当前位置:文档之家› 天然气制氢气装置

天然气制氢气装置

天然气制氢气装置
天然气制氢气装置

煤制乙二醇工艺流程详细工艺

环氧乙烷水合制乙二醇 乙二醇是合成聚酯树脂的主要原料,大家熟知的涤纶纤维就是由乙二醇与对苯二甲酸合成的。乙二醇还可用作防冻液,w(乙二醇)=55%的水溶液的冰点为-36℃,可用作中国北方冬天汽车必需的冷却液。此外,乙二醇还可用作溶剂和用于化妆品、毛皮加工、烟叶润湿和纺织工业染整等。据预测,2000年乙二醇的世界产量将达到10Mt/a。中国1995年的产量为53×104 t/a,到2000年将达72×104 t/a。 1.乙二醇生产方法综述 现在,乙二醇有多种工业生产方法,但环氧乙烷水合制乙二醇法仍占主导地位。 (1)环氧乙烷法 可用酸作催化剂,但用得较多的是加压水合: 反应中生成约10%的二乙二醇醚(二甘醇)和三乙二醇醚(三甘醇),它们是有用的化工产品,故反应所得的有用产品总产率按环氧乙烷计接近100%,生成的二乙二醇醚用作纤维素、树胶、涂料、喷漆的溶剂或稀释剂。三乙二醇醚主要用来生产刹车液。它们的售价比乙二醇还高,因此可改善生产装置的经济效益。 环氧乙烷法因环氧乙烷售价高,生产总成本也比较高。 (2)乙烯乙酰氧基化法 乙烯乙酰氧基化法又称奥克西兰(Oxirane)法,它可由乙烯为原料生产乙二醇。工艺分二步进行,第一步乙烯与醋酸反应生成乙二醇-醋酸酯和乙二醇二醋酸酯: 反应条件:反应温度160℃,反应压力,催化剂TeO2/HBr[w(HBr)=48%的水溶液],还可用醋酸锰加碘化钾作催化剂,乙烯转化率60%,选择性95%~97%,产品分布:乙二醇二醋酸酯70%,乙二醇一醋酸酯25%,乙二醇5%。 第二步是醋酸酯水解生成乙二醇和醋酸:

反应条件为:反应温度107~130℃,压力,选择性95%。 该法的总反应式为: 2CH2=CH2+2H2O+O2→2HOCH2-CH2OH 以乙烯计的摩尔产率为94%,高于以环氧乙烷法生产乙二醇的产率。 该法虽然以廉价的乙烯作原料,但投资和能耗比环氧乙烷法高,经济上是否比环氧乙烷法好尚有争论,再加上醋酸对设备的腐蚀是一个头痛问题,催化剂的再生和回收问题也没有很好解决,致使已开工生产的a生产装置被迫停产关闭。 (3)乙烯氧氯化法 该法又称帝人(Teijin)法。由日本帝人公司开发成功,是对老式的氯乙醇法生产环氧乙烷的改进。采用TiCl3-CuCl2-HCl水溶液为催化剂。化学反应如下: CH2=CH2+TiCl3+H2O→ClCH2-CH2OH+TiCl+HCl ClCH2-CH2OH+H2O→HOCH2-CH2OH+HCl 催化剂再生: TiCl+2CuCl2→2CuCl2+H2O 2CuCl+2HCl+ 1/2 O2→2CuCl2+H2O 反应条件为:反应温度160℃,压力,pH<4,乙二醇选择性为89%,乙醛6%,其他(二氧杂环己烷和二乙二醇)5%,如果Cl-∶Ti3+的比例小于4∶1时,乙醛产率将显著增大,在反应温度大于120℃时,氯乙醇可在同一装置内水解。 乙烯的氧氯化亦可在另一个催化剂体系中进行: 催化剂再生: 2Cu+(或2Fe2+)+2H++1/2O2→2Cu2+(或2Fe3+)+H2O 反应条件:反应温度150~180℃,压力~,乙二醇选择性86%,该法的优点是乙烯消耗定额很低,仅 kg/kg乙二醇,但有强腐蚀性,产物与催化剂溶液的分离比较困难。 (4)由合成气制乙二醇 合成气是一氧化碳和氢气混合物的总称。现在工业上用煤、天然气和劣质重油为原料可廉价、大量的生产出来,目前主要用来生产甲醇、合成氨、羰基化产品等。由合成气制乙二醇已引

燃气输配课程设计

第一章 燃气性质计算 气源基本参数 因为西气东输二线工程经过洛阳市,所以该小区采用的气源是天然气 选用的天然气,其容积成分为,甲烷74.3%,丙烷6.75%,氮气0.55% 二氧化碳1.62%,丁烷1.88%,CmHn(取丙烯C3H6)14.9% 表1-1 天然气组成及其标态下的主要特性值 成分 V (%) 分子量 密度(kg/m3) 粘度(pa s) 低热值(kj) 甲烷 74.3 16.043 0.7174 10.395 35902 丙烷 6.75 44.097 2.0102 7.502 93240 丁烷 1.88 58.124 2.703 6.835 123649 N 2 0.55 28.0134 1.2504 16.671 — CO 2 1.62 44.0098 1.9771 14.023 — 丙烯 14.9 42.081 1.9136 7.649 87667 燃气性质的计算 1、 分子量的计算 由输配课本表1-4、表1-5查得各组分分子量,按以下公式求混合气体平均分 子量。 ()n n i i M y M y M y M y M +++== ∑ 2211100 1 1001 (081.429.140098.4462.10134.2855.0124.5888.1097.4475.6043.163.74100 1 ?+?+?+?+?+?= =23.126

2、相对密度的计算 由输配课本表1-4、表1-5查得各组分密以下公度,按以下公式求混合气体平 均密度。 ρρi i y ∑= 100 1 ) (ρ ρ ρn n y y y + ++= 2 2 1 1 100 1() 9136.19.149771.162.12504.155.0703.288.10102.275.67174.03.74100 1?+?+?+?+?+?=1.043kg\m3 按以下公式求混合气体相对比重即相对密度 S 293 .1ρ = =0.807 3、粘度的计算 将容积成分换算为质量成分 100 ?= ∑M y M y g i i i i i 由输配课本表1-4、表1-5查得各组分的分子量,根据已知的各组分容积成分, 通过计算得到 6.2312=∑i i M y 按换算公式,各组分的质量成分为 54 .511006 .2312043.163.744 =??=CH g 87.121006 .2312097.4475.68 3=??=H C g 73.41006 .2312124.5888.110 4=??=H C g

燃气计算书

课程设计计算说明书 题目名称:燃气管道课程设计 系:建筑工程系 专业:建筑环境与能源应用工程 班级: 学号: 学生姓名: 指导教师: 职称:讲师 2016年 5月12日 前言 根据有关批件,近期内为居民区配套燃气供应设施,以供应居民生活、公共建筑用气。气源来自小区北侧低压燃气干管的末端,供气压力为天然气3.25Kpa。居民区内道

路纵横交错,路面平坦,均已修建成柏油或水泥路面。给排水干管、通讯电缆管道等均已埋设在车行道下,并正式使用。供热管沟埋设在街区内,一般不穿越干道。该市冬季冻土深度为地表下0.85m,地下水位-3.2m,土壤腐蚀性质为标准级。室外燃气管道采用焊接钢管,管件均需加工制作,管道上的附属设备有闸板阀、钢制波形补偿器和凝水器等。区内道路的承载能力按通过一般载重汽车考虑。 塔楼为8户/层;板楼为2户/梯。 公共建筑用气设备如下: 托幼:两个开水炉、两个蒸饭灶、两个爆炒灶。 门诊:3个开水炉、3个双眼灶。 写字楼:4个开水炉、1个烤箱灶。 某居民住宅楼为6层,层高2.9m,室内首层地面标高±0.00,室外地表标高为-0.45m。每户居民厨房内安装家用燃气表、燃气灶及快速热水器各一台。室内燃气管道及设备的布置按燃气设计规范执行。

目录 一、燃气性质的计算 (4) 二、布线原则和说明 (6) 三、室内燃气管线水力计算 (8) 四、室外燃气管网水力计算 (12) 五、参考文献 (14)

一、燃气性质的计算 1、该天然气在标准状态下的平均分子量 查课本附录1得甲烷在标准状态下的分子量为16.043;乙烷在标准状态下的分子量为30.070 ;丙烷在标准状态下的分子量为44.097;二氧化碳在标准状态下的分子量为44.010;氮在标准状态下的分子量为28.013. 由混合气体平均分子量的计算公式M= , 得该燃气的平均分子量为: M= =17.366 2、平均密度 查课本附录1得甲烷在标准状态下的密度为0.7174kg/m3;乙烷在标准状态下的密度为1.3553kg/m3;丙烷在标准状态下的密度为2.0102kg/m3;二氧化碳在标准状态下的密度为1.9771kg/m3;氮在标准状态下的密度为1.2504kg/m3. 由混合气体平均密度计算公式 , 得该燃气的平均密度 × =0.778 kg/m3 3、相对密度 由混合气体相对密度计算公式 , 得该燃气的相对密度 kg/m3 4、运动粘度 首先,计算该燃气的动力黏度。 由混合气体的动力黏度计算公式得该燃气的动力黏度为: 再由混合气体的运动黏度公式 得该燃气的运动黏度为: 5、天然气的热值 天然气的热值计算公式为: 查附录1得在标准状态下甲烷高热值为39.842MJ/m3,低热值为35.902 MJ/m3; 乙烷高热值为70.351 MJ/m3,低热值为64.397 MJ/m3; 丙烷高热值为101.266 MJ/m3,低热值为93.240 MJ/m3。所以该天然气的高热值为:

页岩气及其成藏机理

页岩气及其成藏机理 页岩气及其成藏机理 摘要:本文介绍了页岩气的特征、形成条件和富集机理等,认为不同阶段、不同成因类型的天然气都可能会在泥页岩中滞留形成页岩气;页岩气生气量的主要因素是有机质的成熟度、干酪根的类型和有机碳含量;吸附态的赋存状态是页岩气聚集的重要特征。我国页岩地质结构特殊复杂,需要根据我国具体的地质环境进行分析以便更加合理的进行开采。 关键词:页岩气富集资源 天然气作为一种高效、优质的清洁能源和化工原料,已成为实现低碳消费的最佳选择。全球非常规天然气资源量非常巨大,是常规油气资源的1.65倍。其中页岩气占非常规天然气量的49%约456 1012m3,巨大的储量和其优质、高效、清洁的特点,使得页岩气这一非常规油气资源成为世界能源研究的热点之一。我国页岩气可采储量丰富,约31 1012m3,与美国页岩气技术可采储量相当。通过对页岩气资源的勘探和试采开发,发现其储集机理、生产机制与常规气藏有较大的差别。 一、页岩气及其特征 页岩是一种具有纹层与页理构造由粒径小于0.004mm的细粒碎屑、黏土矿物、有机质等组成。黑色页岩及含有机质高的碳质页岩是形成页岩气的主要岩石类型。页岩气是从黑色页岩或者碳质泥岩地层中开采出来的天然气。页岩气藏的形成是天然气在烃原岩中大规模滞留的结果,由于特殊的储集条件,天然气以多种相态存在,除了少数溶解状态的天然气以外,大部分在有机质和黏土颗粒表面上吸附存在和在天然裂缝和孔隙中以游离方式存在。吸附状态的天然气的赋存与有机质含量有关,从美国的开发情况来看,吸附气在85~20%之间,范围很宽,对应的游离气在15~80%,其中部分页岩气含少量溶解气。 页岩气主体上是以吸附态和游离态同时赋存与泥页岩地层且以 自生自储为成藏特征的天然气聚集。复杂的生成机理、聚集机理、赋

煤制乙二醇项目解决方案介绍

Technology 技术纵横 摘要:为了推广一体化解决方案在煤制乙二醇装置上的应用,提高国产自控系统的竞争力,降低国内同类项目全生命周期成本,和利时HOLLiAS 一体化解决方案提供了覆盖用户工厂全部需求的产品和服务,从工艺控制、安全管理、资产管理、控制优化、生产管理等方面为用户提供增值的解决方案,使生产运营逐步实现精益化、智能化,最终的目标是实现企业运营最优化。一体化方案在乙二醇装置上的优势和实力,可为今后国内同行业自控装置的选型与配置提供借鉴和支撑。关键词:K 系列DCS ;乙二醇;一体化方案;控制 Abstract: In order to promote the integration of application in the Coal-to-ethylene Glycol plant, improve the competitiveness of automatic control system in China, and reduce the cost of whole life cycle of similar projects, HOLLiAS integration solution provides all customers' requirements for products and services in plant, and provides customers with value-added solutions for process control, safety management, asset management, control optimization, production management, etc., which make the operation gradually realize the streamline and intelligent, and its ultimate goal is to realize the enterprise operation optimization. Integration in the ethylene glycol plant's advantage and strength, is a reference and support for the automatic control system selection and con?guration for the future plant in China. Key words: K series DCS; Ethylene glycol; Integration solution; Control 目前,和利时已成功实施多个煤制乙二醇项目,为用户提供了DCS 与SIS 系统的一体化解决方案,并对氧煤比等主要回路进行 优化控制,实现安全稳定、优化控制与操作方便的统一。 1 行业简述 乙二醇(EG )是一种重要的有机化工原料,主要用于生产聚酯纤维和防冻剂,此外还可用于生产不饱和聚酯树脂、润滑剂、增塑剂、非离子表面活性剂以及炸药等,用途十分广泛。 截至2015年底,中国已投产运行和试车成功的煤(合成气)制乙二醇(CTMEG )项目共10个,总产能170万吨。早期投产的示范项目运行渐入佳境。 2016年将是中国煤制乙二醇产能爆发的开端之年,将新建10个项目,总计乙二醇产能166万吨/年。草酸酯路线煤制乙二醇的技术研发正在向低成本、高选择性、长催化剂寿命和环境友好的方向发展。由于产品质量不断优化,煤制乙二醇已经开始被大规模应用于聚酯化纤行业。来自亚化咨询的消息称,至2020年中国将总计建成41个煤制乙二醇项目,总产能将达到1026万吨。煤制乙二醇将成为中国聚酯化纤行业的重要原料来源。 2 主要工艺介绍 目前我国乙二醇的生产技术主要有两种路线。一种是以乙烯为原料经环氧乙烷(EO )非催化液相水合法生产乙二醇的石化路线。这种工艺存在乙烯氧化制环氧乙烷的选择性较低、环氧乙烷水合副产物多(主要为二乙二醇、三乙二醇)、分离精制工艺复杂、能耗大等问题,生产乙烯的原料是石油产品,原油来源受控因素较多。

燃气课程设计计算书

目录 第1章工程概况2 第2章资料2 2.1原始资料2 2.2气源参数2 2.3用气量指标3 第3章管道布置及技术要求3 3.1管道材料3 3.2设计方案3 3.3管道布置3 第4章室内燃气管道水利计算4 4.1 设计要求5 4.2 计算步骤5 4.3 计算结果5 4.4 结论5 第5章设计总结6 第6章参考文献 (6) 第1章工程概况

根据有关规划二区25#民用住宅楼配套建设燃气供应基础设施,供给区内居民用户。 气源选用天然气,小区内设置一座中低压调压箱。调压箱进口与小区外中压燃气干管相连,供气压力为0.15 MPa;出口与小区低压庭院管网相连,出口压力为3000Pa。居民住宅楼内设燃气室内管道。 居民住宅楼6层,层高2.8m,室内首层地面标高±0.00,室外地坪标高-0.30m。居民用户安装燃气表、燃气灶各一台。 第2章设计资料 2.1原始资料 小区燃气管道室外布置图M1:1000,住宅楼一层平面图、标准层平面图M1:100; 2.2气源参数 目参数取值 组分,体积百分比(%)CH489.02 CO2 1.54 C2H67.13 C3H8 1.4 C m H n0.41 H2S0.0002 N20.50 气态密度,kg/Nm30.6278 低热值,MJ/Nm3 (kcal/Nm3)38.40(9179)高热值,MJ/Nm3 (kcal/Nm3)42.48(10154)

2.3用气量指标 双眼灶额定流量为0.9m3/h,中式炒菜灶额定流量为2.8 m3/h。 第3章管道布置及技术要求 3.1 管道材料 室外埋地燃气管道采用聚乙烯管,通过钢朔转换接头接到室内燃 气引入管。室内燃气管道采用镀锌钢管,管材应符合《低压流体焊接用钢管》GB/T3091。 3.2设计方案 室外埋地燃气接到室内燃气引入管,引入管沿建筑物外墙引入室内,室外立管采用玻璃钢保护罩保护,保护罩不采用要暖装置。管道穿墙处采用镀锌钢套管保护。燃气管道与套管之间采用油麻沥青密封。室内燃气管道均采用明设。燃气立管设于厨房内,每隔2米及转弯处设支架。 3.3 室内管道布置 3.3.1燃气用户引入管 燃气用户引入管一般从家庭厨房,楼梯间或走廊等便于修理的非居住房间引入,不应从卧室、浴室、易燃易爆的仓库。,生产方式分为地下引入和地上引入,本设计采用地上引入方式。 地上引入:引入管自埋地管接出,沿建筑外墙,在一定高度穿过外墙引入室内。 地下引入:引入管自室外埋地燃气管接出,穿过建筑物基础及建筑物底层地坪,直接引入室内,在室内立管上设三通管作为清扫口。 故比较两种进户方式在本设计采用地上引入方式作为燃气引入管。3.3.2引入管阀门设置

天然气行业发展概况

天然气行业发展概况 天然气产业链可以分为上游天然气勘探开采、中游仓储运输以及下游分销应 用。上游主要是对天然气进行勘探和开采,国内主要由中石油、中石化和中海油 实施。中游仓储运输主要包括长距离管道运输、LNG 船舶/槽车运输、LNG 接收 站、储气库等。下游主要是天然气的分销应用,向终端用户或燃气分销商销售天 然气。 (1)全球天然气概况 ①全球天然气探明储量情况 根据《2018 年BP 世界能源统计年鉴》,到2017 年底,全球已探明剩余天然 气可采储量为193.5 万亿立方米,储产比为52.6:1。

天然气在全球范围内分布不均,主要集中在中东国家。根据《2018 年BP 世 界能源统计年鉴》,到2017 年底,中东国家天然气储量为79.1 万亿立方米,占 比为40.9%。天然气探明储量排在前三的国家分别是俄罗斯、伊朗和卡塔尔,其 探明储量占全世界的份额分别为18.1%、17.2%和12.9%,合计占比为48.2%。

②全球天然气产量和消费量情况 全球天然气产量和消费量除2009 年受金融危机影响出现大幅下跌外,2007-2017 年总体稳步增长,供需整体较为均衡,并逐步呈现宽松趋势。根据《2018 年BP 世界能源统计年鉴》,2017 年全球天然气产量为3.68 万亿立方米,同比增 速为3.68%;全球天然气消费量为3.67 万亿立方米,同比增速为2.69%。

从2007-2017 年各地区的产量和消费量来看,北美洲一直以来都是位列全球 第一。根据《2018 年BP 世界能源统计年鉴》,2017 年北美洲产量和消费量占全 球的比重分别为25.9%和25.7%。从全球来看,中东国家和亚太地区的天然气产 量和消费量增长较快。总体而言,天然气的生产和消费具有较强的区域性特征, 2007-2017 年,亚太地区的供需比一直是低于1 的水平,需求缺口有逐步扩大的 趋势,反映了亚太地区天然气短缺的问题。近年来,我国天然气的供需比一直低 于亚太地区的供需比,表明我国天然气短缺问题更加严峻,对外依存度较高。

合成气制乙二醇项目建议书

项目建议书 合成气制乙二醇 第一章总论 1.1 项目概况 乙二醇在经济中有着极其重要的地位。用于生产聚酯纤维、薄膜、容器瓶类等系列产品和汽车防冻剂,还可用于除冰剂、表面涂料、表面活性剂、增塑剂等化工产品的原料。其生产的聚酯碳纤维强度高、耐腐化,是世界公认的无危害高新工程材料。因此,发展和技术改造乙二醇工艺设计对我国经济发展有着重要的意义。 本项目是为一综合化工企业设计一座采用清洁生产工艺制取乙二醇分厂。要求利用煤和水制取的CO和氢气,采用合成气间接法工艺合成乙二醇。 1.2 调研依据 1)《化工建设项目可行性研究报告内容和深度规定》2005 年10 月2)2015年三井杯大赛相关指导意见书 1.3 项目背景 乙二醇产业状况 目前,我国乙二醇生产技术主要为石油路线,即以乙烯为原料,

经环氧乙烷生产乙二醇,该技术全部为引进装置,主要集中在中石化、中石油及中海油等大型国有企业中,引进技术包括英荷壳牌公司(Shell)、美国科学设计公司(SD)以及美国DOW化学公司(原UCC公司)的技术。非石油路线是以合成气为原料,可采用多种方法合成乙二醇,在我国已经实现产业化的主要是我国自主研究开发的以煤或者天然气制备乙二醇的生产技术。 由煤制合成气(CO+H:)生产EG的新技术发展很快,而传统用石油基乙烯生产EG工艺受到以煤为原料的合成气路线挑战,尤其是最近几年国内已有多套以煤基合成气生产EG的工业装置实现运行,煤制EG新增产能远高于石油基乙烯路线EG,以合成气为基础的EG 生产新工艺引起业内普遍关注。 合成气制EG技术发展现状 合成气可来源于石油、煤、天然气等化石原料以及生物质资源,获取途径十分广泛,合成气生产工艺在国内已经十分成熟。合成气制EG 分为间接法和直接法2种,直接法是合成气通过高温高压和贵金属催化剂直接合成EG,目前此法仍处于研究阶段;间接法是利用合成气先合成出某些中间产品(例如草酸二甲酯),再通过催化加氢制得EG,这是目前及今后EG生产工艺发展的重点。 煤制乙二醇发展前景 传统的乙二醇生产方法是走石油化工路线,即由石油加工得到乙烯,乙烯氧化生成环氧乙烷,环氧乙烷进一步水合生产乙二醇,随着世界石油资源的日渐短缺,开辟新的工艺路线已成为当务之急,考

燃气输配课程设计的

《燃气供应工程》 课程设计说明书 题目:南京市某某花园三期工程燃气设计院(系):城市建设与安全工程学院 专业:建筑环境与设备工程 姓名:林乐 班级学号:环设0901 24 指导教师:魏玲 城市建设与安全工程学院 2012年5月31日

目录 一、建筑概况及基础资料 (2) 1工程名称 (2) 2建筑概况 (2) 3设计依据 (2) 4设计参数 (2) 5用户灶具级热水器设置 (3) 二、庭院管道设计及计算 (3) 2.1管道布置 (3) 2.2绘制管道水力计算图 (3) 2.3庭院管道流量计算 (3) 2.3.1同时工作系数法计算步骤 (4) 2.3.2水力计算举例 (5) 2.4管道附属设备 (6) 2.4.1管材选用 (6) 2.4.2附属设备 (7) 2.5引入管的设计 (7) 三、室内管道水力计算 (8) 3.1 管道系统图布置、绘制及编号 (8) 3.2 确定管道的计算流量 (10) 3.3 计算步骤 (10) 3.4 各幢室内管网水力计算 (11) 四、室内燃气管道的防腐、附属设备及其安装设计 (12) 五、小结 (13) 六、附录...................................................................................... 错误!未定义书签。 附录一庭院燃气管道水力计算表.................................... 错误!未定义书签。 附录二各栋楼引入管管径计算表.................................... 错误!未定义书签。 附录三24幢室内管网水力计算表................................... 错误!未定义书签。 附录四25幢室内管网水力计算表................................... 错误!未定义书签。 附录五26幢室内管网水力计算表................................... 错误!未定义书签。 附录六27幢室内管网水力计算表................................... 错误!未定义书签。 附录七28幢室内管网水力计算表................................... 错误!未定义书签。 附录八29幢室内管网水力计算表................................... 错误!未定义书签。 附录九30幢室内管网水力计算表................................... 错误!未定义书签。 附录六31幢室内管网水力计算表................................... 错误!未定义书签。

课程设计计算书

四川理工学院课程设计 某综合楼给排水工程设计 学生:王玥 学号:12141020128 专业:给水排水工程 班级:2012级1班 指导教师:陈妮 四川理工学院建筑工程学院 二○一五年一月

四川理工学院 建筑工程学院课程设计任务书 设计题目:《某综合楼给排水工程设计》专业:给排水工程 班级:2012级1班学号:12141020128 学生:王玥指导教师:陈妮 接受任务时间 2014.12.01 教研室主任(签名) 1.课程设计的主要内容及基本要求 一.课程设计内容: (A)项目简介 根据有关部门批准的建设任务书,拟在某市修建一综合楼,地上9层,建筑面积约为8000㎡,建筑高度为28.50m。一层为商业用房,层高4.50米;二至九层为普通住宅,层高3.00米。 (B)设计资料 上级主管部门批准的设计任务书 建筑给水排水设计规范 建筑防火设计规范 高层民用建筑设计防火规范 自动喷水灭火设计规范 建筑设计资料 建筑物各层平面图等。 根据建筑物的性质、用途及建设单位的要求,室内要设有完善的给排水卫生设备。生活供水要安全可靠,水泵要求自动启闭。该建筑物要求消防给水安全可靠,设置独立的消火栓系统和自动喷水灭火系统。屋面雨水采用内排水系统。室内管道全部暗敷。 城市给水排水资料 1.给水水源 建筑以城市自来水管网作为给水水源。建筑物前面道路有一条市政给水可供接管,给水管管径DN200,常年水压不低于200Kpa。 最低月平均气温7℃,总硬度月平均最高值10德国度,城市管网不允许直接吸水。 2.排水条件 本地区有集中污水处理厂,城市污水处理率为85%,城市排水体制为雨水、污水分流制。市内生活污水需经化粪池处理后排入城市污水管道。本建筑右后方有一条市政污水管和一条市政雨水管预留的检查井可供接管。

页岩气藏形成机理与富集规律初探

天然气工业2009年5月 图1页岩气藏与其他类型油气藏关系示意图(据PoUastro,2001年,有修改)可达35%以上,随埋藏深度增加,迅速减少,在埋深2000m以后,孔隙度仅残留10%或更低。据美国含气页岩统计(表2),页岩岩心孑L隙度小于4%~6.5%(测井孔隙度4%~12%),平均5.2%;渗透率一般为(0.001~2)X10_。“m2,平均40.9×10叫肛m2。但在断裂带或裂缝发育带,页岩储层的孑L隙度可达11%。渗透率达2×10~“m2。 4)气体赋存状态多样:页岩气主要由吸附气和游离气组成。吸附气赋存于有机质颗粒与黏土颗粒 表2美国主要含气页岩储层特征统计表 表面,与煤层气相似;游离气则赋存于页岩基质孔隙和天然裂缝中,与常规天然气相似。 图2为美国页岩气藏中的气体组成统计结果,表明不同地质条件下形成的页岩气藏其吸附气与游离气的含量存在较大差别。页岩气藏中吸附气含量比例较高,变化范围较大。页岩含气量最高的(如Barnett页岩气藏)可达10m3/t,最低(如NewA卜bany页岩气藏)仅有1.1m3/t,含气量平均为3.81in3/t。其中,吸附气含量最低为16%,最高达80%。 图2北美地区各页岩气藏中吸附气与游离气 含量统计直方图 ?18?吸附气含量的变化主要受岩石组成、有机质含量、地层压力、裂缝发育程度等因素影响,详见后述。 5)页岩需具有一定的生烃条件:按油气有机成因理论,有机质在整个热演化过程中均可生成天然气。有机质演化进入生气窗后。生气量剧增,应是具有商业价值页岩气藏的主要形成阶段。根据北美地区页岩气勘探开发经验,页岩气藏勘探开发的最有利目标是有效厚度大于15m、有机碳含量大于2%、热演化程度处于生气窗范围内的页岩(表3、4)[1]。 需要指出的是,页岩有效厚度的下限不是一个固定值,其随着页岩气藏钻、完井技术的进步而变化。北美在贞岩气藏开发的早期是打直井,当时确定的页岩有效厚度下限值为30m。目前,由于水平井钻井技术和水力压裂、分段压裂等完井技术的成功应用,页岩有效厚度下限值已降至10~15m。将来在技术进一步提高、开发成本不断降低的情况下,只要是在技术允许范围内的页岩厚度都会是有效页岩厚度‘引。 6)页岩气藏较易保存:与常规油气藏相比,页岩气藏不易遭受破坏,这主要基于以下3方面因素。首先,页岩气藏多形成于盆地区域构造低部位或盆 地中心(图2),这是由页岩地层的沉积特征所决定

全球乙二醇生产工艺路线及成本对比

全球乙二醇生产工艺路线及成本对比 一目前全球乙二醇生产工艺路线及成本对比 目前世界上大规模生产乙二醇的方法有3种: 1)采用天然气为原料制乙二醇(主要集中在中东地区),2009年产能620万吨,占全球总产能的32%,预计2011年产能将达到1000万吨; 2)以石油为原料制乙二醇,2009年全球产能1300万吨,占世界的68%; 3)采用褐煤做原料生产乙二醇(丹化科技),年产能20万吨。 目前中东地区天然气3乙二醇每吨生产成本约250美元。据丹化科技披露,即便能以非常优惠的价格(130元/吨)获得褐煤资源,煤制乙二醇生产成本依然高达2600元/吨(约合380美元/吨)。因此相比天然气制乙二醇,即使加上运费(从中东到中国最新报价20美元/吨),煤制乙二醇也不具备竞争力。 与石油制乙二醇相比,煤制乙二醇是否具备成本优势,取决于国际油价和能否获得廉价煤炭资源。根据丹化科技煤制乙二醇实验数据推算,若煤价为750元/吨,当石油价跌到67美元/桶以下时,煤制乙二醇将不具备成本优势。 以天然气为原料制乙二醇(环氧乙烷水合法):具体工艺路线是:首先以天然气生产乙烯,然后乙烯生产乙二醇。采用该工艺路线,乙二醇的生产成本主要由两部分构成:1)原料成本约为6300元(其中乙烯市场价格按照10 000元/吨计算,成本6 000元);2)其他成本约700元(其中固定成本约330元,动力成本约380元)。 以石油为原料制作乙二醇(环氧乙烷水合法):具体工艺路线是:首先石脑油生产乙烯,然后使用乙烯生产乙二醇,本工艺路线和天然气为原料的工艺路线的区别在于获得乙烯的方式,前者通过石脑油制作乙烯,后者通过天然气制

工程概预算课程设计计算书

一、亿源帝泊弯一号楼给排水工程的工程概况、施工图与施工说明 1、工程概况: 亿源帝泊弯一号住宅楼共6层,有两个单元,每单元12 户。每户两个卫生间,一个厨房。个浴盆,厨房内洗碗盆一个。每层卫生间共有蹲便器8个,洗脸盆8个,4台洗衣机,4个淋浴器,4个浴盆。 由市政管网直接供水,采用下行上给方式,由户外阀门井埋地引入自来水供水管道,通过立管经各户横支管上的水表向其厨房和卫生间设备供水。 与厨房的排水管道经不同排水立管分别经其排出管引至室外的检查井。经检查井后排入市政排水管道。 本工程预算范围如下: 给水工程:自户外阀门井至各户用水器具。 排水工程:自各户排水器具至室外检查井。 2、施工图: 本住宅两个单元给水、排水工程完全一致。以下为其具体的施工图。 (1)单元底层给水,排水工程平面图。 (2)2-6楼给水,排水工程平面图。 (3)给水工程系统图。 (4)排水工程系统图。 3、施工说明: (1)给水管道采用镀锌钢管螺纹连接,进户埋地引入,室内立管明敷设于房间阴角处,各户横支管沿墙、沿吊顶明敷设,安装高度建施工图。 (2)排水管道采用承插铸铁排水管,分别明敷于卫生间和厨房的阴角处。支管埋敷于地板内。 二、编制的依据及要求 (1)计算工程量 1各种管道,均以施工图所示中心长度,以“10m ”为计量单位,不扣除阀门,管件所占的长度。 2、各种阀门安装均以“个“为计量单位。 3、卫生器具组成安装以“组”为计量单位 (2)采用定额 1、吉林省统一安装工程预算工程量计算规则。 2、《吉林省统一安装工程预算定额》第八册“给排水、采暖、燃气工 程” ; 三、编制步骤第一步,按上述规则计算工程量。 1、室内给水系统安装

页岩气成藏机理及气藏特征

页岩气成藏机理及气藏特征 页岩气是泛指赋存于富含有机质的暗色页岩或高碳泥页岩中,主要以吸附或游离状态存在的非常规天然气资源。在埋藏温度升高或有细菌侵入时,暗色泥页岩中的有机质,甚至包括已生成的液态烃,裂解或降解成气态烃,游离于基质孔隙和裂缝中,或吸附于有机质和矿物表面,在一定地质条件下就近聚集,形成页岩气藏。 从全球范围来看,页岩气拥有巨大的资源量。据统计,全世界的页岩气资源量约为456.24×1012m3,相当于致密砂岩气和煤层气资源量的总和,具有很大的开发潜力,是一种非常重要的非常规资源[1-6]。页岩气资源量占3种非常规天然气(煤层气、致密砂岩气、页岩气)总资源量的50%左右,主要分布在北美、中亚和中国、中东和北非、拉丁美洲、前苏联等地区,与常规天然气相当。页岩气的资源潜力甚至还可能明显大于常规天然气。 1.1 页岩气成藏机理 1.1.1 成藏气源 页岩气藏的生烃、排烃、运移、聚集和保存全部在烃源岩内部完成,页岩既是烃源岩、储层,也是盖层。研究表明,烃源岩中生成的烃类能否排出,关键在于生烃量必须大于岩石和有机体对烃类的吸附量,同时必须克服页岩微孔隙强大的毛细管吸附等因素。因此,烃源岩所生成的烃类只有部分被排出,仍有大量烃类滞留于烃源岩中。 北美地区目前发现的页岩气藏存在3种气源,即生物成因、热成因以及两者的混合成因。其中以热成因为主,生物成因及混合成因仅存在于美国东部的个别盆地中,如Michigan盆地Antrim生物成因页岩气藏及Illinois盆地New Albany混合成因页岩气藏[21]。 1.1.2 成藏特点 页岩气藏中气体的赋存形式多种多样,其中绝大部分是以吸附气的形式赋存于页岩内有机质和黏土颗粒的表面,这与煤层气相似。游离气则聚集在页岩基质孔隙或裂缝中,这与常规气藏中的天然气相似。因此,页岩气的形成机理兼具煤层吸附气和常规天然气两者特征,为不间断充注、连续聚集成藏(图1-1)。

单片机课程设计——煤气自动检测报警系统

单片机课程设计 ——任务说明书 题目:煤气浓度检测系统 所在院系:机电汽车工程学院 专业:机101-4班 学号: 姓名: 完成日期: 2013/6/6 指导教师:姜风国 烟台大学

摘要 随着时代的发展,煤气已成为人们生活中必不可少的能源了,煤气泄漏事件时有发生,给人们的人身安全和财产安全带来了很多隐患,所以怎样防止煤气中毒与爆炸已成为人们的迫切需要.为此我们开发研制了智能煤气报警系统. 计算机的普及和信息技术的迅猛发展,人们己不满足于传统的居住环境,对家庭及住宅小区提出了更高的要求,智能化被引入家庭,并迅速在世界各地发展起来。人们对居住环境要求的日见增高,体现在希望住宅不仅更便利、舒适而且更安全。 家庭及住宅小区智能化的定义,在国际上至今尚无一致的般认为,在现代化的城乡住宅小区内综合采用微型计算机、自动控制、通信与网络及智能卡等技术,建立一个由住宅小区综合物业管理中心与安防系统、信息通信服务与管理系统和家庭智能化系统组成的“三合一”住宅小区服务与管理集成系统,最终目的是使每一住户得到满足其要求的最佳方案。国家建设部规定,目前住宅小区应实现六项智能化要求,其中包括实行安全防范系统自动化监控管理;防盗报警系统应安装红外或微波与煤气泄漏报警器等各种类型报警探测器。基于此项规定,煤气泄漏自动报警实现智能化势在必行。 本系统主要针对传统煤气检测系统进行技术改进以满足要求,至此本系统具有如下特点.用单片机实现定时控制,电路简单、价格便宜、可靠性好。采用气敏传感器及防爆型电磁阀.安全可靠,能有效的保证随时接通和断开煤气控制电磁阀:有煤气泄漏时有语音报警,并通过总线通知管理室.双重保障。因此本系统也可作为智能家居系统的一个子系统。

一页岩气成藏机理及控制因素

第一章页岩气成藏机理及控制因素 页岩气(Shale gas),是一种重要的非常规天然气类型,与常规天然气相比,其生成、运移、赋存、聚集、保存等过程及成藏机理既有许多相似之处,又有一些不同点。页岩气成藏的生烃条件及过程与常规天然气藏相同,泥页岩的有机质丰度、有机质类型和热演化特征决定了其生烃能力和时间;在烃类气体的运移方面,页岩气成藏体现出无运移或短距离运移的特征,泥页岩中的裂缝和微孔隙成了主要的运移通道,而常规天然气成藏除了烃类气体在泥页岩中的初次运移以外,还需在储集层中通过断裂、孔隙等输导系统进行二次运移;在赋存方式上,二者差别较大,首先,储集层和储集空间不同(常规天然气储集于碎屑岩或碳酸盐岩的孔隙、裂缝、溶孔、溶洞中,页岩气储集于泥页岩粘土矿物和有机质表面、微孔隙中。),其次,常规天然气以游离赋存为主,页岩气以吸附和游离赋存方式为主;在盖层条件方面,鉴于页岩气的赋存方式,其对上覆盖层条件的要求比常规天然气要低,地层压力的降低可以造成页岩气解吸和散失。页岩气的成藏过程和成藏机理与煤层气极其相似,吸附气成藏机理、活塞式气水排驱成藏机理和置换式运聚成藏机理在页岩气的成藏过程中均有体现,进行页岩气的勘探开发研究,可以在基础地质条件研究的基础上,借助煤层气的研究手段,解释页岩气成藏的特点及规律。 第一节页岩气及其特征 页岩(Shale),主要由固结的粘土级颗粒组成,是地球上最普遍的沉积岩石。页岩看起来像是黑板一样的板岩,具有超低的渗透率。在许多含油气盆地中,页岩作为烃源岩生成油气,或是作为地质盖层使油气保存在生产储层中,防止烃类有机质逸出到地表。然而在一些盆地中,具有几十-几百米厚、分布几千-几万平方公里的富含有机质页岩层可以同时作为天然气的源岩和储层,形成并储集大量的天然气(页岩气)。页岩既是源岩又是储集层,因此页岩气是典型的“自生自储”成藏模式。这种气藏是在天然气生成之后在源岩内部或附近就近聚集的结果,也由于储集条件特殊,天然气在其中以多种相态存在。这些天然气可以在页岩的天然裂缝和孔隙中以游离方式存在、在干酪根和粘土颗粒表面以吸附状态存在,甚至在干酪根和沥青质中以溶解状态存在。我们把这些储存在页岩层中的天然气称为页岩气(Shale gas)。页岩气是指赋存于暗色泥页岩、高碳泥页岩及其夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩、甚至砂岩中以自生自储成藏的天然气聚集。

乙二醇工艺流程总结

煤化工知识点之:乙二醇工艺方案的选择 1石油路线工艺 1.1环氧乙烷直接水合法 1859年Wurtz首次将乙二醇二乙酸酯与氢氧化钾作用制得乙二醇。1860年,又由环氧乙烷直接水合制得,其后经过不断技术改进,环氧乙烷直接水合法不断衍生出氯乙醇法、直接氧化法(空气氧化法、氧气氧化法)等工艺,最新技术为氧气氧化法,其工艺原理为环氧乙烷氧化反应原料乙烯和纯氧与循环气混合后,进入固定床环氧乙烷反应器,在入口温度约200℃,压力约2.OMPa的条件下,在高选择性银催化剂的作用下发生乙烯氧化反应,主反应生成环氧乙烷,氧化反应包括选择氧化和深度氧化,其反应过程: 主反应(选择氧化): C2H4+1/202→C2H40+105.5kJ/mol 并列副反应(深度氧化): C2H4+302→2C02+2H20+1422.6kJ/mol 并列副反应(深度氧化): C2H4O+5/2O2→2CO2+2H2O+1316.4kJ/mol 目前此工艺技术全部掌握在外资手中,Shell、DOW(陶式化学公司)和SD二家技术的生产能力合计占总生产能力的91%,其中Shell占38%,SD 占31%,DOW占22%,余下的9%主要为德国的BASF、日本的触媒公司、意大利的SNAM等公司占有。 由于反应中环氧乙烷与水以l:20-22(摩尔比)混合,需要大量的水,并且水大量过剩,产物中乙二醇的浓度较低,因此为了提纯出产品需蒸发除去大量的水分,生产工艺流程长、设备多、能耗高、成本较高。 1.2环氧乙烷催化水合法 针对环氧乙烷直接水合法生产乙二醇工艺中存在的不足,为了提高选择性,降低用水量,降低反应温度和能耗,世界上许多公司进行了环氧乙烷催化水合生产乙二醇技术的研究和开发工作。其技术的关键是催化剂的生产,生产方法可分为均相催化水合法和非均相催化水合法两种,其中最有代表性的生产方法是Shell公司的非均相催化水合法和UCC公司的均相催化水合法。 尽管许多公司在环氧乙烷催化水合生产乙二醇技术方面做了大量的工作,大大降低了水比,提高了环氧乙烷的转化率和乙二醇的选择性,但在催化剂制备、再生和寿命方面还存在一定的问题.因而采用该方法进行大规模工业化生产还待时日。 1.3通过中间体合成乙二醇 通过中间体合成乙二醇主要有日本三菱化学开发的经碳酸乙烯酯路线和由Texac。开发的联产乙二.醇和碳酸二甲酯路线,以及Shell开发的经二氧戊环的路线。此外,以乙烯与醋酸为原料,经二醋酸乙烯酯的直接法工艺研究也十分活跃。 ●乙二醇和碳酸二甲酯联产技术 该技术的主要过程为两步:首先C02和环氧乙烷在催化剂作用下合成碳酸乙烯酯,然后碳酸乙烯酯和甲醇反应生成碳酸二甲酯和乙二醇。这两步反应属于原子利用率100%的反应。 乙二醇和碳酸二甲酯联产技术进行工业化生产时原料易得,不存在环氧乙烷水合法选择性差的问题,在现有环氧乙烷生产装置内,只需增加生产碳酸乙烯酯的反应步骤就可以生产两个非常有价值的产品,故非常具有吸引力。但目前此工艺尚处于实验室阶段。 ●碳酸乙烯酯水解合成乙二醇技术 此工艺国外有多个公司在研发,其中以日本三菱化学开发的工艺比较完善。 三菱化学开发的工艺以环氧乙烷装置制的含水40%的环氧乙烷与二氧化碳为原料,催化剂为基于四价磷的均相催化剂,结构式为(Ri)4P+X-,其中Ri为烷基和芳基基团,X为卤素。采用这种催化剂时,环氧乙烷转化成EG的速率比不采用催化剂时快百倍,因此反应体系中的乙二醇浓度高,乙二醇的选择性可达到99.3%~99.4%。三菱化学打算与掌握先进乙二醇生产技术的Shell公司合作。2002年4月,三菱与Shell签订了独家转让权,以共同推进“Shell/MCC”联合工艺,并计划在中东、亚洲新增的装置中推广该工艺。 2非石油路线工艺 在全球石油资源日益匮乏及石油价格日益上涨的今天,再使用石油路线生产工艺不仅成本非常高,而且原料的来源问题日益严重,因此非石油路线制乙二醇成为未来的发展方向。

燃气燃烧课程设计

《燃气燃烧》课程设计 题目:燃气燃烧课程设计 学院:建筑工程学院 专业:建筑环境与能源应用工程 姓名:张冷 学号: 20130130370 指导教师:王伟 2016年 12 月 26 日 目录

1设计概述 (1) 2设计依据 (1) 2.1原始数据 (1) 2.2燃气基本参数的计算 (1) 2.2.1热值的计算 (1) 2.2.2燃气密度计算 (2) 2.2.3燃气相对密度计算 (2) 2.2.4理论空气需要量的计算 (2) 2.3头部计算 (3) 2.3.1计算火孔总面积 (3) 2.3.2计算火孔数目 (3) 2.3.3计算火孔间距 (4) 2.3.4计算火孔深度 (4) 2.3.5计算头部截面 (4) 2.3.6计算头部截面直径 (4) 2.3.7计算火孔阻力系数 (5) 2.3.8计算头部能量损失系数 (5) 2.4引射器计算 (5) 2.4.1计算引射器系数 (5) 2.4.2计算引射器形式 (5) 2.4.3计算燃气流量 (6) 2.4.4计算喷嘴直径 (6) 2.4.5计算喷嘴截面积 (6) 2.4.6计算最佳燃烧器参数 (6) 2.4.7计算A值 (7) 2.4.8计算X值 (7) 2.4.9计算引射器喉部面积 (7) 2.4.10计算引射器喉部直径 (8) 2.4.11引射器其他尺寸计算方式如附图1: (8)

2.5火焰高度计算 (8) 2.5.1火焰内锥高度 (8) 2.5.2火焰外锥高度 (8) 2.6火孔排列 (9) 2.6.1确定火孔个数 (9) 2.6.2火孔分布直径的计算 (9) 3设计方案计算 (9) 3.1已知计算参数 (9) 3.2详细计算步骤 (10) 3.2.1头部计算 (10) 3.2.2引射器计算 (11) 3.2.3火焰高度计算及加热对象的设置高度 (12) 总结 (12) 参考文献 (13)

相关主题
文本预览
相关文档 最新文档