当前位置:文档之家› 田小玲水蒸汽转化制氢合成气组成

田小玲水蒸汽转化制氢合成气组成

田小玲水蒸汽转化制氢合成气组成
田小玲水蒸汽转化制氢合成气组成

水蒸汽转化制氢所提供合成气组成

根据炼油化工一体化优化设计,在制氢装置满足炼油油品升级换代的基础上,还往往为化工装置提供合成气。例如:中石油四川石化分公司,原油加工能力1000万吨/年,需要10万Nm3/h 氢氢和2.83万Nm3/h 合成气可满足丁辛醇装置生产需要;中科合资广东炼油化工一体化项目,原油加工能力1500万吨/年,需要18万Nm3/h 氢氢和2万Nm3/h 合成气可满足丁辛醇装置生产需要。

丁辛醇装置需要的合成气规格见表:

表1 合成气规格

从表1看出为H2:CO摩尔比为大约50%。要满足此要求,不同的制氢路线,获得的方法不同。

1、水煤浆制氢方法

中科项目采用的是POX制合成气,即石油焦、原料煤及石灰石经过料浆制备单元制成合格料浆后,与空分装置提供的氧气一起进入气化单元的气化炉,发生部分氧化反应,反应生成的粗合成气主要组成为氢气、一氧化碳和二氧化碳。其典型组成:

表2 水煤浆粗合成气典型组成

从表2组成看出,H2摩尔比例低于CO,需要返回氢气调节羰基合成气的氢气和一氧化碳的比例要求。因此,目前从气化炉出来的粗合成气经急冷和洗涤后,分为两股,一股用作制羰基合成气,另一股作为制氢原料气。用作制羰基合成气的粗合成气经回收热量及冷却后进入低温甲醇洗单元进行脱硫。作为制氢原料气的粗合成气进入一氧化碳变换单元发生变换反应,反应使大部分一氧化碳变换为氢气,经过废热回收及冷却后进入低温甲醇洗单元,变换气在低温甲醇洗单元脱除所含的硫(主要以硫化氢形式存在)和二氧化碳后成为粗氢气。用作制羰基合成气的合成气在出低温甲醇洗单元后补入一股粗氢气,将H2 和CO 比例调节合适后作为羰基合成气外送。粗氢气进入甲烷化系统进行精制,制得合格的工业氢气产品后外送。因此,生产羰基合

成气的流程简单,投资低。

2、水蒸汽转化制氢流程

2.1 典型转化出口气体组成

中石油四川石化中科项目天然气水蒸汽转化制氢和生产羰基

合成气。水蒸汽转化制氢的典型组成:

表3 水蒸汽转化气典型组成

从表2组成看出,CO的摩尔比例远低于H2,需要返回CO调节羰

基合成气的氢气和一氧化碳的比例要求。目前CO气体分离采用冷箱流程,此流程生产羰基合成气的复杂,投资高。以四川石化为例,冷箱

及后续的处理投资占整个装置投资40%以上。

2.2改变转化条件对出口气体组成的影响

高级烃水蒸汽转化反应主要是:

C n H m+nH2O → nCO+(n+m/2)3H2 (1)

CO+3H2 = CH4+ H2O (2)

CO+H2O = CO2+ H2 (3)

(1)是强吸热的水蒸汽转化反应;(2)是甲烷化反应,(3)是

变换反应,转化出口组成是(1)和后面两个可逆反应平衡的结果,

水碳比、温度、压力和以及入口组成的变化都影响转化出口的组成。

但实际操作过程中温度、水碳比、入口CO2的返回量对转化出口组成

的影响,特别是后者是否能根本地改变出口CO和H2的比例?(以下

组成是以天然气为原料,天然气的量为14500kg/h,转化出口压力为2.8MPa)

表4 CO2返回量对转化出口组成影响Ⅰ

表5 CO2返回量对转化出口组成影响Ⅱ

表6 CO2返回量对转化出口组成影响Ⅲ

表7 CO2返回量对转化出口组成影响Ⅳ

从表4-表7计算的结果来看,通过调整水炭比、转化出口温度、以及CO2的返回量,从根本远远偏离上H2:CO要求的1:1比例。高温和低水碳比有利于提高这个值,也仅仅是1:3.51,氢气大量过剩,这是烃类水蒸汽特点所决定。

3、天然气天然气部分氧化

加入不足量的氧气,使部分甲烷燃烧为二氧化碳和水:

此反应为强放热反应。在高温及水蒸气存在下,二氧化碳及水蒸气可与其他未燃烧甲烷发生吸热反应:所以主要产物为一氧化碳和氢气,而燃烧最终产物二氧化碳不多。反应过程中为防止炭析出,需补加一定量的水蒸气。这样做同时也加强了水蒸气与甲烷的反应。

天然气部分氧化可以在催化剂的存在下进行,也可以不用催化剂。

①非催化部分氧化天然气、氧、水蒸气在3.0MPa或更高的压力下,进入衬有耐火材料的转化炉内进行部分燃烧,温度高达1300~1400℃,出炉气体组成(体积%)约为:CO2 5%;CO 42%、H252%、CH4 0.5%。反应器用自热绝热式。

氢气比例略高于一氧化碳。

②催化部分氧化使用脱硫后的天然气与一定量的氧或富氧空气以及水蒸气在镍催化剂下进行反应。当催化床层温度约900~1000℃、操作压力3.0MPa时,出转化炉气体组成(体积%)约为: CO2 7.5%、CO 25.5 %、H2 67%、CH4<0.5%。反应器也采用自热绝热式,热效率较高。反应温度较非催化部分氧化法低。

催化部分氧化氢气比例略是一氧化碳一倍多。

因此严格要求氢气:一氧化碳为1:1的比例,水煤浆气化加部分变换可以实现。

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

天然气蒸汽转化制氢

1、国外天然气制氢的工业技术进展 目前,拥有天然气制氢技术的国外公司主要合法国的德希尼布(Technip),德国的鲁奇(Lurgi)、林德(Linde)和伍德(Uhde),英国的福斯特惠勒(Foster Wheeler)及丹麦的托普索(Topsoe)等,综合能耗基本在11.30-12.56GJ/1000m3H2。天然气制氢主要采用白热转化法和蒸汽转化法两种工艺,以Technip、Uhde、Linde三种蒸汽转化工艺为代表的蒸汽转化法最具优势,装置上应用最多。采用Technip 工艺在加拿大建没的最大的单系列制氢装置规模已达23.6×104m3/h。 天然气制氢的工艺流程由原料气处理、蒸汽转化、CO变换和氢气提纯四大单元组成: ①料气处理单元主要是天然气的脱硫,采用Co-Mo催化剂加氢串ZnO 的脱硫工艺。对于大规模的制氢装置内于原料气的处理量较大,因此在压缩原料气时,可选择较大的离心式压缩机。离心式压缩机可选择电驱动、蒸汽透平驱动和燃气驱动。 ②蒸汽转化单元核心是转化炉,拥有天然气制氢技术的各大公司转化炉的型式、结构各有特点,上、下集气管的结构和热补偿方式以及转化管的固定方式也不同。虽然对流段换热器设置不同,但是从进/出对流段烟气温度数据可知,烟道气的热回收率相差不大。在近期的工艺设置上,各公司在蒸汽转化单元都采用了高温转化,采用较高转化温度和相对较低水碳比的工艺操作参数设置有利于转化深度的提高,从而节约原料消耗。 ③ CO变换单元按照变换温度分,变换工艺可分为高温变换(350~400℃)和中温变换(低于300~350℃)。近年来,由于注意对资源的节约,在变换单元的工艺设置上,一些公司开始采用CO高温变换加低温变换的两段变换工艺设置,以近一步降低原料的消耗。 ④氢气提纯单元各制氢公司在工艺中已采用能耗较低的变压吸附(PSA)净化分离系统代替了能耗高的脱碳净化系统和甲烷化工序,实现节能和简化流程的目标,在装置出口处可获得纯度高达99.9%的氢气。各制氢公司采用的PSA 系统均是从PSA专利商处购买相关的设计和设备,国外主要PSA技术供应商有UOP、Linde、Air Liquide和Air Products公司。 配合上述工艺过程,天然气制氢技术中应用了加氢催化剂、脱硫剂、预转化

甲烷水蒸汽转化

天然气转化

天然气转化 甲烷水蒸汽转化(sMR) 甲烷水蒸汽转化工艺(SMR)作为传统的甲烷制合成气过程(图1一2),主要涉及下述反应: CH4+H2O!3H2+COvH298K=206.29kJ/mol 这是一个强吸热过程,转化一般要在高温下进行(>1073K)"产物中HZ/Co约为3:1,为防止催化剂积炭,通常需要通入过量的水蒸汽,依合成气用途,原料气 中HZO/CH4典型的摩尔比为2-5;并且为保持较高的生产速率,工业生产中压力通常高3.OMPa。该反应过程的缺点是能耗高,设备庞大复杂!占地面积大,投资和操作费用昂贵。 联合转化工艺(SM侧oZR) 联合重整工艺流程如图1-3所示,将SMR反应器出口的混合气送入二级氧化反应器内,未完全消耗的甲烷(在SMR出口处CH;转化率为90-92%)与0:发生部分

氧化反应后,再进一步通过催化剂床层进行二次重整反应,生成的合成气HZ/CO 比在2.5~4.0,随后利用水汽转化(WGS)反应(见式4),调整产品中H:和CO比例,来满足下游合成的利用。该工艺有效地减小了SRM的规模,降低了能耗,但不足之处是仍需两个反应器。 CH4+HZO03H2+COvH29sK=一4IkJ/mol 中国石化集团四川维尼纶厂目前在运行的甲醇装置有两套,一为1996年建成投产的直接以天然气为原料的10万t/a甲醇装置,另一为2011年整合建成投产的以乙炔尾气为原料的77万t/a甲醇装置。前者采用成熟的管式转化炉生产合成气,并利用德国Lurgi合成工艺技术生产甲醇;后者利用英国Davy公司合成工艺生产甲醇,并在合成环路驰放气的处理上采用了膜分离与ATR 转化工艺技术,以提高装置产能和降低综合能耗。10万t/a甲醇装置通过天然气蒸汽转化制取合成气,故合成气具有氢多、碳少、惰性气体(CH4、N2、Ar 等)含量低的特点,其气质组成有利于甲醇合成反应。77万t/a 甲醇装置以乙炔尾气为原料,由于乙炔尾气属于天然气部分氧化法制乙炔工艺的副产气,因而具有氢少、碳多、惰性气体含量偏高的特点,属于乏氢气质,需对系统进行补氢。为深度利用甲醇合成环路驰放气和提高装置产能,工艺上增设了膜分离与ATR转化流程,但伴随而来的是驰放气中大量惰性气体随 ATR 转化气循环返回合成系统并累积,导致合成环路惰性气体的体积分数长期高达25%~30%,这也是该套装置甲醇产品质量不易控制、部分物耗能耗指标达不到设计值且制约甲醇产量进一步提高的主要原因。针对如何利用天然气制合成气来降低乙炔尾气甲醇装置合成环路的惰性气体含量,提高甲醇产量,使装置运行更加优化与合理,本文通过现场调查以及对相关数据的计算、分析和研究,提出可工程实施的优化运行方案。

天然气制氢的基本原理及工业技术进展

天然气制氢的基本原理及工业技术进展 一、天然气蒸汽转化的基本原理 1.蒸汽转化反应的基本原理 天然气的主要成分为甲烷,约占90%以上,研究天然气蒸汽转化原理可以甲烷为例来进行。 甲烷蒸汽转化反应为一复杂的反应体系,但主要是蒸汽转化反应和一氧化碳的变换反应。 主反应: CH4+H2O===CO+3H2 CH4+2H2O===CO2+4H2 CH4+CO2===2CO+2H2 CH4+2CO2===3CO+H2+H2O CH4+3CO2===4CO+2H2O CO+H2O===CO2+H2 副反应: CH4===C+2H2 2CO===C+CO2 CO+H2===C+H2O 副反应既消耗了原料,并且析出的炭黑沉积在催化剂表面将使催化剂失活,因此必须抑制副反应的发生。 转化反应的特点如下:

1)可逆反应在一定的条件下,反应可以向右进行生成CO 和H2,称为正反应;随着生成物浓度的增加,反应也可以 向左进行,生成甲烷和水蒸气,称为逆反应。因此生产中必须控制好工艺条件,是反应向右进行,生成尽可能多的CO 和H2。 2)气体体积增大反应一分子甲烷和一分子水蒸气反应后,可以 生成一分子CO和三分子H2,因此当其他条件确定时,降低压力有利于正反应的进行,从而降低转化气中甲烷的含 量。 3)吸热反应甲烷的蒸汽转化反应是强吸热反应,为了使 正反应进行的更快、更彻底,就必须由外界提供大量的热量,以保持较高的反应温度。 4)气-固相催化反应甲烷的蒸汽转化反应,在无催化剂的 参与的条件下,反应的速度缓慢。只有在找到了合适的催化 剂镍,才使得转化的反应实现工业化称为可能,因此转化反 应属于气-固相催化反应。 2.化学平衡及影响因素 3.反应速率及影响速率 在没有催化剂的情况时,即使在相当高的温度下,甲烷蒸汽转化反应的速率也是很慢的。当有催化剂存在时,则能大大加快反应速率;甲烷蒸汽转化反应速率对反应温度升高而加快,扩散

制氢的全部方法

制氢的全部方法 一、电解水制氢 多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。阳极出氧气,阴极出氢气。该方法成本较高,但产品纯度大,可直接生产99.7%以上纯度的氢气。这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。像北京电子管厂和科学院气体厂就用水电解法制氢。 二、水煤气法制氢 用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO 而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。 三、由石油热裂的合成气和天然气制氢 石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气 也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。 四、焦炉煤气冷冻制氢 把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。 五、电解食盐水的副产氢 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。 六、酿造工业副产 用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。 七、铁与水蒸气反应制氢 但品质较差,此系较陈旧的方法现已基本淘汰。 八、金属与酸反应制氢气, 当然,金属必须是活动性排在氢前的(钾,钙,钠不行),可以用镁铝锌铁锡铅。酸不能用硝酸和浓硫酸。 工厂生产方法有: 1、电解水制氢. 水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及

天燃气制氢操作规程

天然气制氢 第一章天然气制氢岗位基本任务 以天燃气为原料的烃类和蒸汽转化,经脱硫、催化转化、中温变化,制得丰富含氢气的转化气,再送入变压吸附装置精制,最后制得纯度≥99.9%的氢气送至盐酸。 1.1工艺流程说明

由界区来的天然气压力为1.8~2.4MPa,经过稳压阀调节到1.8Mpa,进入原料分离器F0101后,经流量调节器调量后入蒸汽转化炉B0101对流段的原料气预热盘管预热至400℃左右,进入脱硫槽D0102,使原料气中的硫脱至0.2PPm以下,脱硫后的原料气与工艺蒸汽按水碳比约为3.5进行自动比值调节后进入混合气预热盘管,进一步预热到~590℃左右,经上集气总管及上猪尾管,均匀地进入转化管中,在催化剂层中,甲烷与水蒸汽反应生产CO和H2。甲烷转化所需热量由底部烧咀燃烧燃料混合气提供。转化气出转化炉的温度约650--850℃,残余甲烷含量约3.0%(干基),进入废热锅炉C0101的管程,C0101产生2.4MPa(A)的饱和蒸汽。出废热锅炉的转化气温度降至450℃左右,再进入转化冷却器C0102,进一步降至360℃左右,进入中温变换炉。转化气中含13.3%左右的CO,在催化剂的作用下与水蒸气反应生成CO2和H2,出中变炉的转化气再进入废热锅炉C0101的管程换热后,再经锅炉给水预热器C0103和水冷器C0104被冷至≤40℃,进入变换气分离器F0102分离出工艺冷凝液,工艺气体压力约为1.4MPa(G)。 燃料天然气和变压吸附装置来的尾气分别进入转化炉的分离烧嘴燃烧,向转化炉提供热量≤1100℃。 为回收烟气热量,在转化炉对流段内设有五组换热盘管:(由高温段至低温段)蒸汽-A原料混合气预热器, B 原料气预热器,C烟气废锅,D燃料气预热器, E尾气预热器 压力约为1.4的转化工艺气进入变化气缓冲罐,再进入PSA装置。采用5-1-3P,即(5个吸附塔,1个塔吸附同时3次均降)。常温中压下吸附,常温常压下解吸的工作方式。每个吸附塔在一次循环中均需经历;吸附A,→一均降E1D,→二均降E2D,→顺放PP,→三均降E3,→逆放D,→冲洗P,→三均升E3R,→二均升E2R,→一均升E1R,→终升FR,等十一个步骤。五个吸附塔在执行程序的设定时间相互错开,构成一个闭路循环,以保证转化工艺气连续输入和产品气不断输出。 1.2原料天然气组份表

天然气水蒸气转化设计

天然气水蒸气转化设计 一、氢气的用途及制造方法 氢气是炼油工业中加氢裂化、加氢精制等加氢工艺中主要的原料。在工业生产中,制氢包括两个过程,即含氢气体制造(造气)及氢气提纯(净化)。根据不同的制氢原料和所需氢气用途不同,采用不同制造工艺,得到不同纯度的氢气。目前制造含氢气体的原料主要是碳氢化合物,包括固体(煤)、液体(石油)及气体(天然气、炼厂气)。水是制造氢气的另一重要原料,如电解水。水也可以与碳氢化合物相结合制得氢气―即烃的水蒸气转化法。 二、天然气和水蒸气转化制氢 天然气是廉价的制氢原料。天然气和油田伴生气的主要成分是CH4,杂质含量少,含硫量也低,主要是硫化氢,含少量的羰基硫和硫醇,很容易加工处理,是制氢的好原料。 天然气是由以低分子饱和烃为主的烃类气体与少量非烃类气体组成的混合气体。目前天然气大型化工利用的主要途径是经过合成气生产合成氨、甲醇及合成油等。而在上述产品的生产装置中,天然气转化制合成气工序的投资及生产费用通常占装置总投资及总生产费用的60%左右。因此,在天然气的化工利用中,天然气转化制合成气占有特别重要的地

位。以天然气为原料生产合成气的方法主要有转化法和部分氧化法。 工业上多采用水蒸气转化法,水蒸气转化是指烃类被水蒸气转化为氢气和一氧化碳及二氧化碳的化学反应。蒸汽转化核心是转化炉,拥有天然气制氢技术的各大公司转化炉的型式、结构各有特点,上、下集气管的结构和热补偿方式以及转化管的固定方式也不同。虽然对流段换热器设置不同,但是从进出对流段烟气温度数据可知,烟道气的热回收率相差不大。在近期的工艺设置上,各公司普遍采用较高转化温度和相对较低水碳比的工艺操作参数设置有利于转化深度的提高,从而简化原料的消耗。 天然气蒸汽转化炉 天然气蒸汽转化炉是天然气蒸汽转化制合成气的主体设备。它是使天然气与蒸汽混合物通过转化管(反应管)转化成富含氢、一氧化碳、二氧化碳的合成气。转化管由外部辐射加热,管内装有含镍催化剂。 蒸汽转化炉炉型很多,按加热方法不同,大致可分为顶部烧嘴炉和侧壁烧嘴炉。 顶部烧嘴炉 外观呈方箱型结构,设有辐射室和对流室(段),两室并排连成一体。辐射室交错排列转化管和顶部烧嘴。对流室内设置有锅炉、蒸汽过热器、天然气与蒸汽混合物预热器、锅炉给水预热器等。 侧壁烧嘴炉 是竖式箱形炉,由辐射室和对流室两部分组成。辐射室沿其纵向中心排列转化管,室的两侧壁排列6~7排辐射烧嘴,以均匀加热转化管。对流室设有天然气与蒸汽混合原料预热器、高压蒸汽过热器、工艺用空气预热器、锅炉给水预热器等 三、天然气水蒸气转化过程工艺原理 原料天然气组成: 设计规模:30万吨/天 原料气温度:25℃ 要求:H2S<20mg/m3 因为天然气中甲烷含量在80%以上,而甲烷在烷烃中是热力学最稳定的,其他烃类较易反应,反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。 甲烷水蒸气转化过程的主要反应有(前三个)和可能发生的副反应有(后三个): O C CO C C CO C C C O CO C O C CO O H H O H H H O H H O H H H H 222 24222222422422423CH +?→←++?→←+?→←+?→←++??←++?→←+mol k J mol k J mol k J mol k J mol k J mol k J H H H H H H /4.131/5.172/9.74/2.41/165/206298298298298298298-=?-=?=?-=?=?=?ΘΘ ΘΘ Θ Θ 以上列举的主反应均是可逆反应。其中甲烷水蒸气转化主反应式(第一个方程式)和第二个方程式是强吸热的,副反应甲烷裂解式(第四个方程式)也是吸热的,其余为放热反应。 甲烷水蒸汽转化反应必须在催化剂存在下才有足够的反应速率。倘若操作条件下不适当,析碳反应严重时,生成的碳会覆盖在催化剂内外表面,致使催化剂活性降低,反应速率下降。析碳是更严重时,床层堵塞,阻力增加,催化剂毛细孔内的碳遇水蒸气会剧烈汽化,致使催化剂崩裂或粉化,迫使停工,经济损失巨大。所以,对于烃类蒸汽转化过程特 分子式 C1 C2 C3 N2 H2S CO2 组成 0.8512 0.0284 0.0013 0.0072 0.0892 0.524

天然气制备合成气

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助。天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。 目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势。 蒸气转化法 蒸气转化法是目前天然气制备合成气的主要途径。蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成 H2、CO等混合气,其主反应为: CH4 + 出0 =C0+3战,人H% =206KJ/mol 该反应是强吸热的,需要外界供热。因为天然气中甲烷含量在 90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。 甲烷水蒸气转化反应和化学平衡 甲烷水蒸气转化过程的主要反应有: CH4 +日2。= CO+3H2,A^29^206KJ/mol CH4+2H2O= CO2+4H2,AH % =165KJ/mol CO + H 2O u CO2+ H2,△H % = 74.9KJ / mol 可能发生的副反应主要是析碳反应,它们是: CH4=C+2H2,也Hd98 =74.9KJ/mol 2CO U C+CO2,心Hd98 =-172.5KJ/mol CO + H2U C + H2O,心H 色98 =-131.4KJ /mol

天然气制氢

天然气制氢 1.制氢原理 1.天然气脱硫本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1?5%1 勺氢,在约400C高温 下发生下述反应: RSH+H 2=H2S+RH H 2S+MnO=MnS2+OH 经铁锰系脱硫剂初步转化吸收后,剩余勺硫化氢,再在采用勺氧化锌催化剂作用下发生下述脱硫反应而被吸收: H 2S+ZnO=ZnS+2OH C 2H5SH+ZnO=ZnS+2HC4+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至O.lppm以下,以满足蒸汽转化催化剂对硫的要求。 2蒸汽转化和变换原理原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃--- 蒸汽转化反应, 主要反应如下: CH 4+H3CO+3HQ ⑴ 一氧化碳产氢CO + H 2O CO2 + H 2 +Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积炭,氧化等。 在转化反应中,要使转化率高,残余甲烷少,氢纯度高,反应温度就要高。但要考虑设备承受能力和能耗,所以炉温不宜太高。为缓和积炭,增加收率,要控制较大的水碳比。 3变换反应的反应方程式如下: CO+H 2O=CO2+H2+Q 这是一个可逆的放热反应,降低温度和增加过量的水蒸汽,均有利于变换反应向右侧进行,变换反应如果不借助于催化剂,其速度是非常慢的,催化剂能大大加速其反应速度。为使最终CO浓度降到低的程度,只有低变催化剂才能胜任。高低变串联不仅充分发挥了两种催化剂各自的特点,而且为生产过程中的废热利用创造了良好的条 4改良热钾碱法 改良热钾碱溶液中含碳酸钾,二乙醇胺及VO。碳酸钾做吸收剂、二乙醇胺做催化剂、它起着加快吸收和解吸的作用。VO5为缓蚀剂,可以使碳钢表面产生致密的保护膜,从而防止碳钢的腐蚀。KCO吸收CO的反应机理如下: K2CO+CO+H

1500Nm3-h天然气转化制氢装置项目建议书

xxxx集团有限公司 1500Nm3/h天然气转化制氢装置 项目建议书 编号:xxxx-xxxx-1112

一、总论 1.1 装置名称及建设地点 装置名称:1500Nm3/h 天然气制氢装置 建设地点:xxxx 1.2 装置能力和年操作时间 装置能力: :1500Nm3/h; H 2 纯度: ≧99.99(V/V) 压力≧2.0 MPa(待定) 年操作时间:≧8000h 操作范围:40%-110% 1.3 原料 天然气(参考条件,请根据实际组分修改完善): 1.4 产品 氢气产品

1.5 公用工程规格 1.5.1 脱盐水 ●温度:常温 ●压力:0.05MPa(G) ●水质:电导率≤5μS/cm 溶解O2 ≤2 mg/kg 氯化物≤0.1 mg/kg 硅酸盐(以SiO2计) ≤0.2 mg/kg Fe ≤0.1 mg/kg 1.5.2 循环冷却水 ●供水温度:≤28℃ ●回水温度:≤40℃ ●供水压力:≥0.40MPa ●回水压力:≥0.25MPa ●氯离子≤25 mg/kg 1.5.3 电 ●交流电:相数/电压等级/频率 3 PH/380V/50Hz ●交流电:相数/电压等级/频率 1 PH/220V/50Hz ● UPS交流电:相数/电压等级/频率 1 PH/220V/50Hz 1.5.4 仪表空气 ●压力: 0.7MPa

●温度:常温 ●露点: -55 ℃ ●含尘量: <1mg/m3,含尘颗粒直径小于3μm。 ●含油量:油份含量控制在1ppm以下 1.5.5 氮气 ●压力: 0.6MPa ●温度: 40℃ ●需求量:在装置建成初次置换使用,总量约为5000 Nm3 正常生产时不用 1.6 公用工程及原材料消耗 注:电耗与原料天然气压力有关。

最新微生物对污染物的降解和转化

微生物对污染物的降解和转化 ?有机污染物生物净化(天然物质、人工合成物质) ?无机污染物生物净化 第一节有机污染物的生物净化机理 ?净化本质——微生物转化有机物为无机物 ?依靠——好氧分解与厌氧分解 一、好氧分解 ?细菌是其中的主力军 ?原理:好氧有机物呼吸 ? C → CO2 + 碳酸盐和重碳酸盐 ? H → H2O ? N → NH3→ HNO2→ HNO3 ? S → H2SO4 ? P → H3PO4 ?二、厌氧分解?厌氧细菌 ?原理:发酵、厌氧无机盐呼吸C → RCOOH(有机酸)→CH4 + CO2 ?N → RCHNH2COOH → NH3(臭味) + 有机酸(臭味) ?S → H2S(臭味) ?P → PO 3- 4 ?水体自净的天然过程中 厌氧分解(开始)→好氧分解(后续)第二节各类有机污染物的转化 一、碳源污染物的转化

?包括糖类、蛋白质、脂类、石油和人工合成的有机化合物等。 1.纤维素的转化 ?β葡萄糖高聚物,每个纤维素分子含1400~10000个葡萄糖基(β1-4糖苷键)。 ?来源:棉纺印染废水、造纸废水、人造纤维废水及城市垃圾等,其中均含有大量纤维素。 A.微生物分解途径 B.分解纤维素的微生物 ?好氧细菌——粘细菌、镰状纤维菌和纤维弧菌 ?厌氧细菌——产纤维二糖芽孢梭菌、无芽孢厌氧分解菌及嗜热纤维芽孢梭菌。?放线菌——链霉菌属。 ?真菌——青霉菌、曲霉、镰刀霉、木霉及毛霉。 ?需要时可以向有菌种库的研究机构购买或自行筛选。 2.半纤维素的转化 ?存在于植物细胞壁的杂多糖。造纸废水和人造纤维废水中含半纤维素。 ?分解过程 ?分解纤维素的微生物大多数能分解半纤维素。 ?许多芽孢杆菌、假单胞菌、节细菌及放线菌能分解半纤维素。霉菌有根霉、曲霉、小克银汉霉、青霉及镰刀霉。 3.木质素的转化自然界中哪些微生物能够进行木质素的降解呢??确证的只有真菌中的黄孢原毛平革菌,疑似的有软腐菌。 黄孢原平毛革菌(Phanerochaete chrysosprium)是白腐真菌的一种,隶属于担子菌纲、同担子菌亚纲、非褶菌目、丝核菌科。 白腐—树皮上木质素被该菌分解后漏出白色的纤维素部分。*木质素降解的意义何在呢?(二)油脂的转化

天然气蒸汽转化制氢装置节能降耗技术

天然气蒸汽转化制氢装置节能降耗技术 发表时间:2019-11-14T11:35:56.040Z 来源:《科学与技术》2019年第12期作者:王永吴庆军罗超高丽敏[导读] 本文主要针对目前使用的天然气蒸汽转化制氢装置工艺流程能耗进行了深入分析,并在此基础上,对天然气蒸汽转化制氢装置节能降耗提出了一些可行的建议。 摘要:本文主要针对目前使用的天然气蒸汽转化制氢装置工艺流程能耗进行了深入分析,并在此基础上,对天然气蒸汽转化制氢装置节能降耗提出了一些可行的建议。通过在整个装置中增强冷凝液回收系统,并进一步提升了盐水温度,从而使得浓水的排放量减小。通过一系列的节能改造后使得天然气蒸汽转化制氢装置节能效果进一步提升,企业带来了更大的经济效益以及环境效应。【关键词】天然气;蒸汽重整;制氢装置;节能改造;效益提升引言 随着当前整个化工行业的快速发展,从而使得烃类蒸汽转化制氢也逐渐形成了成熟的工艺,目前很多国外制氢装置采用的都是这种方法,我国目前主要在工业生产中使用的工艺装置有烃类蒸汽转化制氢以及煤气化制氢装置等两种。与煤气制氢相比较,天然气制氢装置在实际的应用过程中设备整体投入量较小,而且在生产过程中整体能耗较低,污染量也较小,二氧化碳排放也相对比较小。油田化工企业为了进一步提升制氢装置的经济效益,并主要针对当前的天然气制氢装置在实际应用过程中的节能降耗进行深入的分析,某石油化工企业针对制氢装置运行过程中存在的问题,提出了冷凝液回收利用、提升脱氢水站收率等几种节能改造措施,从根本上有效提升了制氢装置实际应用的经济效益。1工艺冷凝回收1.1现状分析 当整个制氢装置在满负荷运行状态下,其实际产生的工业蒸汽量能够达到12t/h,在这部分工业蒸汽中过剩的水蒸气量能够达到8t/h,过程水蒸气基本上都经过冷却形成了工艺冷凝液。当年受到一定的压力作用后工艺冷凝液会溶解一定量的二氧化碳,因此,通常情况下工艺冷凝液都呈现出酸性会对工艺设备以及工艺管线产生一定的腐蚀作用,因此在脱盐水站的各种装置运行过程中不能将其作为原水来使用,导致大部分的工艺冷凝水都会直接进行外排,并会导致出现一定的资源浪费现象[1]。 工艺冷凝液的PH值以及电导率等各种参数与脱盐水站装置原水相比较出现了非常严重的超标现象。鉴于此,要想充分实现工艺冷凝水的回收利用,但必须要解决其PH值问题,这样才能够将其直接引入到脱盐水站反渗透膜中。 1.2改进措施(1)在装置中通过设置合理规则的管线将冷凝液引出。 (2)然后在整个制氢装置中增加了气液分离器装置,这样就能让该装置发挥出作用实现对工艺冷凝液的有效清除。 (3)在整套系统中增加了解吸塔装置,空气以及本工艺流程中的二氧化碳饱和度以及蒸气压都存在一定的差异,这样就能够有效的将溶液中溶解的二氧化碳气体脱离出来,也就达到了降低工艺冷凝液电导率的效果。工艺冷凝液在经过上述几种改进装置的处理后,完全达到了脱盐水的相关标准要求。 与此同时,为了有效避免二氧化碳解吸塔中混入可燃性气体,在整个装置加入气液分离器就能够实现可燃性气体的有效分离。另外在解析塔的上部位置设置了一个除沫器,这样就能够有效避免在处理过程中产生气体外溢夹带液体,也能实现对环境污染的进一步控制。经过上述几部的处理之后如果盐分的含量仍然比较高,还可以充分借助耳机反渗透膜的作用来实现进一步的深度处理,经过上步的处理之后就能够完全达到脱盐水站实际的生产需求,从而实现了对冷凝液的有效回收,也能进一步提升水资源的利用效率。2提高脱盐水收率2.1现状分析 制氢装置脱盐水站主要是充分利用反渗透原理将水分中的大部分盐分以及相关的杂质进行有效清除,这样就能够为整个制氢装置提供大量符合标准要求的脱盐水。 某企业一直以来制氢装置脱盐水站所使用的原水都是来自于公司生产产生的软化水,在夏季温度较高的情况下原水的温度能够达到30℃,甚至在冬季原水的温度能够达到20℃。该企业由于供应软化水的公司划归到其他领域,从而使得软化水来水温度产生了较大的变化,即使在夏季原水的温度也仅仅达到了20℃,在冬季水温只能达到8℃,环境温度较低的情况下,水温甚至只能达到5℃。这样在一定程度上对该企业的脱盐水站产水量产生了较大的影响,产水收率下降非常明显,从而使水资源出现了非常严重的浪费现象 [2]。在具体针对原水的温度以及实际的产水率进行深入的分析之后可以知道,在原水温度较低的情况下,必须要对其进行加热处理,这样才能保证其不对脱水干其他生产作业缓解造成影响,也能够实现对脱盐水站水受率的有效提升。 2.2改进措施 据上述分析中原水温度与产水率之间的关系,在原水管增设了一台原水预热器,以此来有效提升原水温度,这样就实现了对浓水排放量的进一步控制,也有效提升了脱盐水站产水量。 2.3应用技术特点 针对整个预热系统并没有设置相应的副线,在充分结合原水温度之后,对原水预热器进行合理的使用,与此同时,可在原水预热器出现故障的时候,切断预热器,这样就实现了预热转换的便捷性,不会对脱盐水站的生产造成影响。 (1)鉴于两种介质进行直接换热实际产生的温差相对比较大,为了有效避免在换热过程中对板式换热器造成强烈的冲击,因此,在板式换热器入口位置处设置了一个相应的减温减压换热器。 (2)该装置在正常运行过程中对整个转化工序运行中副产物的低压蒸汽进行充分利用,而低压蒸汽在正常状态下是处于放空的,因此通过改进后进一步提升了企业厂区内部蒸汽的有效利用率。 3 结束语天然气蒸汽转化制氢装置在国内外的应用非常广泛,是整个行业中主要的制氢装置之一,而实际应用中不可避免的还会出现能耗的问题,针对实际执行装置进行节能改造后取得了良好的节能效果。参考文献

天然气制氢装置工艺技术规范

天然气制氢装置工艺技术规程 1.1装置概况规模及任务 本制氢装置由脱硫造气工序、变换工序、PSA制氢工序组成 1.2工艺路线及产品规格 该制氢装置已天然气为原料,采纳干法脱硫、3.8MPa压力下的蒸汽转化,一氧化碳中温变换, PSA工艺制得产品氢气。 1.3消耗定额(1000Nm3氢气作为单位产品) 2.1工艺过程原料及工艺流程 2.1.1工艺原理 1.天然气脱硫 本装置采纳干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采纳铁锰系转化汲取型脱硫催化剂,并在原料气中加入约1-5%的氢,在约400℃高温下发生下述反应:

RSH+H2=H2S+RH H2S+MnO=MnS+H2O 经铁锰系脱硫剂初步转化汲取后,剩余的硫化氢,再在采纳的氧化锌催化剂作用下发生下述脱硫反应而被汲取: H2S+ZnO=ZnO+H2O C2H5SH+ZnS+C2H5+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流淌方向逐层进行,最终硫被脱除至0.1ppm以下,以满足蒸汽转化催化剂对硫的要求。 2.蒸汽转化和变换原理 原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃—蒸汽转化反应,要紧反应如下: CH4+H2O= CO+3H2-Q (1) 一氧化碳产氢 CO+H2O=CO2+H2+Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积碳,氧化等。 在转化反应中,要使转换率高,残余甲烷少,氢纯度高,反应温度要高,但要考虑设备承受能力和能耗,因此炉温不宜太高。为缓和

微生物转化

微生物转化在植物类中药研究中的应用 班级:科研一班 学号:2013110039 姓名:杜风丽

微生物转化在植物类中药研究中的应用 摘要:对微生物转化在植物药成分研究中的应用取得的进展进行了综述,利用微生物对植物药成分进行转化是中药高效利用的一条新思路,可显著推动我国的植物药资源的高效开发与利用,有利于在短时间内研制出具有自主知识产权的新药。 关键词:微生物;植物药;生物转化 中药是我国民族医药的瑰宝,长期以来人们一直从现有药材中寻找有效成分。尤其植物药,从现有资源中发现新的具有生理活性作用的化合物越来越难。另外,原有植物药成分存在着的体内代谢途径不清楚、药效不强、毒副作用大、稳定性差等缺点,影响了它们的应用。要解决这些问题,一方面要对现有的植物药成分进行化学结构改造,获得新的化合物,开发新的药理活性;另一方面,要选择合适的手段,对植物药成分的体内药代动力学进行研究,更好地阐明植物药成分的药效,发挥中药在世界医药中的作用。生物转化是近五十年来发展起来的一门科学,微生物转化是生物转化的一部分,而真菌种类繁多、营养要求相对较低、易于培养,是一种有效的生物转化载体。使用真菌作为生物转化体系,以植物药成分研究为出发点,进行植物药成分的转化和体内药物代谢的研究已经初步取得了一些成果。 1.紫杉醇 紫杉醇是从红豆杉属植物的树皮中分离提取到的一种二萜类化合物,亦是继阿霉素和顺铂后备受青睐的抗癌药,但其来源一直缺乏[1]。美国施贵宝公司Patel等利用微生物转化方法进行紫杉醇的半合成,他们分别从白色类诺卡菌、藤黄类诺卡菌、莫拉菌的发酵液中分离得到c-13紫杉醇酶、C-7木糖苷酶和c-10去乙酰酶,分别将红豆杉中的几种紫杉烷如巴卡亭Ⅲ、紫杉醇C、cephalomannie、10一去乙酰基紫杉醇等的7,10,13位进行水解,得到较多而单一的10 去乙酰一巴卡亭3,该产物为紫杉醇合成的重要前体化合物,再利用化学反应,连接上13位的侧链,即可得到紫杉醇[2-3] 。这提示了生物转化技术有利于紫杉醇前体物质的得到,从而为紫杉醇的来源提供了一个新的有效途径。 2.喜树碱 喜树碱是Wall和Wani等从珙桐科乔木、我国特有的植物喜树的树叶和树皮中分离得到的具有较强的抗肿瘤和抗病毒活性的生物碱。微生物转化喜树碱可以获得10,羟基喜树

田小玲水蒸汽转化制氢合成气组成

水蒸汽转化制氢所提供合成气组成 根据炼油化工一体化优化设计,在制氢装置满足炼油油品升级换代的基础上,还往往为化工装置提供合成气。例如:中石油四川石化分公司,原油加工能力1000万吨/年,需要10万Nm3/h 氢氢和2.83万Nm3/h 合成气可满足丁辛醇装置生产需要;中科合资广东炼油化工一体化项目,原油加工能力1500万吨/年,需要18万Nm3/h 氢氢和2万Nm3/h 合成气可满足丁辛醇装置生产需要。 丁辛醇装置需要的合成气规格见表: 表1 合成气规格

从表1看出为H2:CO摩尔比为大约50%。要满足此要求,不同的制氢路线,获得的方法不同。 1、水煤浆制氢方法 中科项目采用的是POX制合成气,即石油焦、原料煤及石灰石经过料浆制备单元制成合格料浆后,与空分装置提供的氧气一起进入气化单元的气化炉,发生部分氧化反应,反应生成的粗合成气主要组成为氢气、一氧化碳和二氧化碳。其典型组成: 表2 水煤浆粗合成气典型组成 从表2组成看出,H2摩尔比例低于CO,需要返回氢气调节羰基合成气的氢气和一氧化碳的比例要求。因此,目前从气化炉出来的粗合成气经急冷和洗涤后,分为两股,一股用作制羰基合成气,另一股作为制氢原料气。用作制羰基合成气的粗合成气经回收热量及冷却后进入低温甲醇洗单元进行脱硫。作为制氢原料气的粗合成气进入一氧化碳变换单元发生变换反应,反应使大部分一氧化碳变换为氢气,经过废热回收及冷却后进入低温甲醇洗单元,变换气在低温甲醇洗单元脱除所含的硫(主要以硫化氢形式存在)和二氧化碳后成为粗氢气。用作制羰基合成气的合成气在出低温甲醇洗单元后补入一股粗氢气,将H2 和CO 比例调节合适后作为羰基合成气外送。粗氢气进入甲烷化系统进行精制,制得合格的工业氢气产品后外送。因此,生产羰基合

天然气制备合成气

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气 的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助。天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。 目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势。 蒸气转化法 蒸气转化法是目前天然气制备合成气的主要途径。蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成CO H 、2等混合气,其主反应为: 2243H CO O H CH +=+,mol /206298KJ H =?Θ 该反应是强吸热的,需要外界供热。因为天然气中甲烷含量在90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。 甲烷水蒸气转化反应和化学平衡 甲烷水蒸气转化过程的主要反应有: 2243H CO O H CH +?+,mol /206298KJ H =?Θ 222442H CO O H CH +?+,mol /165298KJ H =?Θ 222H CO O H CO +?+,mol /9.74298KJ H =?Θ 可能发生的副反应主要是析碳反应,它们是: 242H C CH +?,mol /9.74298KJ H =?Θ 22CO C CO +?,mol /5.172-298KJ H =?Θ O H C H CO 22+?+,mol /4.131-298KJ H =?Θ

天然气蒸汽转化的基本原理

一、天然气蒸汽转化的基本原理 1.蒸汽转化反应的基本原理 天然气的主要成分为甲烷,约占90%以上,研究天然气蒸汽转化原理可以甲烷为例来进行。 甲烷蒸汽转化反应为一复杂的反应体系,但主要是蒸汽转化反应和一氧化碳的变换反应。 主反应: CH4+H2O===CO+3H2 CH4+2H2O===CO2+4H2 CH4+CO2===2CO+2H2 CH4+2CO2===3CO+H2+H2O CH4+3CO2===4CO+2H2O CO+H2O===CO2+H2 副反应: CH4===C+2H2 2CO===C+CO2 CO+H2===C+H2O 副反应既消耗了原料,并且析出的炭黑沉积在催化剂表面将使催化剂失活,因此必须抑制副反应的发生。 转化反应的特点如下: 1)可逆反应在一定的条件下,反应可以向右进行生成CO

和H2,称为正反应;随着生成物浓度的增加,反应也可以向 左进行,生成甲烷和水蒸气,称为逆反应。因此生产中必须控制好工艺条件,是反应向右进行,生成尽可能多的CO和H2。 2)气体体积增大反应一分子甲烷和一分子水蒸气反应后,可以 生成一分子CO和三分子H2,因此当其他条件确定时,降低压力有利于正反应的进行,从而降低转化气中甲烷的含量。 3)吸热反应甲烷的蒸汽转化反应是强吸热反应,为了使 正反应进行的更快、更彻底,就必须由外界提供大量的热量,以保持较高的反应温度。 4)气-固相催化反应甲烷的蒸汽转化反应,在无催化剂的 参与的条件下,反应的速度缓慢。只有在找到了合适的催化 剂镍,才使得转化的反应实现工业化称为可能,因此转化反 应属于气-固相催化反应。 2.化学平衡及影响因素 3.反应速率及影响速率 在没有催化剂的情况时,即使在相当高的温度下,甲烷蒸汽转化反应的速率也是很慢的。当有催化剂存在时,则能大大加快反应速率;甲烷蒸汽转化反应速率对反应温度升高而加快,扩散作用对反应速率影响明显,采用粒度较小的催化剂,减少内扩散的影响,也能加快反应速率。

天然气转化

(一) 天然气转化 学院:化学与化工学院 班级:化工1202班 姓名:xxx 学号:12150102xx

一.天然气简介 天然气是指自然界中天然存在的一切气体,包括大气圈、水圈、和岩石圈中各种自然过程形成的气体(包括油田气、气田气、泥火山气、煤层气和生物生成气等)。而人们长期以来通用的"天然气"的定义,是从能量角度出发的狭义定义,是指天然蕴藏于地层中的烃类和非烃类气体的混合物。在石油地质学中,通常指油田气和气田气。其组成以烃类为主,并含有非烃气体。天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。天然气主要用途是作燃料,可制造炭黑、化学药品和液化石油气,由天然气生产的丙烷、丁烷是现代工业的重要原料。天然气主要由气态低分子烃和非烃气体混合组成。天然气组成以气态低分子烃为主(主要成分是甲烷, 同时也含有非烃气体),相对密度0.65,比空气轻,具有无色、无味(天然气公司皆遵照政府规定添加臭剂, 例如四氢噻吩)、无毒、可燃的特性。天然气燃烧后生成二氧化碳和水,产生的温室气体是煤炭燃烧的50%,石油的66% 。由于天然气热值高,燃烧产物对环境污染少,是未来世界普遍采用的清洁能源。世界能源结构逐步发生变化,各国政府也

通过立法程序来传达这种趋势,发展天然气工业已经成为世界各国改善环境和维持经济可持续发展的最佳选择。 二.天然气利用现状 天然气组成以气态低分子烃为主(主要成分是甲烷, 同时也含有非烃气体),相对密度0.65,比空气轻,具有无色、无味(天然气公司皆遵照政府规定添加臭剂, 例如四氢噻吩)、无毒、可燃的特性。天然气的爆炸极限为5%~15%。 天然气燃烧后生成二氧化碳和水,产生的温室气体是煤炭燃烧的50%,石油的66% 。由于天然气热值高,燃烧产物对环境污染少,是未来世界普遍采用的清洁能源。世界能源结构逐步发生变化,各国政府也通过立法程序来传达这种趋势,发展天然气工业已经成为世界各国改善环境和维持经济可持续发展的最佳选择。 不同国家对于天然气的利用方向不同,总体上可以归纳为三种利用模式:结构均衡型、以发电为主型以及以城市燃气为主型。 结构均衡型就是在天然气利用结构中城市燃气、工业燃料(国际上通常将化工类利用列入工业燃料中)和发电的比例相对比较平均,基本上是“三分天下”,国际上属于此种模式的国家以美国最为典型;以发电为主型是在天然气利用结构中天然气发电所占比例大,基本上是“一电独大”,国际上属于此种模式的国家包括日本、韩国、俄罗斯等;以城市燃气为主型即在天然气利用结构中城市燃气所占比例较大,国际上属于此种模式的国家包括荷兰、英国等。 在我国,天然气作为一种优质高效的清洁能源和化工原料,已被

相关主题
文本预览
相关文档 最新文档