当前位置:文档之家› 2.FluorCam叶绿素荧光成像技术

2.FluorCam叶绿素荧光成像技术

Fluorcam多光谱荧光成像技术及其应用

FluorCam多光谱荧光成像技术(Multi-color FluorCam) 自上世纪90s年代PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM脉冲调制叶绿素荧光技术与CCD技术结合在一起,成功研制生产FluorCam叶绿素荧光成像系统(Nedbal等,2000)以来,FluorCam叶绿素荧光成像技术得到长足发展和广泛应用,先后有封闭式、开放式(包括标准版和大型版)、便携式叶绿素荧光成像系统,及显微叶绿素荧光成像系统、大型叶绿素荧光成像平台(包括移动式、样带式、XYZ三维扫描式等)等,近些年还进一步发展了PlantScreen植物表型成像分析平台(Phenotyping)(有传送带版、XYZ三维扫描版及野外版等)及多光谱荧光成像技术。 Multi-color FluorCam多光谱荧光成像技术包括多激发光-多光谱荧光成像技术和UV 紫外光激发多光谱荧光成像技术: 1.多激发光-多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光) 到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、绿波轮及相应滤波器,对不同波长荧光(多光谱荧光)进行成像分析。如FluorCam便携式GFP/Chl.荧光成像仪及FluorCam封闭式GFP/Chl.荧光成像系统具备红光和兰光及相应滤波器,可以对GFP和叶绿素荧光成像分析;FluorCam开放式多光谱荧光成像系统可以进一步选配不同颜色的激发光,如除红光、蓝光外,还可选配绿色光源及相应滤波器,以对YFP进行荧光成像分析等; 2.UV紫外光激发多光谱荧光成像技术:长波段UV紫外光(320nm-400nm)对植物叶片 激发,可以产生具有4个特征 性波峰的荧光光谱,4个波峰 的波长为兰光440nm(F440)、 绿光520nm(F520)、红光690nm (F690)和远红外740nm (F740),其中F440和F520 统称为BGF,由表皮及叶肉细 胞壁和叶脉发出,F690和F740 为叶绿素荧光Chl-F。紫外光 激发多光谱荧光(UV-MCF)可 以用来灵敏、特异性地评估植 物生理状态包括受胁迫状态, 包括干旱、病虫害、环境污染、 氮胁迫等 本文就FluorCam多光谱荧光成像技术产品及最新应用案例做一简单介绍,其中FluorCam便携式GFP/Chl荧光成像仪(Handy GFPCam)和FluorCam封闭式GFP/Chl荧光成像系统(Closed GFPCam)已有较为详细的资料介绍,在此不再专门介绍。

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

活体动物光学成像系统在活体荧光成像中的应用

活体动物光学成像系统在活体荧光成像中的应用 第一部分技术原理 一、技术简介 随着活体动物光学成像技术在国内外的普及和应用,越来越多的科研人员希望能通过该技术来观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。NightOWL ⅡLB 983 NC320活体动物光学成像系统正是为满足这样的应用需求而设计的。该系统通过荧光光路的特殊设计,实现了对激发光的能量控制和调节,提高了活体荧光成像的稳定性和灵敏度,并且该系统操作简单、费用低廉、不涉及放射性,是不错的进行活体荧光成像的仪器。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪成像,既可以提高数据的可比性,避免个体差异对试验结果的影响。更重要的是,该技术可以得到直观的成像图片,了解标记物在动物体内的分布和代谢情况,避免了传统的体外实验方法的诸多缺点,特别是在药物制剂学、药物临床前研究中有不可估量的应用前景。 NightOWL ⅡLB 983 NC320活体荧光体内成像技术的基本原理是激发光源通过特殊的光路设计使其能量稳定、强度合适的激发光使荧光基团达到较高的能量水平,然后发射出较长波长的散射光,该散射光可以穿透实验动物的组织并且可由仪器cooling slow scaning CCD以光子数量化检测到光强度,同时反应出标记物的数量。 二、标记原理 活体荧光成像技术有三种标记方法:荧光蛋白标记、荧光染料标记和量子点标记。荧光蛋白适用于标记肿瘤细胞、病毒、基因等。通常使用的是GFP、EGFP、RFP(DsRed)等。荧光染料标记和体外标记方法相同,常用的有Cy3、Cy5、Cy5.5及Cy7,可以标记抗体、多肽、小分子药物等。量子点标记作为一种新的标记方法,是有机荧光染料的发射光强的20倍,稳定性强100倍以上,具有荧光发光光谱较窄、量子产率高、不易漂白、激发光谱宽、颜色可

小动物近红外二区荧光活体影像系统

仪器名称:小动物近红外二区荧光活体影像系统 百购生物网为您提供 型号:Series II 900/1700 简介: 针对传统活体荧光成像技术面临的低组织穿透深度(<3毫米)和低空间分辨率(~毫米)、高自发荧光背景等瓶颈,苏州影睿光学科技有限公司的研究团队历经多年潜心研究,于2012年推出了第一款基于近红外二区荧光(NIR-II,900-1700nm)的小动物活体影像商业化系统(Series II 900/1700),实现了高组织穿透深度(>1.5cm)、高时间分辨率(50ms)和高空间分辨率(25μm)的活体荧光成像。 Series II 900/1700可针对不同的研究体系,在小动物活体水平进行实时、无创、动态、定性和定量的影像研究,包括肿瘤早期检测、肿瘤发展、转移和治疗过程、药物筛选、靶向药物和靶向治疗、干细胞活体示踪及其再生医学研究等。影睿光学拥有世界领先的量子点制备和应用专利技术、活体荧光影像设备,以及强大的数据处理和分析功能,为用户提供完整的科研产品及解决方案。 目前,影睿光学Series II 900/1700系统已成功销往美国埃默里大学,并与美国哈弗大学医学院、美国康奈尔大学、美国埃默里大学、北京大学、复旦大学附属华山医院、南京大学附属鼓楼医院、中国科学院北京动物研究所、中国科学院上海药物研究所等数十家国内外优秀研究机构建立了良好的商业伙伴及合作关系。

技术优势: 荧光活体成像解决方案:近红外二区荧光成像

活体组织对近红外二区荧光(1000-1700nm)具有更低的吸收和散射效应,以及可以忽略的自发荧光背景,因此,在活体荧光成像中,与传统荧光(400-900nm)相比,近红外二区荧光具有更高的穿透深度、更高的时间和空间分辨率,以及更高的信噪比。 近红外二区荧光探针解决方案:Ag2S 量子点

荧光成像的原理和方法

荧光成像的原理与方法 荧光成像在基因组学和蛋白质组学等生物学领域应用中的独特优势: 高灱敏度:灱敏度进超比色法,在大部分应用中其灱敏度近乎放射性同素。 多组样品一次成像:将不同样品(如:对照、处理)通过不同发射波长的荧光素标记(如 Cy3或 Cy5等)可以同时检测多样品荧光信号。 稳定性高:较放射性同位素相比,荧光素标记的抗体、杂交探针、PCR引物等的信号稳定性优势明显,可稳定存在数月以上,这使需要大规模标记并多阵列之间的标准化比较成为了可能。 低毒性成本低:多数情况下,荧光标记和检测的全过程试验用手套即可对实验者提供足够的保护。易于运输和实验后处理,多数情况下实验成本低于放射性同位素。 商业可获得性:许多重要的荧光标记型生物大分子如各种单抗、多抗、CAT等及荧光标记用试剂盒都可以方便获得,同时一些公司提供荧光标记的外包服务。 荧光信号的产生及信号捕获原理: 荧光物质被特定外界能量激发(如激光等高能射线),引起其电子轨道向高能轨道跃迁, 并最终释放能量回归基态的过程中会产生可被检测的荧光信号。当然不是所有的物质都能被激发产生荧光,只有当该物质与激发光具有相同的频率并在吸收该能量后具有高的荧光效率而非将能量消耗于分子间碰撞过程中,其荧光信号才可被光学设备所检测(Fig.1)。 Fig.1 ①激发能②无辐射弛豫能③荧光发射能。三种荧光素(绿色:fluorescein;黄色:DNA-bound TOTO TM;红色:DNA-bound EB)的激发光波长(a)和发射光波长(b)。 荧光成像系统的组件和工作原理: 荧光物质被激发后所发射的荧光信号的强度在一定范围内是与荧光素存在的量成线性关系的,这是荧光成像系统应用于生物学研究的理论基础,激光扫描系统的性能指标主要有:系统分辨率、线性范围、均一性、灱敏度。 为了实现荧光信号的激发、捕获和放大的检测过程,按照顺序荧光成像系统主要包括以下组件:激发源(Excitation resource)、激光传输组件(Light delivery optics)、荧光收集组件(Light collection optics)、发射滤镜(Emission filter)和信号检测放大组件(Detection and amplification)(Fig.2)。在荧光成像系统工作的过程中,每个组件的性能都关系着最终荧光信号的收集和检测结果。

Xenics红外相机在第二近红外小动物活体荧光成像方面的应用-4

Xenics液氮制冷相机在第二近红外小动物活体荧光成像方面的应用 1、应用背景介绍 癌症作为四大不治症之一,一直以来都是全球各国希望攻克的难题。World Cancer2014报告指出:全球范围内每年癌症新增病例高达1400万,死亡病例高达820万,而2010年全球在癌症上投入的资金为1.16万亿美金,为全球生产总值的2%。 影像方法一直以来都是癌症研究、药物开发,以及一般医疗行业重要的辅助研究手段;传统的获取影像的方法主要包括X-Ray成像、可见光成像以及核磁成像。X-Ray 成像主要是通过X光探测器来探测穿透人体组织后的X光影像,主要包括DR、CT、PET 等设备,但是X光成像由于有辐射,对人体有伤害,且这些成像技术的空间分辨率有限,很难实现微小病灶的早期检测,进而影响早期治疗。同样,由于这些设备的时间分辨率有限,不适合外科医生长期手术使用;可见光成像主要通过探测400nm—700nm范围内的可见光来获取影像信息,但是可见光无法获得被探测人和物内部的信息;MRI也是医疗行业一个有力的手段,但是MRI设备拍摄时间长、费用昂贵,无法在术中使用。 图1:CT、PET探测设备 基于上述背景,越来越多的生命科学工作者开始了其他影像方法对癌症检测价值的研究。近红外成像由于能够获得更高的空间分辨率和更高的时间分辨率,获得了越来越多研究者的喜爱。同时,由于更深的探测深度,以斯坦福大学为首的众多科研院所和高

校开始了第二近红外成像的研究。 图2:红外成像探测深度VS 可见光成像探测深度 2、第二近红外荧光成像研究原理 近红外成像,由于时空分辨率都比Micro-CT和PET高,又没有辐射,同时可以在手术中使用等,被广泛研究。近红外成像主要分为第1近红外(0.75um—0.9um)成像和第2近红外(1.1um--1.4um)成像,而第2近红外成像由于可以获得更深的探测深度(1 - 3毫米),更高的空间分辨率(~ 30毫米),更高的时间分辨率(< 200 ms 每帧),更受期待。 图3:可见光成像、红外成像,以及可见光和红外成像融合图 小动物体内的荧光基团,在激光的照射下,会辐射出比激发光波长更长的光子信号,辐射出来的光子穿透组织到达体表,被能够探测到900nm-1700nm近红外谱段的InGaAs材料的液氮制冷相机获取并成像,通过对荧光信息成像的分析,进而获取小动物体内血管、肿瘤等信息;

小动物活体成像技术

小动物活体成像技术 关键词:动物成像分子影像学光学成像2010-04-20 00:00来源:互联网点击次数:5089 1、背景和原理 1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。 传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事件。分子成像则是利用特异性分子探针追踪靶目标并成像。这种从非特异性成像到特异性成像的变化,为疾病生物学、疾病早期检测、定性、评估和治疗带来了重大的影响。 分子成像技术使活体动物体内成像成为可能,它的出现,归功于分子生物学和细胞生物学的发展、转基因动物模型的使用、新的成像药物的运用、高特异性的探针、小动物成像设备的发展等诸多因素。目前,分子成像技术可用于研究观测特异性细胞、基因和分子的表达或互作过程,同时检测多种分子事件,追踪靶细胞,药物和基因治疗最优化,从分子和细胞水平对药物疗效进行成像,从分子病理水平评估疾病发展过程,对同一个动物或病人进行时间、环境、发展和治疗影响跟踪。 2、分子成像的优点 分子成像和传统的体外成像或细胞培养相比有着显著优点。首先,分子成像能够反映细胞或基因表达的空间和时间分布,从而了解活体动物体内的相关生物学过程、特异性基因功能和相互作用。第二,由于可以对同一个研究个体进行长时间反复跟踪成像,既可以提高数据的可比性,避免个体差异对试验结果的可影响,又不需要杀死模式动物,节省了大笔科研费用。第三,尤其在药物开发方面,分子成像更是具有划时代的意义。根据目前的统计结果,由于进入临床研究的药物中大部分因为安全问题而终止,导致了在临床研究中大量的资金浪费,而分子成像技术的问世,为解决这一难题提供了广阔的空间,将使药物在临床前研究中通过利用分子成像的方法,获得更详细的分子或基因述水平的数据,这是用传统的方法无法了解的领域,所以分子成像将对新药研究的模式带来革命性变革。其次,在转基因动物、动物基因打靶或制药研究过程中,分子成像能对动物的性状进行跟踪检测,对表型进行直接观测和(定量)分析; 3、分类 分子成像技术主要分为光学成像、核素成像、磁共振成像和超声成像、CT成像五大类。 (1) 光学成像 活体动物体内光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够直接监控活体生物体内的细胞活动和基因行为。通过这个系统,可以观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。传统的动物实验方法需要在不同的时间点宰杀实验动物以获得数据, 得到多个时间点的实验结果。相比之下,可见光体内成像通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,所得的数据更加真实可信。

植物表型组学研究技术(一)FluorCam 叶绿素荧光成像技术

植物表型组学研究技术(一) ——FluorCam叶绿素荧光成像技术

FluorCam叶绿素荧光成像技术 Rousseau等(High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis.Plant Methods, 2013, 9:17),利用FluorCam开放式叶绿素荧光成像系统作为高通量表型分析平台,采用图像阈值分割等分析方法,对植物病原体感染进行了定量分析检测,根据Fv/Fm将感染分为不同阶段/等级,特别是可以将用其它方法难以分辨出来的感染前期加以分辨,并对5个品种的菜豆对普通细菌性疫病的抗性进行了定量分析评价。 PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM叶绿素荧光技术(Pulse Amplitude Modulated technique—— 脉冲调制技术)与CCD技术结合在一起,于1996 年在世界上成功研制生产出FluorCam叶绿素荧 光成像系统(Heck等,1999;Nedbal等,2000; Govindjee and Nedbal, 2000)。FluorCam叶 绿素荧光成像技术成为上世纪90年代叶绿素荧 光技术的重要突破,使科学家对光合作用与叶 绿素荧光的研究一下子进入二维世界和显微世 界,广泛应用于植物生理生态、植物胁迫与抗 性监测、作物育种、植物表型分析等。不同于 其它成像分析技术,FluorCam叶绿素荧光成像 只对叶绿素荧光波段敏感,可以有效避免环境 光的干扰,特异性、高灵敏度反映植物生理生 态状况。 主要功能特点如下: 1)高灵敏度CCD,时间分辨率可达50帧/秒,有效抓取叶绿素荧光瞬变;可选配高分 辨率CCD,分辨率1392x1040像素,用于气孔功能成像分析、稳态荧光如GFP荧光测量等

藻类叶绿素荧光仪快讯

藻类研究监测快讯 藻类是水体生态系统中的生产者,在生态系统中起着不可或缺的作用。随着能源与环境方面研究的深入,藻类已经越来越多的被利用到实验当中。叶绿素荧光是藻细胞中的叶绿素吸收光能后受激发而释放出的能量,通过检测荧光的强弱, 可初步判断藻类的光合作用强度及生理状况。该项技术使藻 类的生理生化研究变得更加简单、方便、精确。 重要参数如下: Ft瞬时荧光,与藻细胞浓度、叶绿素浓度有 关。在暗适应状态下测得的Ft值即为Fo最小荧 光值,在给予饱和光照时,即为Fm最大荧光值; QY反映藻类的光合效率,对胁迫非常敏感;暗适应条件下测得的QY值为最大光合效率值即(Fm-Fo)/Fm,反映藻类的潜在光合效率,光照下测得的QY值为有效光量子产量即(Fm’-Ft)/Fm’,反映藻类的实际光合效率。 OJIP曲线快速荧光诱导曲线,可测定藻类在由暗适应转到光照下的瞬间荧光变化,其中 FixArea与藻类叶绿素浓度 呈正相关,可作为藻类浓度 指标;PI为功能指数,对 胁迫非常敏感。有些胁迫不 会影响PSⅡ,也不会导致 QY降低,但可通过PI体 现出来,PI可以反映三个方面:反应中心密度、用于电荷分离过程的光子吸收率、电子传递效率。 NPQ 非光化学荧光淬灭,多余辐射能的散失,反映的藻类的光保护能力。 1、AquaPen探头式藻类荧光仪 AquaPen探头式藻类荧光仪用于水体微藻类的荧光测量,其高灵敏度和便携性可以对水 体较低浓度的浮游植物进行快速测量。检测极限可达0.5 μg Chl/L,测量计算参数:Fo, Ft, Fm, Fm‘, QY, OJIP, NPQ等。 光化学光和饱和光的强度在0 - 3,000 μmol·m-2·s-1可调,光 化光的持续时间可调,界面简单,易于操作,内存可达4Mb, 4节AAA电池供电,数据可通过USB数据线传至计算机或 掌上电脑。检测器前带有暗适应罩子,适合野外测量。

小动物活体成像技术_浙江大学汇总

小动物活体成像技术 李冬梅万春丽李继承 摘要:随着小动物成像技术的发展,活体小动物非侵袭性成像在临床前研究中发挥着越来越重要的作用。本文围绕五种小动物成像专用设备,综述其特点及主要应用,比较各种设备的优势和劣势,总结小动物活体成像设备的发展趋势。 关键词:小动物;活体;成像技术 Small living animal imaging technology LI Dong-Mei1 WAN Chun-li 2 LI Ji-Cheng 1 (1Medical college of Zhejiang university,2Shanghai sciencelight biology sci&tech Co.,Ltd.)Abstract: With the development of small animal imaging technology, non-invasive imaging in small living animal models has gained increasing importance in pre-clinical research. Based on five kinds of small animal imaging special equipments, this article reviews their characteristics and illustrates their main applications. Meanwhile, this article also compares the advantages and limitations of these equipments and summarizes the trends of small living animal imaging equipments. Key words: small animal;living; imaging technology 动物模型是现代生物医学研究中重要的实验方法与手段,有助于更方便、更有效地认识人类疾病的发生、发展规律和研究防治措施,同时大鼠、天竺鼠、小鼠等小动物由于诸多优势在生命科学、医学研究及药物开发等多个领域应用日益增多。近年来各种影像技术在动物研究中发挥着越来越重要的作用,涌现出各种小动物成像的专业设备,为科学研究提供了强有力的工具。 动物活体成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。动物活体成像技术主要分为光学成像(optical imaging)、核素成像(PET/SPECT)、核磁共振成像(magnetic resonance imaging ,MRI)、计算机断层摄影(computed tomography,CT)成像和超声(ultrasound)成像五大类。 活体成像技术是在不损伤动物的前提下对其进行长期纵向研究的技术之一。成像技术可以提供的数据有绝对定量和相对定量两种。在样本中位置而改变,这类技术提供的为绝对定量信息,如CT、MRI和PET提供的为绝对定量信息;图像数据信号为样本位置依赖性的,如可见光成像中的生物发光、荧光、多光子显微镜技术属于相对定量范畴,但可以通过严格设计实验来定量[1]。其中可见光成像和核素成像特别适合研究分子、代谢和生理学事件,称为功能成像;超声成像和CT则适合于解剖学成像,称为结构成像,MRI介于两者之间。 1 可见光成像 体内可见光成像包括生物发光与荧光两种技术[2]。生物发光是用荧光素酶基因标记DNA,利用其产生的蛋白酶与相应底物发生生化反应产生生物体内的光信号;而荧光技术则采用荧光报告基因(GFP、RFP)或荧光染料(包括荧光量子点)等新型纳米标记材料进行标记,利用报告基因产生的生物发光、荧光蛋白质或染料产生的荧光就可以形成体内的生物光源。前者是动物体内的自发荧光,不需要激发光源,而后者则需要外界激发光源的激发[3]。 1.1 生物发光:哺乳动物生物发光,一般是将萤火虫荧光素酶(Firefly luciferase)基因整合到需观察细胞的染色体DNA上,以表达荧光素酶,培养出能稳定表达荧光素酶的细胞株,当细胞分裂、转移、分化时,荧光素酶也会得到持续稳定的表达[4]。标记后的荧光素酶

叶绿素荧光成像技术及其在光合作用研究中的应用

Fluorcam荧光成像技术及其在光合作用研究 中的应用 Eco‐lab生态实验室 北京易科泰生态技术有限公司 info@eco‐https://www.doczj.com/doc/738022854.html,

目录 1、叶绿素荧光成像技术发展过程 2、荧光参数及其生理意义 3、PSI介绍(荧光成像的发明者) 4、PSI产品介绍 5、应用案例

叶绿素荧光技术发展历程 ?Kautsky effect: Kautsky and Hirsch(1931)首次用肉眼发现叶绿素荧光现象并发表论文“CO2同化新实验”,后被称作“Kautsky effect” ?PAM(Pulse Amplitude Modulated Fluorometer): Schreiber(1986)等发明了PAM脉冲调制技术测量叶绿素荧光。?FluorCam:KineKc imaging of chlorophyll fluorescence: Ladislav Nedbal(2000)等于上世纪90年代末期发明了与 PAM技术相结合的叶绿素荧光成像技术

成像测量局部放大

荧光参数及其意义 ?Fo、Fm与QY,此外还有PAR_Abs及ETR ?Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd ?荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,NPQ,Qp,Rfd 等50多个参数 ?OJIP曲线:快速荧光诱导曲线。Fo,Fj,Fi,P或Fm,Mo(OJIP曲线初始斜率)、FixArea固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QY、PI等 ?LC光响应曲线:Fo,Fm,QY,QY_Ln

叶绿素荧光仪著名厂商 ?PSI:捷克布尔诺Brno(孟德尔在此发现著名的孟德尔遗传定律),Ladislav Nedbal为首席科学家和主要股东(另一股东为David Kramer,美国密执根州立大学教授),1997年为美国华盛顿大学H.Pakrasi教授研制成了第一台FluorCam荧光成像系统。主要产品有: –FluorCam叶绿素荧光成像系列产品 –FL3500/FL5000双调制荧光仪系列产品 –FluorPen及AquaPen等手持式荧光仪产品 –光养生物反应器等藻类培养与在线监测产品 –光源与植物培养室 ?Optics:美国,主要产品为OS5p‐PAM叶绿素荧光仪等?Walz:德国,主要产品为PAM2500叶绿素荧光仪等

光声成像与近红外光学成像的完美结合

1,光声成像结合近红外光学,两种成像模式的融合: 近红外超声成像技术的原理:当近红外脉冲激光照射到生物组织上,生物组织吸收光能量而产生热膨胀,在脉冲间隙释放能量发生收缩。伴随着热胀冷缩的过程会产生高频超声波,吸收光能量的多少决定了产生的超声波的强度。因为不同的组织对近红外光的吸收不同,于是就会产生不同强度的超声波,这个技术对于血管成像十分理想,因为血红蛋白是近红外超声成像内源性的造影剂。利用这个技术,在肿瘤学的研究中可以用来区分正常组织和病变组织(因为癌症组织的血管十分丰富)。另外,光声成像技术检测的是超声信号(该技术克服了纯光学成像技术在成像深度与分辨率上不可兼得的不足),反映的是光能量吸收的差异(补充纯超声成像技术在对比度和功能性方面的缺陷),结合近红外光学和超声这两种成像技术各自的优点,能实现对组织体较大深度的高分辨率、高对比度、高灵敏度的结构成像和功能成像的结合,并且能对感兴趣区域(肿瘤部位)做断层成像,效果要优于小动物CT。并且近红外成像由于其穿透力较深和组织背景低等特点,特别适合于体内的成像;并且该系统所配备的近红外实时成像系统,可实时指导小动物乃至大动物的手术操作,在造影剂的辅佐下,可完成靶向部位的探测成像,指导手术的细微操作。因此,该成像平台不仅可以完成无标记的组织结构和功能成像(光声部分),又可在造影剂的增强效果下完成手术的导航(近红外光学部分),是科研定量研究和转化医学的结合产物。近红外超声成像平台是近年来发展起来的一种无损医学成像方法,它结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性,可以提供高分辨率和高对比度的组织成像。并可对组织进行3D定量分析,可完成多波长激发的断层扫描,可实时指导动物模型的手术操作过程,它是近几年来新兴的无损医学成像方法,也是动物模型研究中不可或缺的工具之一。 目前应用近红外超声技术的文章多在国际前沿杂志上发表,如nature等,它代表了新型的小动物成像发展的趋势,也给小动物成像带来了技术上的革新。所以能够购买此平台将会大大提高科研技术水平,缩短与国际领先实验室的技术差距。 近红外光学部分在染料、探针或造影剂的选择上与光声成像是兼容的,因为光声成像的波长就是在近红外区域,所以从实验设计上来讲,就能够做到完全与光声成像同步。不需要设计和增加额外的探针或造影剂,就能够实时同步确证的实验,从而节约了研究成本,也能够确保数据对比的可靠性。 近红外光学部分具有实时光学成像的特点,可以持续对研究对象进行成像并录制成连续动态的电影,观察探针或造影剂在体内分布的时间分布。这种实时成像同时还具有开放的特点,即不需要专业暗室,动物也不需要进行麻醉,只要将近红外光学探头对准动物即可。这种简单易用的操作,不需要特殊试验条件的特点使得近红外光学更具有较强的实用性。由于它具有实时成像、实时录影的特点,因此对于某些吸收较快、清除较快的探针具有特别重要的现实意义。任何一个时间段的荧光信号变化都能够被完全捕获下来,不会漏掉某

在活体成像中荧光色素标记细胞的方法举例

本实验技术来源于SciMall科学在线 在活体成像中荧光色素标记细胞的方法举例 活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluores cence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究成为现实。而荧光技术则采用荧光报告基团(GFP、RF P, Cyt及dyes等)进行标记,利用荧光蛋白在外源光源或是内源发光照射下被激发产生的荧光作为检测信号。研究人员能够利用一套非常灵敏的光学检测仪器直接监控活体生物体内的细胞活动和基因行为。 该技术可被广泛应用于标记细胞或基因的示踪及检测;基因治疗在活体动物体内直接的观察和检测;基因组、蛋白组学、药学及生物技术在活体动物内的研究;药物及化学合成药物的药物代谢及毒理学监测;食品菌落生长成像;皮肤医学中皮肤疾病的体内成像;法医鉴定;微孔板成像,例如:免疫分析、报告基因、基因探针和嗜菌作用分析等;荧光团的体内成像,例如:Alzheimer疾病研究中结合嗪的β-淀粉沉淀物分析;转基因植物中通过报告基因对生理周期节奏的研究;凝胶成像分析等等。 但在研究过程中,研究者们必须事先用基因技术进行荧光素酶基因标记,或者某种荧光报告基团标记。目前活体光学成像系统的知名制造商,如Berthold、GE、Xenogen、Photometrics、Carestream Health 等,不仅为客户提供先进的仪器,也提供具体实验所需的整套解决方案,包括试剂、实验手册、特殊用途的质粒、细胞株、转基因动物、细胞处理和动物处理设施等配套技术支持。出色的多任务处理能力,人性化的整体设计,便捷精确的操作系统,使实验室影像分析领域进入了一个全新的时代 下面以研究干细胞活体移植后的存活率为例,简介一两种内源性荧光色素标记的实验方法,以供参考。 一、用荧光色素DiD标记间充质干细胞 1. 先用胰蛋白酶消化待标记材料,使之成为一定密度的悬浮液; 2. 从细胞培养箱中取出间充质干细胞,吸取含原有培养基的细胞悬浮液进行标记; 3. 用10 ml Mg/Ca-free PBS (不含钙镁离子的磷酸缓冲液)清洗细胞,吸去PBS,钙镁离子会影响胰蛋白

专家解答体内荧光成像技术难点

专家解答体内荧光成像技术难点 1.如何解决组织吸收问题 来自斯坦福大学放射学系助理教授Jianghong Rao领导的研究小组在进行“Examining protease involvement in tumor metastasis and cell migration”(肿瘤转移与细胞迁移过程中涉及的蛋白酶)这一项研究中遇到了一个难题:利用标准的荧光分子标记观测深部组织,激发荧光的光源必须能穿透具有强吸收力和光散射的组织,并且当标记分子发出光时,也要能通过同样的组织块,从而被检测到。 为了解决这个难题,研究人员采用了一种称为生物发光共振能量转移(Bioluminescence Resonance Energy Transfer,BRET)的方法进行组织成像。不同于利用生物体外激发光源的能量转移方法,BRET主要依赖于生物发光的荧光素酶来提供荧光标记需要的能量转移。一般而言,进行BRET实验的研究人员是将与荧光素酶与荧光蛋白相交联,后者会吸收生物荧光,并重新发出光,但是由于这些BRET交联物的光仍然有大部分会被吸收和散射掉,因此剩下的信号依然很弱。 Rao改进了这一方法,他将荧光素酶交联在quantum dots (QDs),而不是荧光蛋白上,这就将发出的光线变成了依然是长波长,但吸收和散射不强的光。为了能对深部组织进行成像,Rao等人又将luciferase-QD这个结构连接上了一个配体——这个配体与目的分子相连。这样当将底物,复合体(包括荧光素酶的荧光基团)注入小鼠的尾静脉的时候,BRET标记就能发出两种特殊的光:蓝色的生物荧光和红色的quantum-dot光,这样就能更清楚的观测组织。 这里Rao用于解决组织吸收问题的是一类新型的荧光探针,即量子点Qdot或称为半导体纳米晶体,所谓Qdot,指的是准零维(quasi-zero-dimensional)的纳米材料,由少量的原子所构成。粗略地说,量子点三个维度的尺寸都在100纳米(nm)以下,外观恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,所以量子局限效应(quantum confinement effect)特别显著。 这种纳米材料对于体内光学成像来说有着得天独厚的光学特点,这就是吸收性高、量子产量高、发射谱带窄、斯托克司频移大以及光褪色抗性强等,能够发射不同波长光谱,可以为单一波长所激发,适用于在一个实验中检测多靶点,因此非常适合活细胞成像和动态研究,甚至有人认为这种纳米荧光是纳米技术的真正代表,给荧光技术带来革命性的突破。 其具体特点如下: ·QDs的发射谱单一而且很“窄”。其半峰宽(FWHM)大都在40nm以下,更好的可以达到30nm甚至十几个nm,因此,QDs作为探针,可以很方便的区别于背景信号或者其它探针的信号。 ·QDs的激发谱很宽,可以在低于发射谱的广泛区间内任意选择激发波长。这个属性使得对设备(光源)的选择变得更加方便,而不必受限于特殊激光器。QDs的这个特点还可以让我们在同一固定激发波长下,同时激发不同颜色的QDs,从而使需要实时观测多种目标分子运

多功能荧光成像仪

多功能荧光成像仪 一、技术参数 1.设备用途: 采集化学发光(chemiluminescence)、比色(colorimetric)、荧光(fluorescence)及Stain-Free免染成像等核酸凝胶、蛋白凝胶、印迹膜等的数字图像,并对获得的图像进行数据分析。 2.技术规格: 2.1硬件功能 *2.1.1:功能涵盖:化学发光,光密度成像,荧光成像,Stain-Free免染成像等, 2.1.2:CCD检测器:增强型超冷CCD检测器,分辨率6.1M pixel(2,758x2,208) 2.1.3:12.1英寸触摸屏控制,支持多点触控功能(2点) 2.1.4:425nm处绝对Q/E(光电转化率)值:70%,绝对Q/E峰值:75%@525nm 2.1.5:CCD暗电流:0.002 e/p/s;CCD读出噪音:6 e-rms,提供弱光成像所 需 2.1.6:使用f/0.95快速对焦镜头,提高进光量的同时完成自动聚焦 2.1.7:自动优化曝光功能,所有成像过程均保持自动对焦 2.1.8:16bit数据采集(65,536灰度级,4.8OD),所有样品动力学范围>4个 数量级 2.1.9智能样品托盘技术,自动识别插入的样品盘类型,选择成像功能 2.1.10三种样品托盘设计:Chemi/UV/Stain-Free样品盘(化学发光、紫外和 免染样品成像);白光样品盘(将透射紫外转换为透射白光,考染、银染及其他蛋白成像);蓝光样品盘(SYBR?等荧光染料) 2.1.11:光源:反射白光,透射紫外,透射白光(可选),透射蓝光(可选) 2.1.12:滤光片转轮位置:8位(5色荧光、标准滤光片、平场校正、化学发 光) 2.1.13:紫外光源:302nm *2.1.14:最大成像面积16.8 x 21 cm

大白菜叶色突变体的HRM鉴定及其叶绿素荧光参数分析

园艺学报,():– 2014411122152224 http: // www. ahs. ac. cn Acta Horticulturae Sinica E-mail: yuanyixuebao@https://www.doczj.com/doc/738022854.html, 收稿日期:2014–08–22;修回日期:2014–10–24 基金项目:河北省海外高层次人才百人计划项目(E2013100011);河北省杰出青年科学基金项目(C2013204118);‘十二五’农村领域国家科技计划课题(2012AA100202-5);农业部农业科研杰出人才培养计划项目(2130106);高等学校博士学科点专项基金项目(20121302110006) 大白菜叶色突变体的HRM 鉴定及其叶绿素荧光参数分析 刘梦洋,卢 银,赵建军,王彦华,申书兴* (河北农业大学园艺学院,河北省蔬菜种质创新与利用重点实验室,河北保定 071000) 摘 要:将大白菜经甲基磺酸乙酯(EMS )诱变种子获得的42株叶色突变体按照生殖时期叶片颜色和叶绿素含量分为9种类型:深绿色、灰绿色、绿色、浅绿色、白绿色、白浅绿色、黄绿色、黄浅绿色、黄色;利用高分辨率熔解曲线(high resolution melting ,HRM )技术对叶绿素荧光基因HCF164突变进行了筛选并结合叶绿素荧光参数测定,获得了1株黄绿色高光合效率突变体A29,1株黄绿色光合结构损伤突变体A35和1株浅绿色光合电子传递受阻突变体A21;对另外7个叶色相关基因的突变进行了HRM 鉴定,表明叶绿素相关基因ATRCCR 、CLH2、PORA 突变可能是造成18个突变体叶色变化的主要原因,黄叶特异基因家族YLS 突变与叶色变化也有关系。 关键词:大白菜;诱变;突变体叶色;HRM ;叶绿素荧光 中图分类号:S 634.1 文献标志码:A 文章编号:0513-353X (2014)11-2215-10 HRM Identification and Chlorophyll Fluorescence Characteristics on Leaf Color Mutants in Chinese Cabbage LIU Meng-yang ,LU Yin ,ZHAO Jian-jun ,WANG Yan-hua ,and SHEN Shu-xing * (College of Horticulture ,Agricultural University of Hebei ,Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei ,Baoding ,Heibei 071001,China ) Abstract :Forty-two leaf color mutants of Chinese cabbage obtained through EMS seeds mutagenesis were used as materials in this study. According to leaf color and leaf chlorophyll content at generative growth mutations were suggested to be divided into 9 types :Dark green ,gray-green ,green ,light green ,white-green ,light white-green ,yellow-green ,light yellow-green and yellow. By detecting the nucleotide variation of the gene HCF164 related to chlorophyll fluorescence using HRM technology and by measuring chlorophyll fluorescence characteristics ,we identified one yellow-green leaf color mutant A29 with high photosynthesis efficiency ,one yellow-green leaf color mutant A35 with photosynthetic structure damages ,one light green mutant A21 with photosynthetic electron transport obstruction. Through identifying other 7 leaf-color-related genes by HRM ,mutation of chlorophyll-related genes ATRCCR ,CLH2 and PORA could be the main reason resulted in 18 leaf color mutants ,mutation of yellow-leaf- specific genes was also affected the variation of leaf color. * 通信作者 Author for correspondence (E-mail :shensx@https://www.doczj.com/doc/738022854.html, )

相关主题
文本预览
相关文档 最新文档