当前位置:文档之家› 结合模糊聚类算法的图像分割方法

结合模糊聚类算法的图像分割方法

结合模糊聚类算法的图像分割方法
结合模糊聚类算法的图像分割方法

基于模糊聚类和支持向量机的损伤识别方法

基于模糊聚类和支持向量机的损伤识别方法Ξ 冉志红1,李 乔2 (1.云南大学城市建设与管理学院,云南昆明650091;2.西南交通大学土木工程学院,四川成都610031) 摘要:将结构分区域进行分步损伤识别是目前解决复杂结构损伤识别问题的有效途径,对结构进行适当的区域划分后,就可以先找出损伤发生的可能区域,然后减小搜索范围,进行损伤的定位和损伤程度的识别。用频率和坐标模态保证准则这两种基本的动力指标,采用模糊聚类的方法划分出相似区域,然后用统计模式识别中的支持向量机进行分类。通过数值算例表明,损伤识别三步法能够在存在观测噪声的条件下对结构损伤进行定位。 关键词:桥梁工程;损伤识别;模糊聚类;支持向量机 中图分类号:U448127文献标识码:A文章编号:100424523(2007)0620618205 引 言 随着交通流量的迅速增大,现有桥梁在超负荷交通流量情况下产生老化和损坏,使其成为交通的瓶颈[1]。因此,对在役桥梁的评估、养护和维修,对旧桥、危桥进行加固后重新使用已成为当前摆在交通和工程结构工作者面前的迫切问题。而结构损伤识别是进行结构可靠性评价的基础性工作,因此,损伤识别成为目前国内外研究的热点问题。损伤识别领域有两大研究方向:一是通过反演的方法,即建立系统与输入、输出的映射关系,按果索因,这类方法的优点是概念清晰,物理意义明确,但实际求解过程中的强非线性、非适定性导致其求解异常困难;另一个研究方向是模式识别[2],其基本思想是建立每一种损伤情况下结构响应的变化,然后按实际测量结果进行模式匹配,找出最接近的那一组模式从而确定结构的损伤情况。 由于土木工程结构的损伤模式比机械结构繁杂得多,因此模式识别方法一开始没有受到足够的重视。而近年来在模式识别方面又有了新的认识,一方面人们针对具体结构进行危险性分析,将损伤的可能模式进行大量的缩减;另一方是面对模式识别方法本身的深入研究,认为模式识别不仅具有高抗噪能力、强非线性能力、处理数据不完备的能力等诸多优点,而且可以进行自组织、自适应、无反馈式的学习,促使模式识别方法在损伤识别中的应用迅速发展起来。 对于大型复杂结构,直接识别结构的损伤非常困难,许多学者采用多步法进行损伤识别[3,4]。本文针对连续梁桥结构,提出用模糊聚类进行损伤区域的划分,用支持向量机进行分类的损伤识别三步法。传统多步法的损伤区域划分都是针对结构的具体形式,按受力特点、空间关系、构件形式等对区域进行划分,这种分区方式带有设计者的主观意志,往往使识别结果的可靠性不高。本文采用模糊聚类计算各模式的“相近”程度,从而有依据地进行区域的划分,可以大大提高损伤识别的精度。近年来,人们将支持向量机用于结构的损伤识别,取得了较好的效果[5,6]。但已有的研究都是直接用支持向量机对结构进行损伤识别,本文利用支持向量机良好的分类性能,对损伤区域和损伤单元进行分步识别。 本文用模式识别的方式研究连续梁桥损伤识别,以频率和坐标模态保证准则为特征向量,构建了基于模糊聚类和支持向量机的损伤识别三步法。最后以一个三跨连续梁作为研究对象,数值计算表明,本文所提出的三步法损伤识别策略具有良好的抗噪性能。 1 特征向量的选取 结构的损伤(主要是指刚度的退化)会引起结构模态参数的变化,比如频率的降低,振型的改变。本文选取频率和坐标模态保证准则(COM A C)这两种指标作为损伤的输入变量。频率可以直接测量得到,只是在输入时采用相对变化率[7,8] 第20卷第6期2007年12月 振 动 工 程 学 报 Jou rnal of V ib rati on Engineering V o l.20N o.6 D ec.2007   Ξ收稿日期:2006211215;修订日期:2007204227

关于图像分割算法的研究

关于图像分割算法的研究 黄斌 (福州大学物理与信息工程学院 福州 350001) 摘要:图像分割是图像处理中的一个重要问题,也是一个经典难题。因此对于图像分割的研究在过去的四十多年里一直受到人们广泛的重视,也提山了数以千计的不同算法。虽然这些算法大都在不同程度上取得了一定的成功,但是图像分割问题还远远没有解决。本文从图像分割的定义、应用等研究背景入手,深入介绍了目前各种经典的图像分割算法,并在此基础比较了各种算法的优缺点,总结了当前图像分割技术中所面临的挑战,最后展望了其未来值得努力的研究方向。 关键词:图像分割 阀值分割 边缘分割 区域分割 一、 引言 图像分割是图像从处理到分析的转变关键,也是一种基本的计算机视觉技术。通过图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能,因此它被称为连接低级视觉和高级视觉的桥梁和纽带。所谓图像分割就是要将图像表示为物理上有意义的连通区域的集合,也就是根据目标与背景的先验知识,对图像中的目标、背景进行标记、定位,然后将目标从背景或其它伪目标中分离出来[1]。 图像分割可以形式化定义如下[2]:令有序集合表示图像区域(像素点集),H 表示为具有相同性质的谓词,图像分割是把I 分割成为n 个区域记为Ri ,i=1,2,…,n ,满足: (1) 1,,,,n i i j i R I R R i j i j ===??≠ (2) (),1,2,,i i i n H R True ?== (3) () ,,,i j i j i j H R R False ?≠= 条件(1)表明分割区域要覆盖整个图像且各区域互不重叠,条件(2)表明每个区域都具有相同性质,条件(3)表明相邻的两个区域性质相异不能合并成一个区域。 自上世纪70年代起,图像分割一直受到人们的高度重视,其应用领域非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。主要表现在: 1)医学影像分析:通过图像分割将医学图像中的不同组织分成不同的区域,以便更好的

基于谱聚类的图像分割

本科生毕业设计 姓名:学号: 学院:计算机科学与技术学院 专业:计算机科学与技术 设计题目:基于谱聚类的图像分割 专题:图像分割的设计与实现 指导教师:职称:副教授

大学毕业设计任务书 学院计算机专业年级学生姓名 任务下达日期: 毕业设计日期: 毕业设计题目: 毕业设计专题题目 毕业设计主要内容和要求: 院长签章:指导教师签字:

中国矿业大学毕业设计指导教师评阅书 指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:指导教师签字: 年月日

中国矿业大学毕业设计评阅教师评阅书 评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:评阅教师签字: 年月日

中国矿业大学毕业设计答辩及综合成绩

需求分析 一、利用前台,得到一张原始JPG图片; 二、把这张图片传到后台,JAVA通过JRI调用R; 三、利用R调用K-Means的改进算法,实现对这张图片的处理,由于一张图片的 像素值是一个矩阵,可以得到一组关于像素值的数据; 四、把这组像素值进行分类,对各类赋予不同的颜色进行标记,从而区分出需要的 图片信息; 五、把得到的新图片传到前台; 六、前台对进行处理后的图片进行显示,从图像中得到需要的信息,从而实现图像 的分割。

模糊聚类分析方法

模糊聚类分析方法 对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。载科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。由于科学技术、经济管理中的分类界限往往不分明,因此采用模糊聚类方法通常比较符合实际。 一、模糊聚类分析的一般步骤 1、第一步:数据标准化[9] (1) 数据矩阵 设论域12{,,,}n U x x x =为被分类对象, 每个对象又有m 个指标表示其性状,即 12{,, ,}i i i im x x x x = (1,2,,) i n =, 于是,得到原始数据矩阵为 1112 1 21222 12 m m n n nm x x x x x x x x x ?? ? ? ? ??? 。 其中nm x 表示第n 个分类对象的第m 个指标的原始数据。 (2) 数据标准化 在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做适当的变换。但是,即使这样,得到的数据也不一定在区间[0,1]上。因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。通常有以下几种变换: ① 平移·标准差变换

i k k ik k x x x s -'= (1,2,,;1,2,i n k m == 其中 11n k i k i x x n ==∑, k s =。 经过变换后,每个变量的均值为0,标准差为1,且消除了量纲的影响。但 是,再用得到的ik x '还不一定在区间[0,1]上。 ② 平移·极差变换 111m i n { }m a x {}m i n {}i k i k i n ik ik ik i n i n x x x x x ≤≤≤≤≤≤''-''=''- ,(1,2, ,)k m = 显然有01ik x ''≤≤,而且也消除了量纲的影响。 ③ 对数变换 lg ik ik x x '= (1,2,,;1,2,i n k m == 取对数以缩小变量间的数量级。 2、第二步:标定(建立模糊相似矩阵) 设论域12{,, ,}n U x x x =,12{,,,}i i i im x x x x =,依照传统聚类方法确定相似 系数,建立模糊相似矩阵,i x 与j x 的相似程度(,)ij i j r R x x =。确定(,)ij i j r R x x =的方法主要借用传统聚类的相似系数法、距离法以及其他方法。具体用什么方法,可根据问题的性质,选取下列公式之一计算。 (1) 相似系数法 ① 夹角余弦法 2 2m ik jk ij m ik jk x x r x = ∑∑ ② 最大最小法 11() () m ik jk k ij m ik jk k x x r x x ==∧= ∨∑∑。 ③ 算术平均最小法

图像分割算法的比较与分析

中北大学 课程设计说明书 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学院:信息与通信工程学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法的比较与分析 指导教师:陈平职称: 副教授 2014 年12 月29 日

中北大学 课程设计任务书 14/15 学年第一学期 学院:信息与通信工程学院专业:电子信息工程 学生姓名:学号: 课程设计题目:信息处理综合实践: 图像分割算法的比较与分析起迄日期:2015年1月5日~2015年1月16日课程设计地点:电子信息工程专业实验室 指导教师:陈平 系主任:王浩全 下达任务书日期: 2014 年12月29 日课程设计任务书

课程设计任务书

目录 第一章绪论 (1) 研究目的和意义 (1) 图像分割的研究进展 (1) 第二章区域生长法分割图像 (4) 区域生长法介绍 (4) 区域生长法的原理 (4) 区域生长法的实现过程 (5) 第三章程序及结果 (6) 区域生长算法及程序 (6) 图像分割结果 (7) 第四章方法比较 (8) 阈值法 (8) 区域法 (8) 分水岭法 (8) 形态学方法 (9) 第五章总结 (10) 参考文献 (11)

第一章绪论 研究目的和意义 图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割;但某些分割方法只是适合于某些特殊类型的图像分割,所以分割结果的好坏需要根据具体的场合及要求衡量。图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。 图像分割是由图像处理到图像分析的关键步骤,在图像工程中占有重要位置。一方面,它是目标表达的基础,对特征测量有重要的影响。另一方面,因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象、更紧凑的表达形式,使得更高层的图像分析和理解成为可能。因此在实际应用中,图像分割不仅仅要把一幅图像分成满足上面五个条件的各具特性的区域,而且要把其中感兴趣的目标区域提取出来。只有这样才算真正完成了图像分割的任务,为下一步的图像分析做好准备,使更高层的图像分析和理解成为可能。 图像分割在很多方面,如医学图像分析,交通监控等,都有着非常广泛的应用,具有重要的意义。(1)分割的结果常用于图像分析,如不同形式图像的配准与融合,结构的测量,图像重建以及运动跟踪等。(2)在系统仿真,效果评估,图像的3D重建以及三维定位等可视化系统中,图像分割都是预处理的重要步骤。 (3)图像分割可在不丢失有用信息的前提下进行数据压缩,这就降低了传输的带宽,对提高图像在因特网上的传输速度至关重要。(4)分割后的图像与噪声的关系减弱,具有降噪功能,便于图像的理解。 图像分割的研究进展 图像分割是图像处理中的一项关键技术,至今已提出上千种分割算法。但因

基于空间模糊聚类的图像分割优化算法讲解

深圳大学研究生课程论文 题目基于空间模糊聚类的图像分割优化算法 成绩 专业信息与通信工程课程名称、代码模糊数学理论年级研一 姓名梁运恺同组人叶韩 学号2150130406 2150130407 时间2015/1/6 任课教师李良群

基于空间模糊聚类的图像分割优化算法 【摘要】针对传统模糊C-均值(FCM)算法抗噪性能差的问题,提出一种新的基于空间模糊聚类的图像分割优化算法。该算法通过在传统FCM算法基础上加入图像特征项中像素间的空间位置信息,解决了传统FCM对噪声敏感的问题,增强了算法的鲁棒性。实验结果表明,该算法可实现有效分割,分割效果显著优于传统FCM 算法。 【关键词】图像分割;模糊聚类;FCM算法;空间位置信息; The Spatial Fuzzy Clustering Optimization Algorithm for Image Segmentation Abstract: For the poor anti-noise performance limitations of the traditional fuzzy C-means (FCM) algorithm. We proposed a new spatial fuzzy clustering optimization algorithm for image segmentation .we added a wealth of spatial information between pixels in the image feature items, so that the traditional FCM sensitive to noise was solved. And the robustness of the algorithm was enhanced. Experimental results show that our algorithm can achieve the effective segmentation the noise images. And the results are significantly better than those by traditional FCM image segmentation algorithm. Keywords: image segmentation; fuzzy clustering; FCM algorithm; spatial information 1.引言 图像分割是图像处理到图像分析的关键步骤,是进一步理解图像的基础。图像分割本质上是基于某种相似性准则对像素进行分类,在期望的分割结果中,属于同类的像素特征不仅在数值上相似,其空间位置信息也有紧密联系。数据聚类方法对图像进行分割具有直观和易于实现的特点,其中最有效的是模糊C-均值(Fuzzy C-means ,FCM)聚类算法。但传统的FCM算法未考虑图像的空间信息,在处理受噪声污染的图像时常会得到不理想的分割结果,因此,本文提出一种改进的FCM算法。针对传统FCM算法在分割过程中只考虑本地信息的问题,本文算法加入有影响力的特征因子,即空间位置信息。实验结果表明,本文算法可显著

模糊聚类分析方法汇总

模糊聚类分析方法 对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。载科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。由于科学技术、经济管理中的分类界限往往不分明,因此采用模糊聚类方法通常比较符合实际。 一、模糊聚类分析的一般步骤 1、第一步:数据标准化[9] (1) 数据矩阵 设论域12{,,,}n U x x x =为被分类对象,每个对象又有m 个指标表示其性状, 即 12{,, ,}i i i im x x x x = (1,2, ,)i n =, 于是,得到原始数据矩阵为 11 121212221 2 m m n n nm x x x x x x x x x ?? ? ? ? ??? 。 其中nm x 表示第n 个分类对象的第m 个指标的原始数据。 (2) 数据标准化 在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做适当的变换。但是,即使这样,得到的数据也不一定在区间[0,1]上。因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。通常有以下几种变换: ① 平移·标准差变换

ik k ik k x x x s -'= (1,2,,;1,2,,)i n k m == 其中 11n k ik i x x n ==∑, k s = 经过变换后,每个变量的均值为0,标准差为1,且消除了量纲的影响。但 是,再用得到的ik x '还不一定在区间[0,1]上。 ② 平移·极差变换 111min{}max{}min{}ik ik i n ik ik ik i n i n x x x x x ≤≤≤≤≤≤''-''=''-,(1,2,,)k m = 显然有01ik x ''≤≤,而且也消除了量纲的影响。 ③ 对数变换 lg ik ik x x '= (1,2,,;1,2,,)i n k m == 取对数以缩小变量间的数量级。 2、第二步:标定(建立模糊相似矩阵) 设论域12{,, ,}n U x x x =,12{,, ,}i i i im x x x x =,依照传统聚类方法确定相似 系数,建立模糊相似矩阵,i x 与j x 的相似程度(,)ij i j r R x x =。确定(,)ij i j r R x x =的方法主要借用传统聚类的相似系数法、距离法以及其他方法。具体用什么方法,可根据问题的性质,选取下列公式之一计算。 (1) 相似系数法 ① 夹角余弦法 21 m ik jk ij m ik jk k x x r x == ∑∑。 ② 最大最小法 11() () m ik jk k ij m ik jk k x x r x x ==∧= ∨∑∑。 ③ 算术平均最小法

图像分割常用算法优缺点探析

图像分割常用算法优缺点探析 摘要图像分割是数字图像处理中的重要前期过程,是一项重要的图像分割技术,是图像处理中最基本的技术之一。本文着重介绍了图像分割的常用方法及每种方法中的常用算法,并比较了各自的优缺点,提出了一些改进建议,以期为人们在相关图像数据条件下,根据不同的应用范围选择分割算法时提供依据。 关键词图像分割算法综述 一、引言 图像分割决定了图像分析的最终成败。有效合理的图像分割能够为基于内容的图像检索、对象分析等抽象出十分有用的信息,从而使得更高层的图像理解成为可能。目前图像分割仍然是一个没有得到很好解决的问题,如何提高图像分割的质量得到国内外学者的广泛关注,仍是一个研究热点。 多年来人们对图像分割提出了不同的解释和表达,通俗易懂的定义则表述为:图像分割指的是把一幅图像分割成不同的区域,这些区域在某些图像特征,如边缘、纹理、颜色、亮度等方面是一致的或相似的。 二、几种常用的图像分割算法及其优缺点 (一)大津阈值分割法。 由Otsu于1978年提出大津阈值分割法又称为最大类间方差法。它是一种自动的非参数非监督的门限选取法。该方法的基本思路是选取的t的最佳阈值应当是使得不同类间的分离性最好。它的计算方法是首先计算基于直方图而得到的各分割特征值的发生概率,并以阈值变量t将分割特征值分为两类,然后求出每一类的类内方差及类间方差,选取使得类间方差最大,类内方差最小的t作为最佳阈值。 由于该方法计算简单,在一定条件下不受图像对比度与亮度变化的影响,被认为是阈值自动选取的最优方法。该方法的缺点在于,要求得最佳阈值,需要遍历灰度范围0—(L-1)内的所有像素并计算出方差,当计算量大时效率会很低。同时,在实际图像中,由于图像本身灰度分布以及噪声干扰等因素的影响,仅利用灰度直方

kmeans聚类图像分割 matlab

function [mu,mask]=kmeans(ima,k) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%% % % kmeans image segmentation % % Input: % ima: grey color image % k: Number of classes % Output: % mu: vector of class means % mask: clasification image mask % % Author: Jose Vicente Manjon Herrera % Email: jmanjon@fis.upv.es % Date: 27-08-2005 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%% % check image ima=double(ima); copy=ima; % make a copy ima=ima(:); % vectorize ima mi=min(ima); % deal with negative ima=ima-mi+1; % and zero values s=length(ima); % create image histogram m=max(ima)+1; h=zeros(1,m); hc=zeros(1,m); for i=1:s if(ima(i)>0) h(ima(i))=h(ima(i))+1;end; end ind=find(h); hl=length(ind); % initiate centroids mu=(1:k)*m/(k+1);

FAUT—模糊聚类分析工具

FUAT——模糊聚类分析工具 摘要: 众所周知,模糊聚类是一种软聚类方法并且主要以通过计算每个集群的隶属度的分段数据为基础。然而在调查不同集群之间的关系方面,当前的大多数模糊聚类模块打包在开放资源和商业产品中,都缺乏使用户能够更加深入和直观地探索模糊集群的能力。此外,在没有决策者或专家的情况下,在模糊聚类研究中确定集群的数量也非常困难。因此在这项研究中,一个被称为FUAT的桌面软件得到发展,它能够分析、探索并将从模糊c聚类算法(FCM)中分离出来模糊群集可视化。此外,为了获得并告知可能的自然集群数量,FUAT还配备了期望的最大化算法。 1、介绍 聚类是一种无人监督的,划分多元数据点集合成有意义的组织的分类方法,同组中的所有成员代表类似的特征而在不同群体之间的数据点彼此不同。有许多基于模糊概率和可能的方法和聚类算法,如k 均值聚类、c均值聚类、层次聚类。模糊c聚类算法(FCM)是使用最普遍的聚类算法之一。FCM结合c均值聚类方法与存在的模糊性数据处理,这种结合使它更强大,因为数据的模糊性在创建脆分区以一种不利的方式影响结果。一般来说,软聚类技术旨在消除这种情况,FCM是一种基于模糊集理论的软聚类方法(Zadeh,1965)。在聚类算法的实际应用中,必须解决的几个问题,包括确定集群的数量和评价分区的质量。 在这项研究中,工具-FUAT(模糊聚类分析工具)提出了探索与FCM聚类创建的集群。FUAT发展的原因来自FCM的报道困难。首先,FCM要求集群数量作为输入参数,但对实际的决策者来说知道这个数字是很困难的。因为,预测数据点的分布,从现实世界中可以获得,在空间中很难完成,有时甚至是不可能的。在FUAT,关于可能的集群号码,自然聚类给用户提出了一个建议。其次,初始集群对导致集群有很大的影响。然而,无论获得了集群的质心、演示数据与集群的数字还是隶属度都足以评估集群性能。因此,集群的大小和密度、饱和度和频率隶属度、集群之间的亲密度、集群之间的密度要求在集群参数、集群性能的评估上执行详细的分析。

几种图像分割算法在CT图像分割上的实现和比较

第20卷第6期2000年12月北京理工大学学报JOurnaI Of Beijing InStitute Of TechnOIOgy VOI.20NO.6Dec.2000 文章编号21001-0645(2000)06-0720-05几种图像分割算法在CT 图像分割上的 实现和比较 杨 加19吴祈耀19田捷29杨骅2(1-北京理工大学电子工程系9北京1000 1;2-中国科学院自动化研究所9北京1000 0)摘要2对目前几种在图像分割领域得到较多应用的交互式分割 区域生长分割以及阈值 分割算法进行了探讨9并且结合实际CT 片图例分别进行分割实验研究9得到较为满意和 可用性强的结果.实验表明2阈值分割对于CT 切片的效果最好;区域生长分割适宜于对面 积不大的区域进行分割9分割效果较好;基于动态规划的交互式分割算法比较复杂9计算时 间较长9但对于边缘较平滑的区域9同样具有较好的实际效果.几种算法的评估为其在CT 图像分割上的实际应用提供了科学依据. 关键词2图像分割算法;CT 图像分割;交互式分割;阈值分割;区域生长分割 中图分类号2TN 911-73文献标识码2A 收稿日期220000625 基金项目2国家自然科学基金资助项目(69 43001);国家 63 计划项目作者简介2杨加9男91975年生9硕士生. 图像分割可以分解为两个任务9即识别(recOgnitiOn )和描绘(deIineatiOn ).识别的目的在于确定目标物体的大致位置并区别于图像中的其它物体;而描绘的任务在于精确定义和刻画图像中目标物体的区域或边缘的空间范围.人的识别能力通常强于计算机算法9另一方面9计算机算法的描绘能力则优于操作者(人).因此既能利用操作者强大的识别能力9又能利用计算机算法的描绘能力的交互式图像分割则越来越受到人们的关注.在医学领域中9图像分割是病变区域提取 特定组织测量以及实现三维重建的基础9因此图像分割技术在医学图像处理中具有十分重要的意义[1].作者探讨了3种目前在图像分割上得到较多实际应用的分割算法9并结合实际CT 片图例进行了实验研究9得到较为满意和可用性强的结果;最后对这几种方法进行了评估9为这些算法在CT 图像分割上的实际应用提供了科学依据. 1 交互式分割算法1-1基本理论及算法描述 动态规划方法最早应用于图像边缘跟踪[2].可以将图像边缘检测看作一个优化问题[3]9并将其表述为找出一目标函数V =V (I 19I 29I 39~9I H )的最优值M (如取最小值min )9得V 取最优值时的一组自变量值(I 19I 29I 39I 49~9I H 9).若变量离散9目标函数没有特定规律可循时9则该问题将包括一个极大的解空间.如果这个目标函数能够描述成如下形式2 V =V (I 19I 29I 39~9I N )=V 0(I 09I 1)+V 1(I 19I 2)+~+V H-1(I H-19I H )

模糊聚类法

模糊聚类分析法及其应用 (汽车学院钟锐 2011122071) 摘要模糊聚类分析方法是一种多元统计分析方法, 它通过多个指标将样本划分为若干类, 这种分类方法能很好地应用于交通规划、交通流分析、安全评价等多个方面。文章以交通调查的选择为例说明了模糊聚类分析在规划过程中的具体应用, 并分析了模糊聚类分析在交通规划其他方面的应用。在交通调查中, 可利用模糊聚类分析将交通分区按工业、居住、公建、道路绿化广场等各项用途来进行分类。可相应减少同类交通分区的相似调查工作量。 关键词模糊聚类分析; 交通规划; 交通调查 1 问题的提出 交通规划旨在确定公路和城市道路交通建设的发展目标, 设计达到这些目 标的策略、过程与方案。交通规划包括目标确定、组织工作、数据调查、相关基本模型分析、分析预测、方案设计、方案评价、方案实施过程中的信息反馈和修改等工作阶段。在交通规划的很多阶段, 需要进行分类。例如可将众多的交通小区划分成几大类, 将具有相似特性的交通小区归于一类, 可以减少调查的工作量; 对线路网络进行分析评价时, 也需要进行分类。单一的指标往往不能全面反映交通分区之间的关系, 需要用多个指标来进行。在分类方法中,聚类分析是一种应用很广泛的方法, 它在交通规划领域应用较多。 2 聚类分析方法 聚类分析取意于“人以群分, 物以类聚”的俗语, 即将一组事物根据其性质上亲疏远近的程度进行分类, 把性质相近的个体归为一类, 使得同一类中的个体具有高度的同质性, 不同类之间的个体具有高度的异质性。为使分类合理, 必须描述个体之间的亲疏程度。对此, 通常有距离法、相关系数法等方法。距离法是将每个样本看成m( m 为统计指标的个数) 维空间的一个点, 在m 维空间中定义点与点之间的某种距离; 相关系数法是用某种相似系数来描述样本之间的关系, 如相关系数。聚类的方法有很多, 如系统聚类法、模糊聚类法、分裂法、

Matlab笔记-模糊聚类分析原理及实现

23. 模糊聚类分析原理及实现 聚类分析,就是用数学方法研究和处理所给定对象,按照事物间的相似性进行区分和分类的过程。 传统的聚类分析是一种硬划分,它把每个待识别的对象严格地划分到某个类中,具有非此即彼的性质,这种分类的类别界限是分明的。 随着模糊理论的建立,人们开始用模糊的方法来处理聚类问题,称为模糊聚类分析。由于模糊聚类得到了样本数与各个类别的不确定性程度,表达了样本类属的中介性,即建立起了样本对于类别的不确定性的描述,能更客观地反映现实世界。 本篇先介绍传统的两种(适合数据量较小情形,及理解模糊聚类原理):基于择近原则、模糊等价关系的模糊聚类方法。 (一)预备知识 一、模糊等价矩阵 定义1设R=(r ij )n ×n 为模糊矩阵,I 为n 阶单位矩阵,若R 满足 i) 自反性:I ≤R (等价于r ii =1); ii) 对称性:R T =R; 则称R 为模糊相似矩阵,若再满足 iii) 传递性:R 2 ≤R (等价于1 ()n ik kj ij k r r r =∨∧≤) 则称R 为模糊等价矩阵。

定理1设R 为n 阶模糊相似矩阵,则存在一个最小的自然数k (k

图像分割技术的原理及方法

浅析图像分割的原理及方法 一.研究背景及意义 研究背景: 随着人工智能的发展,机器人技术不断地应用到各个领域。信息技术的加入是智能机器人出现的必要前提。信息技术泛指包括通信技术、电子技术、信号处理技术等相关信息化技术的一大类技术。它的应用使得人们今天的生活发生了巨大变化。从手机到高清电视等家用电器设备出现使我们的生活越来越丰富多彩。在一些军用及民用领域近几年出现了一些诸如:图像制导、无人飞机、无人巡逻车、人脸识别、指纹识别、语音识别、车辆牌照识别、汉字识别、医学图像识别等高新技术。实现它们的核心就是图像处理、机器视觉、模式识别、智能控制、及机器人学等相关知识。其中图像处理具有重要地位。而图像分割技术是图像分析环节的关键技术。 研究图像分割技术的意义: 人类感知外部世界的两大途径是听觉和视觉,尤其是视觉,同时视觉信息是人类从自然界中获得信息的主要来源,约占人类获得外部世界信息量的80%以上。图像以视觉为基础通过观测系统直接获得客观世界的状态,它直接或间接地作用于人眼,反映的信息与人眼获得的信息一致,这决定了它和客观外界都是人类最主要的信息来源,图像处理也因此成为了人们研究的热点之一。人眼获得的信息是连续的图像,在实际应用中,为便于计算机等对图像进行处理,人们对连续图像进行采样和量化等处理,得到了计算机能够识别的数字图像。数字图像具有信息量大、精度高、内容丰富、可进行复杂的非线性处理等优点,成为计算机视觉和图像处理的重要研究对象。在一幅图像中,人们往往只对其中的某些区域感兴趣,称之为前景,这些区域内的某些空间信息特性(如灰度、颜色、轮廓、纹理等)通常与周围背景之间存在差别。图像分割就是根据这些差异把图像分成若干个特定的、具有独特性质的区域并提取感兴趣目标的技术和过程。在数字图像处理中,图像分割作为早期处理是一个非常重要的步骤。为便于研究图像分割,使其在实

模糊聚类分析方法

第二节 模糊聚类分析方法 在科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。由于科学技术、经济管理中的分类界限往往不分明,因此采用模糊聚类方法通常比较符合实际。 一、模糊聚类分析的一般步骤 1、第一步:数据标准化[9] (1) 数据矩阵 设论域12{,,,}n U x x x = 为被分类对象,每个对象又有m 个指标表示其性状,即 12{,,,}i i i im x x x x = (1,2,,i n = , 于是,得到原始数据矩阵为 11 121 2122 2 1 2 m m n n nm x x x x x x x x x ?? ? ? ? ??? 。 其中nm x 表示第n 个分类对象的第m 个指标的原始数据。 (2) 数据标准化 在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做适当的变换。但是,即使这样,得到的数据也不一定在区间[0,1]上。因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。通常有以下几种变换: ① 平移·标准差变换

i k k ik k x x x s -'= (1,2,,; 1,2,i n k m == 其中 1 1n k i k i x x n == ∑ , k s = 经过变换后,每个变量的均值为0,标准差为1,且消除了量纲的影响。但 是,再用得到的ik x '还不一定在区间[0,1]上。 ② 平移·极差变换 111m i n { } m a x {}m i n {} i k i k i n ik ik ik i n i n x x x x x ≤≤≤≤≤≤''-''=''-,(1,2,,)k m = 显然有01ik x ''≤≤,而且也消除了量纲的影响。 ③ 对数变换 lg ik ik x x '= (1,2,,; 1,2,i n k m == 取对数以缩小变量间的数量级。 2、第二步:标定(建立模糊相似矩阵) 设论域12{,,,}n U x x x = ,12{,,,}i i i im x x x x = ,依照传统聚类方法确定相似系数,建立模糊相似矩阵,i x 与j x 的相似程度(,)ij i j r R x x =。确定(,)ij i j r R x x =的方法主要借用传统聚类的相似系数法、距离法以及其他方法。具体用什么方法,可根据问题的性质,选取下列公式之一计算。 (1) 相似系数法 ① 夹角余弦法 m ik jk ij x x r = ∑ ② 最大最小法 11 () () m ik jk k ij m ik jk k x x r x x ==∧= ∨∑∑。 ③ 算术平均最小法

图像分割中模糊聚类数目的确定

164计算机技术与发展第17卷 一定的规则把模糊聚类划分转化为确定性的分类。 4实验结果及分析 实验是在WinXp+Matlab6.5的平台上进行的。CPU:p4I8G+内存:768M。 实验对图2进行加均值为0,方差为O.005的高斯噪声,显示如图3所示。再针对2幅图做实验。 图2实验原图图3加噪后的图 实验一:对图2进行分 析,从图上可以很容易地分 辨出该图应该被分为3类, 图4(a)就是对图2的灰度 直方图处理。由于受到边 缘信息和各类问的互相重 叠,不可区分。在灰度40 到120的波峰和波谷很难 区别。而运用梯度和灰度 的二维直方图就除了灰度 信息更添加了梯度信息,图 4(b)只显示了梯度小于30 的点。其实就是把原来的 灰度直方图的像素点的出 现频率沿梯度做分摊,越处 于边缘处相关度越小,被分 的越厉害,更加显现是波 谷。处于目标内部相关度 越高,被分的越小,更加显 现是波峰。如图4(c)所示, 波谷与波峰的差更明显。 峰值,并进行聚类方法的图像分割。聚类结果如表1所示。对没有处理的直方图,它的聚类数月会受噪声和边界的均匀过渡的影响,使类数或多或或少。这将直接影响后面的图像分割。 表1原图和加噪后图像的聚类数目和各类的类峰 毒熬燮峰值 隅像娄数c 蹦4(a):直接直方日122 图4(e):投影后直古圉40 图5(a):加噪匿的直方图 图5(c):加噪图的直方图53115 5结论 图像分割是计算机视觉研究的重要方面,但图像分割一直是一个难题。文中运用模糊聚类,而聚类数 图4原始图像的处理过程与比较 3橼龋吨亟直翼篷 010。200 3栅{后一罐蠹专瞄 图5加噪后的处理过程与比较 已经不再有灰度在40到120之间峰谷很难分的情况。 实验二:对图3滤波去噪再求出其直方图,如图5(a)所示。此时只是明显地显示单峰了。再用同样的方法求出梯度和灰度的二维直方图,如图5(b)所示,再投影得到如图5(c)所示的直方图,从图中可以明显地看出经过这样处理后的直方图显现的是3峰。 实验三:分别对直接的直方图和处理后直方图运用该文的聚类数目的自动确定方法进行出聚类数和类 目是完全自动确定的,使模糊聚类完全实现了无监督化。通过一维商方图,用高斯模板对一维直方图进行卷积,去除噪声。再用峰值的数日作为FCM的聚类数目,但简单的卷积去噪,不能去除局部的最大值,效果也不是很好,很容易分割过细,机器叉十分耗时,而且无法辨认。而文中就添加了一个梯度信息,增加了背景与目标问的空白区域,使波峰和波谷的区分度更高。同时在梯度和灰度的二维直方图抛弃掉梯度比较大的 (下转第180页) 热 !盆 帕 5 o

图像阈值分割技术原理和比较要点

图像阈值分割和边缘检测技术原理和比较

摘要 图像分割是一种重要的图像分析技术。对图像分割的研究一直是图像技术研究中的热点和焦点。医学图像分割是图像分割的一个重要应用领域,也是一个经典难题,至今已有上千种分割方法,既有经典的方法也有结合新兴理论的方法。医学图像分割是医学图像处理中的一个经典难题。图像分割能够自动或半自动描绘出医学图像中的解剖结构和其它感兴趣的区域,从而有助于医学诊断。 阈值分割是一种利用图像中要提取的目标物与其背景在灰度特性上的差异,把图像视为具有不同灰度级的两类区域(目标和背景)的组合,选取一个合适的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生对应的二值图像。 本文先介绍各种常见图像阈值分割和边缘检测方法的原理和算法,然后通过MATLAB 程序实现,最后通过比较各种分割算法的结果并得出结论。 关键词:图像分割;阈值选择;边缘检测;

目录 1.概述 (4) 2.图像阈值分割和边缘检测原理 (4) 2.1.阈值分割原理 (4) 2.1.1.手动(全局)阈值分割 (5) 2.1.2.迭代算法阈值分割 (6) 2.1.3.大津算法阈值分割 (6) 2.2.边缘检测原理 (6) 2.2.1.roberts算子边缘检测 (7) 2.2.2.prewitt算子边缘检测 (7) 2.2.3.sobel算子边缘检测 (7) 2.2.4.高斯laplacian算子边缘检测 (8) 2.2.5.canny算子边缘检测 (8) 3.设计方案 (9) 4.实验过程 (10) 4.1.阈值分割 (12) 4.1.1.手动(全局)阈值分割 (12) 4.1.2.迭代算法阈值分割 (12) 4.1.3.大津算法阈值分割 (12) 4.2.边缘检测 (13) 4.2.1.roberts算子边缘检测 (13) 4.2.2.prewitt算子边缘检测 (13) 4.2.3.sobel算子边缘检测 (13) 4.2.4.高斯laplacian算子边缘检测 (13) 4.2.5.canny算子边缘检测 (14) 5.试验结果及分析 (14) 5.1.实验结果 (14) 5.1.1.手动(全局)阈值分割 (14) 5.1.2.迭代算法阈值分割 (17) 5.1.3.大津算法阈值分割 (18) 5.1.4.roberts算子边缘检测 (19) 5.1.5.prewitt算子边缘检测 (20) 5.1.6.sobel算子边缘检测 (21) 5.1.7.高斯laplacian算子边缘检测 (22) 5.1.8.canny算子边缘检测 (23) 5.2. 实验结果分析和总结 (24) 参考文献 (24)

模糊C均值聚类算法在图像分割中的应用

模糊C均值聚类算法在图像分割中的应用 【摘要】由于在大多数图像分割场合,不可能清楚知道图像中的各个物体位置,因此在一定意义上图像分割可以作为一个聚类问题来解决。并且由于图像具有的模糊和不均匀性,因而模糊C均值聚类技术在图像分割中得到成功的应用。本文对标准模糊C均值聚类分割算法进行了简单的介绍,采用了一种结合空间信息的快速模糊C均值聚类分割算法。 关键词:图像分割,模糊聚类算法,模糊C均值聚类算法 1、模糊聚类算法 传统的聚类方法在划分对象时是硬性的,对象归属哪一类是明确的,不能同时属于两个或者多个类别。换句话说,每一个对象与最终的类别是一一对应的,不会出现一个元素分属多个类的情况,类与类之间有着严格的界限。自然世界中的事物都存在模糊性,没有“非此即彼”的严格界限,一个事物与多个类别都相关的情况是十分正常的。因此,要精确地表示这种复杂的关系就需要对这种“亦此亦彼”的性质进行描述。与硬性的聚类划分相比,模糊聚类将模糊集合理论引入到聚类算法中,利用模糊数学对处理事物之间模糊关系的精确描述,能更好地解决了现实世界中的实际问题。 模糊聚类算法用数学的方法描述了对象与不同类别之间的隶属关系,打破了严格的类别界限,建立起样本对于类别的不确

定性的描述,实现了聚类问题的软划分。隶属度是样本类属模糊性的度量,隶属度的大小用来区分对象隶属于不同类别的差异程度。使用模糊聚类算法来对数据对象集合进行划分需要构造模糊分类矩阵。 模糊聚类算法多种多样,随着对模糊聚类的研究,模糊聚类算法不断发展和改进。其中,基于模糊关系和目标函数是最常见的两类,前者出现较早,对对象集合的大小有局限性,后者以其简便、通用性高、容易实现等优势逐渐成为各个领域最流行的模糊聚类方法。神经网络的发展也为模糊聚类分析注入了新的活力,尤其是提高了方法的效率,因此这类方法受到了各国研究者的重视。 2.模糊C均值聚类算法在图像分割中的应用 模糊C 均值聚类算法(Fuzzy C-means,FCM)是一种经典的模糊聚类算法,它是从硬C 均值聚类算法(Hard C-means,HCM)改进优化而来的。模糊集合理论出后,1969 年RusPini在自己的文章中阐述了模糊划分这一概念,并给出了硬聚类算法的原理,Dunn 提出了模糊聚类算法,此后各国的研究者利用这一概念,通过对目标函数进行优化提出了多种聚类方法。Bezdek通过改进模糊聚类算法提出了模糊C 均值聚类理论。模糊C 均值聚类算法属于基于目标函数的模糊聚类算法的范畴,即基于目标函数的非线性迭代最优化方法,依据最小二乘原理,通过计算目标函数的均方差,得出每个数据点对类中心的隶属程度和目标函数的最

相关主题
文本预览
相关文档 最新文档