石油开采以及医疗器械⑴。 碳纤维被用于制造飞机、航天器、卫星等,因碳纤维的轻质、高强度等特点,飞行器的噪音小,飞行所需的燃料消耗降低。据有关报道,飞行器每降低1kg的质量,运载飞行器的火箭可以减轻500kg。航天航空领域碳纤维的使用量从2008年的8200t, 到2010年的1万t,预计今年将达到1.3万t。在飞机的制造中,纤维复合材料应用比例都

改性尼龙需要注意的问题点

聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。包括脂肪族PA,脂肪—芳香族PA和芳香族PA。其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。是美国著名化学家卡罗瑟斯和他的科研小组发明的。 尼龙中的主要品种是尼龙6和尼龙66,占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。 尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。 尼龙[1],是聚酰胺纤维(锦纶)是一种说法. 可制成长纤或短纤。 尼龙是美国杰出的科学家卡罗瑟斯(Carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。 1928年,美国最大的化学工业公司——杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯博士受聘担任该所的负责人。他主要从事聚合反应方面的研究。他首先研究双官能团分子的缩聚反应,通过二元醇和二元羧酸的酯化缩合,合成长链的、相对分子质量高的聚酯。在不到两年的时间内,卡罗瑟斯在制备线型聚合物特别是聚酯方面,取得了重要的进展,将聚合物的相对分子质量提高到10 000~25 000,他把相对分子质量高于10 000的聚合物称为高聚物(Superpolymer)。1930年,卡罗瑟斯的助手发现,二元醇和二元羧酸通过缩聚反应制取的高聚酯,其熔融物能像制棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可达到原来的几倍,经过冷却拉伸后纤维的强度、弹性、透明度和光泽度都大大增加。这种聚酯的奇特性质使他们预感到可能具有重大的商业价值,有可能用熔融的聚合物来纺制纤维。然而,继续研究表明,从聚酯得到纤维只具有理论上的意义。因为高聚酯在100 ℃以下即熔化,特别易溶于各种有机溶剂,只是在水中还稍稳定些,因此不适合用于纺织。 随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题,1938年10月27日正式宣布世界上第一种合成纤维诞生了,并将聚酰胺66这种合成纤维命名为尼龙(Nylon)。尼龙后来在英语中成了“从煤、空气、水或其他物质合成的,具有耐磨性和柔韧性、类似蛋白质化学结构的所有聚酰胺的总称”。 聚酰胺(尼龙) 聚癸二酸癸二胺(尼龙1010) 聚十一酰胺(尼龙11) 聚十二酰胺(尼龙12) 聚己内酰胺(尼龙6) 聚癸二酰乙二胺(尼龙610) 聚十二烷二酰乙二胺(尼龙612) 聚己二酸己二胺(尼龙66) CAS编码:32131-17-2

改性酚醛树脂复合材料的研究进展及应用

改性酚醛树脂复合材料的研究进展及应用 综述了改性酚醛树脂复合材料的研究进展,重点介绍了我国改性酚醛树脂复合材料的研究进展及应用,最后指出了我国改性酚醛树脂复合材料今后的发展方向。 标签:酚醛树脂;改性;复合材料 酚醛树脂(PF)由酚类(苯酚、甲酚、二甲酚和间苯二酚等)和醛类(甲醛、乙醛和糠醛等)在酸性或碱性催化剂作用下缩聚而成,是最早合成的热固性树脂。普通酚醛树脂由于受分子结构的限制,热稳定性和残炭率较低,限制了其应用。为了克服传统酚醛树脂脆性较大、交联度低、耐热性不佳、释放游离甲基和游离酚等缺陷,对酚醛树脂进行复合改性是常用的方法,以此获得性能优越的酚醛树脂复合材料,广泛应用于清漆、胶粘剂、涂料、模塑料、层压材料、泡沫材料、耐烧蚀材料等方面。 1.酚醛树脂的结构 酚醛树脂的结构主要有线型酚醛树脂和甲阶酚醛树脂。线型酚醛树脂在加热过程中逐渐软化,温度降至常温后又变硬,即在重复加热、冷却过程中重复塑化、硬化,表现出热塑性,而不具有热硬性。甲阶酚醛树脂含有水分,为聚合度不大的线型分子混合物,溶于水、乙醇、丙酮等溶剂中,具有高温固化性,属可溶性热固性酚醛树脂。 2.复合材料制备研究进展 酚醛树脂反应活性低,固化反应放出缩合水,且必须在高温条件下才能进行固化,制约了其在复合材料领域的应用。为弥补这一缺陷与不足,进一步提高其综合性能,在其分子链极性节点周围形成连接界面,使分子链间的键能增强,通常在酚醛树脂中引入高耐热性纳米材料,可提高其在高温下的质量保持率,降低其高温炭化率,从而使材料在高温下的基本性能得以提高。酚醛树脂的耐热性和增韧改性主要是通过共混或化学反应来实现。 2.1化学改性制备 酚醛树脂的化学改性是指应用化学反应改变苯酚甲醛树脂分子结构的一类改性方法,途径主要有:羟基醚化或环氧化、控制分子链交联状态的不均匀性及引进钼、硼、磷、有机硅等组分,可以提高树脂的耐热性尤其是瞬时耐高温的特性。环氧综合性能良好,能兼顾热固性酚醛树脂和双酚的优势,提高材料的粘接性与耐热性,改善树脂脆性;有机硅的耐热性和耐潮性良好,与酚羟基发生化学反应,可增强酚醛树脂的耐热性与耐水性;硼元素能显著改善酚醛树脂的耐热性、耐瞬间高温性、耐烧蚀性,增强其力学性能。

聚酰胺特性

1.聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的 差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团-[-NHCO-]-的热塑 性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是PA11、PA12、PA610、PA612,另外还有PA1010、PA46、PA7、PA9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括:增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 1.1.性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般 为15000-30000。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好, 有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良好,因而容易 增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm。

1.2.性能特点与用途 1.2.1.PA6 物性:乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工:成型加工性极好,可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊 接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用:轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、 储油容器等。 1.2.2.PA66 物性:半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而 尺寸稳定性差。 加工:成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、 焊接、粘接。 应用:与尼龙6基本相同,还可作把手、壳体、支撑架等。

空心玻璃微珠在复合材料中的应用研究

空心玻璃微珠在复合材料中的应用研究 空心玻璃微珠(ES)是由经特殊工艺制成的薄壁封闭的微小球形颗粒,具有中空、质轻、耐高低温、隔热保温、电绝缘强度高、耐磨、耐腐蚀、防辐射、隔音、吸水率低、化学性能稳定等优点,近年来作为复合材料填充剂,已广泛应用于建材、塑料、橡胶、涂料、航海和航天等领域。 1 空心玻璃微珠在建材中的应用 空心玻璃微珠密度低且不易吸水,可作添加剂制备低密度、低黏度、低渗透性及结合力强的轻质注浆水泥。用腔内全部填有水泥浆的空心微珠制成的轻质水泥(σc28值在27~33 MPa 之间),优于传统膨胀珍珠岩轻质水泥(σc28=1~5.5 MPa)和膨润土轻质水泥(σc28=17~40 MPa),且其隔热性能随微珠粒度的减小而提高。当微珠的腔内没有水泥浆时,样品的隔热性能得到最大改善。在美国,空心玻璃微珠已用于人造大理石生产,填充适当的空心玻璃微珠,可改善人造大理石纹理布局及颜色的连续性,降低固化时间,改善冲击强度,提高抗龟裂能力,降低破损率,同时改善机械加工性,减小后处理工具的磨损,且便于搬运及安装。人们开始将空心玻璃微珠用于涂料研究,以提高涂料的隔热、隔音性能。采用化学镀方法在玻璃微珠表面镀银并用于涂料中,结果表明,在控制反应温度和浓度的条件下,可使镀银玻璃微珠的红外辐射率由原来的1.02降为0.70,将其应用于涂料后,涂层的红外辐射率为0.80。 2 空心玻璃微珠在塑料、橡胶中的应用 近年来,空心玻璃微珠作为新型无机粉末填料用于工程塑料和橡胶的填充,使其具有优异的流变加工和抗冲击性能等优点。目前,研究较多的是对聚氯乙烯、聚乙烯、聚丙烯、聚酰胺、聚碳酸酯、有机硅树脂等的填充改性。用一步法和二步法两种混合工艺,研究了经过表面预处理的玻璃微珠填充PP的力学性能。结果表明,经过适当表面处理的玻璃微珠可以通过熔融共混均匀分散在PP中,粒子与基体界面结合良好。填充体系随着玻璃微珠含量的增加,拉伸强度增大,冲击强度下降。流动性随着玻璃微珠含量的增加而增大,然后随之下降。采用不同粒径的中空玻璃微珠填充聚丙烯,在较低的弯曲载荷下,随着HGB体积分数的增加,试样热变形温度(t d)明显增大;而在较高的弯曲载荷下,试样的t d增加缓慢,甚至有所下降。当载荷及微珠含量一定时,t d随着HGB粒径的增加而呈非线性函数形式增大。尼龙6是一种具有较好力学性能和热性能的工程塑料,通常是使用玻璃纤维进行改性来提高性能和拓展使用领域。但同时产生流动性差、玻纤外露、收缩率高、后翘曲严重、加工困难等不足。空心微珠是尺寸小,表面光滑坚硬,有极好的流动性、分散性,吸油率低,耐高温,用于填充尼龙可以改善浮纤外露,提高制品表面光洁度,改善流动性能,加工方便、降低收缩变形率,克服制品后翘曲现象,提高制品的耐热温度及耐磨、耐划伤性,且可以大大降低生产成本。研究人员以空心玻璃微珠为填料制备了玻璃微珠填充改性含油铸型尼龙复合材料,研究了复合材料的摩擦学性能和热性能。结果表明:加入玻璃微珠的复合材料的摩擦因数降低,耐磨性提高,其磨损行为主要是粘着磨损和磨粒磨损;该复合材料的热变形温度有所降低,但线膨胀系数减小。用硅烷偶联剂对空心玻璃微珠进行表面处理后填充MC尼龙,改善了MC尼龙和空心玻璃微珠的相容性,使复合材拉伸强度、弯曲强度和断裂伸长率比不经偶联剂处理的分别提高了约15.7%、12.2%和246%;同时耐热性提高,而吸水率和收缩率降低。夏英[11 ]在80%ABS树脂中加入20%的粒径为5 μm经表面处理的空心玻璃微珠,制得了综合性能较佳的空心玻璃微珠改性复合材料,其缺口冲击强度、拉伸强度、弯曲强度、弯曲弹性模量、熔体流动速率及氧指数分别为7.7 kJ/m2、47 MPa、69 MPa、2.75GPa、5g/10min和22.4%。邓聪[12]用空心玻璃微珠填充改性聚甲醛(POM),结果表明,影响复合体系性能的主导因素是

高分子论文综述(聚酰胺)

摘要 聚酰胺6的结构与性能之间存在相互关系,其加工方式多种多样,成型方式也多种多样,其加工工艺有六个方面需要注意。聚酰胺主要采用注塑和挤出。由于聚酞胺具有机械强度高、耐热性、耐磨性和耐油性优异等特点,已广泛应用于国民经济的许多领域。但由于其尚存在吸水性大、干态和低温冲击强度低等缺陷而限制了它在某些方面的应用。为此,国内外广泛开展了PA6的改性研究。 目前增强改性PA6主要研究有玻璃纤维、晶须、碳纳米管和热致液晶高分子材料增强改性聚酰胺6(PA6)的方法,并对其影响因素进行了分析。结果表明:4种增强材料均可提高PA6的力学性能;玻璃纤维是最常用的PA6增强材料,而短切玻纤因其易加工、成本低及良好的力学性能而被广泛应用。 PA6的应用市场广泛,未来PA6的研究方向将围绕低成本和高性能化、功能化不断发展。 关键词:聚酰胺6(PA6);加工工艺;增强改性;玻璃纤维;晶须;碳纳米管;热致液晶高分子材料;应用;低成本;功能化

目录 摘要 (2) 绪论 (4) 引言 (4) 一、PA6的结构与性能 (4) 二、PA6的加工 (6) 三、PA6的改性研究 (7) (一)改性研究的背景与意义 (7) (二)改性方向 (10) (三)增强改性PA6的研究进展 (11) 四、PA6的应用市场 (18) 五、PA6的发展展望 (21) 参考文献 (22)

绪论 引言 聚酰胺俗称尼龙(Nylon),英文名称Polyamid eP,它是大分子主链重复单元中含有酰胺基团的高聚物的总称。聚酰胺可由内酸胺开环聚合制得,也可由二元胺与二元酸缩聚等得到的。是美国DuPont 公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。PA的品种繁多,有PA6、PA66、PAll、PAl2、PA46、PA610、PA612、PAl010等,以及近几年开发的半芳香族尼龙PA6T和特种尼龙等新品种。 而聚酰胺 6 ( PA6) 是由德国 Farben 公司的 P.Schlack 开发,并于 1943 年实现工业化生产的,因其具备优良的耐热性、机械性、耐磨性、耐化学性、易加工等特点,被普遍用于机械设备、化工设备、航空设备、冶金设备等制造业中,成为工程塑料中用量最大的材料。 一、PA6的结构与性能 聚酰胺PA6是部分结晶性聚合物。PA6的结晶密度1.24g/cm3,结晶度约20%一30%,Tg约48℃。聚酰胺分子间通过酰氨基形成氢键,这是其物性优秀的重要因素。PA6化学结构式如图1-1.

碳纤维表面改性开题报告

南昌航空大学科技学院 毕业设计(论文)开题报告 题目碳纤维表面改性研究进展 专业名称高分子材料与工程 班级学号088102121 学生姓名刘强 指导教师万里鹰 填表日期2012 年 3 月16 日

碳纤维的表面改性研究进展 一.选题的依据及意义: 1.碳纤维简介 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、光穿透性高,非磁体但有电磁屏蔽性等。但未经表面处理的碳纤维表面惰性大,缺乏具有化学活性的官能团,与基体的黏结性差,界面中存在较多的缺陷,限制了碳纤维高性能的发挥。因此,国内外对碳纤维的表面改性研究非常活跃。碳纤维的表面改性主要通过提高碳纤维表面活性,强化碳纤维与基体树脂之间界面性能,达到提高复合材料层间剪切强度的目的。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 2 碳纤维表面结构与性能 碳纤维一般是用分解温度低于熔融点温度的纤维状聚合物通过千度以上固相热解而制成的,在热裂解过程中排出其它元素,形成石墨晶格结构。通过在氧气等离子气体中用腐蚀方法研究碳纤维的结构发现,石墨微晶在整个纤维中的分布是不均匀的,碳纤维由外皮层和芯层两部分组成,外皮层和芯层之间是连续的过渡层。延直径测量,皮层约占14%,芯层约占39%。皮层的微晶尺寸较大,排列较整齐有序。由皮层到芯层,微晶尺寸减小,排列逐渐变得紊乱,结构的不均匀性越来越显著,称之为过渡区。碳纤维表面的粗糙度、微晶大小、官能团的种类和数量对碳纤维与基体的结合性能有很大的影响。增加表面粗糙度有利于碳纤维与基体树脂的机械嵌合,增强锚锭效应;石墨微晶越大,处于碳纤维表面棱角和边缘位置的不饱和碳原子数目越少,表面活性越低,相反,微晶越小,活性碳原子的数目就越多,越有利于纤维与树脂的粘合;碳纤维表面的官能团如- OH、-NH2等能与基体

聚酰胺改性的意义

聚酰胺改性的意义,现状与发展趋势 摘要:聚酰胺(PA,俗称尼龙)是美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。 关键词:聚酰胺树脂综合性能加工增强改性性能 引言 聚酰胺是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。 正文 聚酰胺由二元酸与二元胺或由氨基酸经缩聚而得,是分子链上含有重复酰胺基团-CONH-的树脂总称。在用作纤维时,我国称为锦纶。PA品种繁多,有PA6、PA66、PA11、PA12、PA46、PA610、PA1010、PA612和近几年开发的新品种PA6T,PA9T,特殊尼龙MXD6等,其中PA6和PA66占主导地位,占总量的80%以上。PA属于结晶型塑料,在相对宽的温度和湿度范围内具有良好的综合性能,如拉伸强度高、耐摩擦、耐化学性(油、脂肪、脂肪族和芳香族烃类)、良好的冲击强度和阻隔性,而在此范围内,也有其不足的方面就是吸湿性大、吸水率高。 未改性前,在20℃、65%RH下,PA6吸水率约3.5%,PA66为2.5%左右,PA610为1.5%~2.0%,PA12约为1%;但改性后,PA吸水率非常小,如PA6T、9T在水中饱和吸水率仅为3%;未改性PA在干态和低温下冲击强度低,韧性差,除PA11和PA12外,其余经紫外辐照后性能将大大下降。填充、增强是改性PA 最常用的方法,可以提高冲击性能、尺寸稳定性、耐热性、阻燃性,PA可通过填料、增强剂或添加增韧剂、润滑剂、热稳定剂、加工助剂和着色剂来改进和提高性能,或同时使用添加剂和改性剂进行改性。 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性: ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。

尼龙66改性的最新研究进展

xx66改性的最新进展 第一章诸论 1.1xx66的概述 尼龙66是一种高档热塑性树脂,是制造化学纤维和工程塑料优良的聚合材料。它是高级合成纤维的原料,可广泛用于制作针织品、轮胎帘子线、滤布、绳索、渔网等。经过加工还可以制成弹力尼龙,更适合于生产民用仿真丝制品、泳衣、球拍及高级地毯等。尼龙66还是工程塑料的主要原料,用于生产机械零件,如齿轮润滑轴承等。也可以代替有色金属材料作机器的外壳。由于用它制成的工程塑料具有比重小,化学性能稳定,机械性能良好,电绝缘性能优越,易加工成型等众多优点,因此,被广泛应用于汽车、电子电器、机械仪器仪表等工业领域,其后续加工前景广阔。 尼龙66由己二胺和己二酸缩合制得,常见的尼龙是一种结晶性高分子,不同牌号、不同测试方法报道的尼龙66的熔点在250-271℃之间。由于尼龙66无定型部分的酞胺基易与水分子结合,常温下尼龙66的吸水率较高。与一般塑料相比,尼龙66的冲击韧性大,耐磨性优良,摩擦噪音小,另外,尼龙66对烃类溶剂,特别是汽油和润滑油的耐受力较强。尼龙66的90%应用于工业制品领域。 其中,尼龙在汽车工业中的用量占总用量的37%,其用途包括储油槽、汽缸盖、散热器、油箱、水箱、水泵叶轮、车轮盖、进气管、手柄、齿轮、轴承、轴瓦、外板、接线柱等。尼龙66的第二大应用领域是电子电器工业,消耗量占总量的22%,其用途包括电器外壳、各类插件、接线柱等。此外尼龙66也被广泛应用于文化办公用品、医疗卫生用品、工具、玩具等场合。 我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产 4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为

复合材料的性能和应用

摘要:近年来,各种复合材料制备技术日益更新,从陶瓷基复合材料、金属基复合材料到聚合物基复合材料,各种制备技术都得到了很大改善,使得复合材料的性能和应用得到了显著提高。本文综述陶瓷基复合材料、金属基复合材料、聚合物基复合材料等几种重要的研究方法以及应用。 关键词:先进,复合材料,制造技术。 正文:一·陶瓷基复合材料 工程陶瓷的开发是目前国内外甚为重视的新型材料研究领域。纯陶瓷材料因其脆性,不能满足苛刻条件下的使用要求。因此,目前广泛采取增韧技术来提高陶瓷的使用性能。纤维和晶须增韧陶瓷是一类有效的方法。用纤维来增韧陶瓷的技术是十年代以后开始的,最初是用碳纤维增强陶瓷,八十年代以来又开发了用陶瓷纤维和晶须增韧陶瓷,增韧效果不断取得进展,增韧技术也不断有所创新。连续纤维增强陶瓷基复合材料是最有前途的高温结构材料之一,以其优异的高韧性、高强度得到世界各国的高度重视。 连续纤维补强陶瓷基复合料(Continuous Fiber Reinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用.20世纪70年代初,科学家在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。 由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性[5-6],因此,在重复使用的热防护领域有着重要的应用和广泛的市场。连续纤维增韧陶瓷基复合材料具有类似金属的断裂行为,对裂纹不敏感,不会发生灾难性破坏。其耐高温和低密度特性,使其成为发展先进航空发动机、火箭发动机和空天飞行器防热结构的关键材料。 二·金属基复合材料 金属基复合材料具有比强度高,比刚度高,耐热,耐磨,导热,导电,尺寸稳定等优点,是一种很有发展前途的新材料,金属基复合材料广泛应用于制造航空抗天零部件,也用于制造各种民用产品。 按基体分,金属基复合材料分为:铝基、镁基、钛基、锌基、铁基、铜基等金属基复合材料;按增强材料分,可分为:纤维增强金属基复合材料;其纤维有C、SiC、Si3N4、B4C、Al2O3等纤维;粒子增强金属基复合材料,增强粒子有:Al2O3、TiC、SiC、Si3N4、BN、SiC、MgO等。 纤维增强金属基复合材料的制造方法: (1)叠层加压法:工艺过程是:将金属(合金)箔片或纤维增强金属片按要求剪裁,并一层一层的进行叠层,然后加热加压进行成型和连接,一般是在真空或气体中进行。适于这种方法的材料有铝、钛、铜、高温合金,其增强纤维随需要而定。为了改善连接性能,有事在两片之间加入中间金属或在待连接表面涂覆或沉积一层中间金属。 (2)辊轧成型连接法:其主要的基材是铝、钛箔片,增强纤维主要是B、C、SiC、Si3N4等,有时在基材表面要涂覆一层低熔点的中间金属,增强纤维表面要预先浸沾铝或经物理气相沉积(PVI)、化学气相沉积(CVI)处理。 (3)钎焊法:在增强纤维与基材之间加入箔状、粉末状或膏状的钎料,经真空钎焊或保护钎焊而成。钎焊法可以制造管材、型材、叶片等。 (4)热等静压法:如图2所示,其工艺过程是:将纤维与基材进行叠层并装入一模具中,

二聚酸型聚酰胺热熔胶的应用与改性研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

二聚酸型聚酰胺热熔胶的应用与改性研究进展 作者:祝爱兰, 孙静, 施才财, ZHU Ai-lan, SUN Jing, SHI Cai-cai 作者单位:上海轻工业研究所有限公司研发中心,上海,200031 刊名: 中国胶粘剂 英文刊名:CHINA ADHESIVES 年,卷(期):2008,17(12) 被引用次数:4次 参考文献(32条) 1.殷锦捷;马海云聚酰胺热熔胶牯剂的应用及发展趋势[期刊论文]-中国胶粘剂 2003(01) 2.高国生改性010聚酰胺树脂合成聚酰胺热熔胶的研究 2004 3.钟明强;徐立新;王先进热熔胶的开发与应用进展[期刊论文]-浙江化工 2000(04) 4.潘耀民二聚酸聚酰胺树脂的合成及其在制鞋工业中的应用 1997(01) 5.曹建平二聚酸聚酰胺包头胶的研制[期刊论文]-中国胶粘剂 1997(05) 6.杜郢改性聚酰胺树脂的合成及其在热熔胶领域的应用[期刊论文]-江苏石油化工学院学报 2002(01) 7.杜郢;蔡华兵;杨恩华废弃PET聚酯/二聚酸聚酰胺共聚物的合成及过程分析[期刊论文]-化工进展 2007(12) 8.金旭东;杨云峰;胡国胜聚酰胺热熔胶性能研究及其应用[期刊论文]-中国胶粘剂 2007(11) 9.牛丽红;王桂香;李春归汽车灯用热熔胶的研究及性能表征[期刊论文]-粘接 2005(01) 10.杨秀云;刘晓秋新型车灯热熔胶的研制[期刊论文]-长春理工大学学报 2007(03) 11.张彰热熔胶在电缆和光缆中的应用[期刊论文]-现代有限传播 1997(02) 12.孟宪铎热熔胶在油气管道接头密封上的应用[期刊论文]-粘接 1999(06) 13.李(足翟)亨;杨燕龙;吴宏聚酰胺与聚脂酰胺热熔胶及其制造方法 2002 14.LEONI R;GRUBER W;ROSSINI A Polyamide resin from dimer/trimer acid and N-alkyl diamine 1988 15.LEONI R;GRUBER W;WICHELHAUS J Adhesive composition comprising thermoplastic polyamide from dimer acid and N-substituted aliphatic diamine 1990 16.LEONI R;GRUBER W;WICHELHAUS J Adhesive composition comprising polyamide from dimer acid and Nalkyl diamine 1989 17.LEONI R;GRUBER W;ROSSINI A Polyamide of dimerized fatty acids and polyether urea diamines and their use as adhesives 1990 18.陈续明;贾兰琴;李瑞霞用于热熔胶的聚酰胺树脂合成组成与性能关系的研究[期刊论文]-中国胶粘剂 2000(01) 19.梁子材;李(足翟)亨;杨燕龙具有聚酰胺或聚酯酰胺结构的热态高强度热熔胶 1999 20.HEUCHER R;WICHELHAUS J;SCHUELLER K Hotmelt adhesive 1996 21.WICHELHAUS J;GRUBER W;ANDRES J Polymeric hotmelt adhesive 1988 22.DOUCET JOS Adhesive composition 1983 23.MATSUBA Y;TERADA N;OSAKO T Hot-melt polyamide adhesive and polyamide resin sheet-shaped molded product 2002 24.张华明;罗顺忠;赵鹏骥耐温保气型热熔胶的研制[期刊论文]-中国胶粘剂 1995(04) 25.张秀斌油气管道接口热收缩带用固定片及热熔胶的研制[期刊论文]-沈阳化工学院学报 2001(03) 26.陈续明;钟华;贾兰琴聚酯酰胺/EEA共混体组成与性能[期刊论文]-高分子材料科学与工程 2001(06) 27.陈续明;贾兰琴;李瑞霞聚酯酰胺/SIS共混体系的组成与性能[期刊论文]-石油化工 2001(01)

尼龙改性

尼龙改性认识 一、尼龙的种类及特性 1.1尼龙的种类 尼龙系分子主链的重复结构单元中,含有酰胺基(—CONH—)的一类热塑性树脂,包括脂肪族聚酰胺、脂肪-芳香族聚酰胺及芳香族聚酰胺。脂肪族聚酰胺品种多、产量大、应用广泛,既可作纤维,也可作塑料。脂肪-芳香族聚酰胺品种少,产量也小;芳香族聚酰胺常简称为聚芳酰胺,主要用作纤维(芳纶)。脂肪族尼龙分尼龙6、尼龙66、尼龙1010等。 1.2尼龙的特性 尼龙属于聚酰胺,在它的主链上有氨基。氨基具有极性,会因氢键的作用而相互吸引。所以尼龙容易结晶,可以制成强度很高的纤维。聚酰胺为韧性角质状半透明或乳白色结晶性树脂,常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万。 各种聚酰胺的共同特点是耐燃,抗张强度高(达104MPa),耐磨,电绝缘性好,耐热(在455kPa下热变形温度均在150℃以上),熔点150~250℃,熔融态树脂的流动性高,相对密度1.05~1.15(加入填料可增至1.6),大都无毒。

二、尼龙的现有主要种类及市场概况 2.1HTN HTN属于杜邦尼龙家族。杜邦HTN分为51G、52G、53G和54G四个系列,其中51G、52G和54G是属于6T的改性产品,可归属于半芳香族尼龙PPA,而53G系列因分子中苯环含量较少杜邦把它归为高性能尼龙。 Zytel?HTN51G=PA6T/MPMDT………..PPA Zytel?HTN52G=PA6T/66……………….PPA Zytel?HTN53G=PA……………………..HPPA Zytel?HTN54G=PA6T/XT+PA6T/66…PPA 作为老牌尼龙制造商,拥有强劲开发实力的杜邦实现HTN的工业化也比较早,并最先推出高温尼龙的无卤阻燃系列。杜邦高温尼龙目前在市场上表现平平,后期在无卤规格上可能会有所作为。 2.2 ARLEN? PA6T ARLEN?为日本三井化学公司所开发出的一种耐高温尼龙,是基于对苯二甲酸,己二酸及己二胺的改性尼龙6T,其熔点高达310℃。ARLEN?主要应用于电子零件用ARLEN为一种对于苯二甲酸,己二酸及己二胺的改質尼龙6T,其熔点高于310℃。电子零件。ARLEN 的主要特性为优异的高温刚性,尺寸安定性以及耐化学品性。 2.3 PA9T PA9T由KURARAY公司首度开发成功并实现工业化。商品名为

木塑复合材料的分类及改性

木塑复合材料的分类及改性木塑复合材料(Wood-plastic composites,简称WPC)是采用木材加工剩余物、森林抚育剩余物、废旧木材、农作物秸秆等木质纤维材料和废旧热塑性塑料为主要原料,通过挤出、压制等成型方式形成的复合材料[1]。木塑复合材料既具有木质纤维材料的高强度和高弹性,又具有塑料的高韧性和耐疲劳等优点,是一种既似木材又优于木材的新型代木材料[2]。 2010 年中国国内木材需求总量约为3.6亿m3,供需缺口达到1.2亿m3。随着需求的增加,供需缺口逐年增大,预计2015年达1.5 亿m3,2020年达2亿m3,到2050年接近6亿m3[3]。木材资源供应愈发严重不足的形势将在一定程度上影响我国整个国民经济的发展。速生丰产木材因其生长周期短、成材率高、经济效益好等显著特点而受到越来越多厂商和研究者的青睐。我国人工速生林主要品种有杨木、柳木、桦木、泡桐和桉木等。然而,速生木材与天然针叶木、阔叶木相比,存在着材质差、纤维短、易变形、易腐朽虫蛀等缺点,无法满足高档次木材加工业的要求,缺乏应用价值与经济价值。因此,研究者以基于物理、化学原理的新技术对速生木材进行改性,使其性能得到大幅度提升甚至达到优质天然木材的性能[4],早在20 世纪30 年代,改性后的压缩木就曾用于欧美军用飞机以防雷达探测,目前速生木材改性技术是世界发达国家重点研究的技术领域之一。木塑复合材料(WPC) 就是木材改性的一种。 木屑是木塑复合材料的主要原料之一。目前纳入国家和地方生产计划的林区和大中城市制材加工厂,每年要产生大约250 万吨木屑,其中只有一小部分得到利用,大部分被丢弃,造成一定程度的环境污染和原料浪费。废旧塑料是木塑复合材料的另一主要原料,据我国轻工部门统计,2000年全国塑料制品总产量

聚酰胺改性研究进展

聚酰胺改性研究进展 摘要:聚酰胺(尼龙,英文缩写为PA)是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。本文对近些年来聚酰胺改性方面的研究进展进行综述。 关键词:PA6 聚酰胺-胺聚酰胺石墨N -甲基吡咯类聚酰胺 1. PA6的增容改性 聚酰胺6(PA6)具有优良的力学性能,并且耐磨性和自润滑性好,易成型加工,是应用极广的工程塑料。但PA6具有吸湿大、尺寸不稳定、成型收缩大的缺点。而聚对苯二甲酸丁二醇酯(PBT)具有刚度好、强度高、耐热老化性优异、耐有机溶剂性好、易加工成型等优点,同时也具有冲击韧性差、在高温、高湿环境下易分解等缺点。将两者制成合金,可改善PA6的吸水性和PBT的冲击脆性。陈兴江等人采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。结果表明:EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为1~1.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。并采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为1~1.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。 2.OMMT改性PA6制备纳米复合材料 周雪琴等人采用环氧树脂改性MMT ,得到有机化改性的OMMT ,然后通过熔融插层法制备PA6/ OMMT 纳米复合材料,并利用X 射线衍射仪、透射电子显微镜、万能材料试验机等研究了纳米复合材料的形态结构、力学性能及热稳定性结果表明,经环氧树脂改性得到的OMMT 的层间距明显增加,从未改性的1. 22 nm 增加到 5. 13 nm ,并以纳米尺度分散于PA6 基体中;随着OMMT 含量的增加,PA6/ OMMT 复合材料的拉伸强度、弯曲强度和弯曲模量增加,热变形温度提高,拉伸强度可达76 MPa ,弯曲模量达到 3.462GPa,热变形温度为134 ℃;PA6/OMMT复合材料失重10%时的温度为422℃,比纯PA6 提高16 ℃,提高了PA6 的热稳定性。 3.改性聚酰胺-胺树枝状高分子 用乙二醇改性王持等人合成了PAMAM-PEG作为基因载体,PAMAM-PEG 细胞毒性能有效降低,但转染率也有所降低,引入少量(10%) PEG 改性的效果更为显著。王持等人以IDPI 为偶联剂,由相对分子量2000 的甲氧端基聚乙二醇

电化学处理对碳纤维表面改性的研究

电化学处理对碳纤维表面改性的研究 摘要:简要介绍了碳纤维表面电化学处理的作用和工艺,分析了电化学处理效 果的影响因素,及其对纤维力学性能和层间剪切强度的影响。 关键词:电化学处理;电解;层剪;刻蚀 引言 碳纤维表面经过电化学处理,可以提升其与树脂基体的结合牢固性,但同时会牺牲一定 的力学性能。 1 电化学处理的作用 纤维经过高温炭化工序后,表面缺少活性基团,导致其与树脂的结合效果差,表现为层 间剪切强度(以下简称“层剪”)低。当纤维-树脂复合材料受力时,由于纤维与树脂结合力弱,外力并不能很好地从树脂传递到纤维上,使得整体承载能力降低。经电化学处理后,纤维表 面发生氧化反应,生成羰基、羧基等不饱和含氧官能团,增强了纤维与树脂之间的化学键合力,使两者结合得更牢固。另外,电化学处理对纤维表面有刻蚀作用,增加了粗糙度,从物 理方面增强了纤维与树脂的结合性。 2 电化学处理的原理 电化学处理过程实际上是一个将电能转化为化学能的过程,利用碳纤维的导电性,将其 作为阳极,发生氧化反应,在纤维与阴极之间充满电解液,然后通入直流电构成完整回路。 在电压作用下,水或OH-在纤维表面放电(酸性和中性电解液主要是水,碱性电解液主要是OH-),产生活性氧对纤维表面进行氧化,最终生成所需的含氧官能团。 3 影响电化学处理的因素 影响电化学处理效果的因素有很多,如电解质的种类、浓度、温度,处理时间和电流密 度等。其中处理时间可通过走丝速度来调节,各纤维生产商工艺定型后走丝速度一般就已固定,不再做调整,因此处理时间在此不再讨论。 3.1 电解质种类 不同种类电解质对纤维表面的电化学处理效果有较大差异,即使浓度相同,电导率不同,则电流密度不同;另外,酸/碱度不同,则氧化效果不同,一般酸性电解质的氧化效果强于碱性电解质。 3.2 电解液温度 电解液温度会影响电化学反应的难易程度和反应速度,且温度越高,反应越容易发生, 反应速度越快。经研究发现,温度的升高会使水的析氧、析氢反应更早、更快地发生,单位 时间产生出更多的活性氧,使得纤维表面的氧化反应更为剧烈。 3.3 电解液浓度 电解液浓度会影响电化学反应的速度,且浓度越大,反应速度越快,但不会影响其发生 的难易程度。经研究发现,浓度越高,电解液的析氧、析氢反应越剧烈,单位时间产生的活 性氧越多,表现为氧化反应的速度快。 3.4 电解液电流密度 3.4.1 电流密度对纤维表面含氧官能团的影响 经研究发现,未经电化学处理的纤维表面O的存在形式主要是C-O;而经过电化学处理 的纤维表面碳环被打开,C-C先被氧化成C-O,再被氧化成C=O和-O-C=O,生成羰基、羧基 等含氧官能团,即C-O的数量先增加后减少,C=O的数量持续在增加。我们可用C-O和C=O 的比例来判断纤维表面的氧化程度,也可用来评估电解质的氧化能力。 需要注意的是,随着电流密度增加,酸性电解液单位时间在纤维表面生成的C=O和-O- C=O等不饱和官能团多于碱性电解液,即酸性电解质的氧化效果强于碱性电解质。纤维厂商 往往根据自身产品特点选用合适的电解质,如石墨纤维因表面质地紧密,需采用NH4H2P04 等酸性电解质提供更强的氧化效果,而普通碳纤维则采用NH4HC03等弱碱性电解质即可。 3.4.2 电流密度对纤维表面刻蚀的影响 若采用碱性电解液,氧在较低的电流密度作用下即可析出,OH-在纤维表面产生大量的活

相关主题
文本预览
相关文档 最新文档