当前位置:文档之家› 高等代数教案四章线性方程组

高等代数教案四章线性方程组

高等代数教案四章线性方程组
高等代数教案四章线性方程组

第四章 线性方程组

一 综述

线性方程组是线性代数的主要内容之一.本章完满解决了关于线性方程组的三方面的问题,即何时有解、有解时如何求解、有解时解的个数,这在理论上是完美的.

作为本章的核心问题是线性方程组有解判定定理(相容性定理),为解决这个问题,从中学熟知的消元法入手,分析了解线性方程组的过程的实质是利用同解变换,即将方程的增广矩阵作行变换和列的换法变换化为阶梯形(相应得同解方程组),由此相应的简化形式可得出有无解及求其解.为表述由此得到的结果,引入了矩阵的秩的概念,用它来表述相容性定理.其中实质上也看到了一般线性方程组有解时,也可用克莱姆法则来求解(由此得所谓的公式解——用原方程组的系数及常数项表示解).内容紧凑,方法具体.其中矩阵的秩的概念及求法也比较重要,也体现了线性代数的重要思想(标准化方法).

线性方程组内容的处理方式很多,由于有至少五种表示形式,其中重要的是矩阵形式和线性形式,因而解线性方程组的问题与矩阵及所谓线性相关性关系密切;本教材用前者(矩阵)的有关问题讨论了有解判定定理,用后者讨论了(有无穷解时)解的结构.实际上线性相关性问题是线性代数非常重要的问题,在以后各章都与此有关.另外,从教材内容处理上来讲,不如先讲矩阵及线性相关性,这样关于线性方程组的四个问题便可同时讨论. 二 要求

掌握消元法、矩阵的初等变换、秩、线性方程组有解判定定理、齐次线性方程组的有关理论. 重点:线性方程组有解判别法,矩阵的秩的概念及求法.

4.1 消元法

一 教学思考

本节通过具体例子分析解线性方程组的方法——消元法,实质是作方程组的允许变换(同解变换)化为标准形,由此得有无解及有解时的所有解.其理论基础是线性方程组的允许变换(换法、倍法、消法)是方程组的同解变换.而从形式上看,施行变换的过程仅有方程组的系数与常数项参与,因而可用矩阵(线性方程组的增广矩阵)表述,也就是对(增广)矩阵作矩阵的行(或列换法)初等变换化为阶梯形,进而化为标准阶梯形,其体现了线性代数的一种重要的思想方法——标准化的方法. 二 内容要求

主要分析消元法解线性方程组的过程与实质,以及由同解方程组讨论解的情况(存在性与个数),为下节作准备,同时指出引入矩阵的有关问题(初等变换等)的必要性,矩阵的初等变换和方程组的同解变换间的关系. 三 教学过程

1.引例:解方程组???

?

?

????=++=++=++25342333513121

321321321x x x x x x x x x (1)

定义:我们把上述三种变换叫做方程组的初等变换,且依次叫换法变换、倍法变换、消法变换. 2.消元法的理论依据

TH4.1.1初等变换把一个线性方程组变为与它同解的线性方程组(即线性方程组的初等变换是同解变换.)

3.转引

在上面的讨论中,我们看到在对方程组作初等变换时,只是对方程组的系数与常数项进行了运算,而未知数没有参加运算,也就是说线性方程组有没有解以及有什么样的解完全决定于它的系数和常数项,因

此在讨论线性方程组时,主要是研究它的系数和常数项.因而消元法的过程即用初等变换把方程组化为阶梯形方程组,来解决求解问题,此可转用另一种形式表述.为此引入:

4.矩阵及其初等变换 1)概念

定义 1 由t s ?个数ij c 排成的一个s 行t 列(数)表??

?

?

?

?

?

??st s s t t c c c

c c c c c c 21222

2111211叫做一个s 行t 列(或

t s ?)矩阵.ij c 叫做这个矩阵的元素;常用大写字母A 、B 等表示矩阵,有时为明确t s ?矩阵记为t s A ?或()t s ij c A ?=.

定义补 由线性方程组???

????

???????=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111的系数作成的矩阵 ??

?

?

?

?

?

??mn m m n n a a a a a a a a a 2

12222111211

叫做线性方程组的系数矩阵,用A 表示;由它的系数和常数项作成的矩阵

????

??

?

??m mn

m n

n b a a b a a b a a 1

22211111叫做线性方程组的增广矩阵,用A 表示. 2)矩阵的初等变换

定义2 矩阵的(列)初等变换指的是对一个矩阵作下列变换 (1)交换矩阵的两行(列); (换法变换)

(2)用一个不等于零的数乘矩阵的某一行(列);(倍法变换) (3)用一个数乘某行(列)后加到另一行(列).(消法变换) 3)线性方程组的同解变换与矩阵的初等变换的关系

显然,对一个线性方程组施行的同解变换即一个方程组的初等变换,相当于对它的增广矩阵施行对应的行初等变换;而化简线性方程组相当于用行初等变换化简它的增广矩阵.因此将要通过化简矩阵来讨论化简方程组的问题,这样做不仅讨论起来方便,而且能够给予我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次把未知量写出(我国古代数学书《九章算术》(三世纪)中就是用这种方法解线性方程组的,成为算筹.)下面的问题是,化简到什么形式、什么程度,理论上将给予解决.

4)矩阵经初等变换(行、列)化为阶梯形矩阵 TH4.1.2设A 是一个m 行n 列矩阵:

=A ??

?

?

?

?

?

??mn m m n n a a a a a a a a a 2

1

2222111211,则A 可经过一系列行初等变换和第一种列初等变换化为如下形式:

??????????

?

??****

****

**+000

00000000010001011

rr b ; 进而化为以下形式:

?

?

????

?

??

?

?

??+++0000000000001000001000011212111 rn rr n r n r c c c c c c .其中"",,,0*≤≤≥n r m r r 表示不同的元素. 5)用矩阵的初等变换解线性方程组

对线性方程组:???

???????????=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (1) 由定理1其系数矩阵=A ??

??

?

?

?

??mn m m n n a a a a a a a a a 2

1

22221

11211

可经过行初等变换和列换法变换化为 ?

?

????

?

??

?

?

??+++000000000000100000100001121211

1 rn rr n r n r c c c c c c ;则对其增广矩阵

A 作同样的初等变换可化为??????

???

?

?

?=+++m r r rn

rr n

r d d d c c d c c B 0

0000000100

001111111

,从而方程组(1)与B 所对应的方程组??

?

??

?

?????===+++=+++=++++++++++m r r n rn r rr r n n r r n n r r d d d y c y c y d

y c y c y d y c y c y 00111221122

1

11111 (2)在某种意义上同解(此n y y y ,,,21 是n x x x ,,,21 的

一个重新排序).

下面讨论(2)的解的情况:

情形1:当m r <且m r d d ,,1 +不全为零时,因有矛盾式(2)无解,故(1)无解. 情形2:当m r =或m r <且01===+m r d d 时,(2)直观上无矛盾式,且与(3)

??

????

?=+++=+++=+++++++++r

n rn r rr r n n r r n n r r d y c y c y d y c y c y d y c y c y 11221122111111 同解. 当n r =时,(3)即为???????===n

n d y d y d y 2

21

1有唯一解;

当n r =<时,(3)即为

??

????

?---=---=---=++++++n

rn r rr r r n n r r n

n r r y c y c d y y c y c d y y c y c d y 11211222111111,于是任给n r y y ,,1 +一组值n r k k ,,1 +,可得(3)的一个解:

??

?

??

??????==---=---=---=++++++++n n r r n rn r rr r r n n r r n n r r k y k y k c k c d y k

c k c

d y k c k c d y 1111211222

111111,这也是(1)的解,由n r k k ,,1 +的任意性(1)有无穷多解. 例1 解线性方程组???????-=--+=++---=-+=+++21

59282523425

32432143214

214321x x x x x x x x x x x x x x x .

解:对增广矩阵作行初等变换:

????

???

?

??--→??????? ??-------=00

00

000006132110023210212159218

252131042

51321A 所原方程组与方程组??

??

?

=

+-=-+613

212321243421

x x x x x 同解,故原方程组的一般解为??

???

-=+--=4

3421

2161321223x x x x x .

4.2 矩阵的秩 线性方程组可解判别法

一 教学思考

1.本节在上节消元法对线性方程组的解的讨论的基础上,引入了矩阵的秩的概念,以此来表述有解判定定理,在有解时从系数矩阵的秩与未知数的个数间的关系可讨论解的个数,其中在有无数解时引入了一般解与通解的概念.

2.矩阵的秩的概念是一个重要的概念,学生易出问题.定义的表述不易理解,应指出秩是一个数(非负整数)r ,其含义是至少有一个r 阶非零子式,所有大于r 阶(若有时)子式全为0.重要的是“秩”的性质——初等变换下不变,提供了求秩的另一方法——初等变换法.

3.本节内容与上一节和下一节互有联系,结论具体,方法规范,注意引导总结归纳. 二 内容要求

1. 内容:矩阵的秩、线性方程组可解判定定理

2. 要求:掌握矩阵的秩的概念、求法及线性方程组求解判定定理 二 教学过程

1.矩阵的秩 (1)定义

1)在矩阵s t A ?中,任取k 行k 列(,k s t ≤)位于这些行列交点处的元素构成的k 阶行列式叫作矩阵A 的一个k 阶子式.

2)矩阵s t A ?中,不等于零的子式的最大阶数叫做矩阵A 的秩;若A 没有不等于零的子式,认为其秩为零.A 的秩记为秩(A )或()r A .

2.矩阵的秩的初等变换不变性

TH4.2.1矩阵的初等变换不改变矩阵的秩. 3.一般线性方程组解的理论

对线性方程组:???????=+++=+++=+++m

n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (1) 由上节知,对(1)的系数矩阵=A ??

??

?

?

?

??mn m m n n a a a a a a a a a 2

1

22221

11211

可经过行初等变换和列换法变换化为 ?

??????????

??+++0000000000001000001000011212111 rn rr n r n r c c c c c c ; 则对其增广矩阵A 作同样的初等变换可化为??????????

?

?=+++m r r rn rr n r d d d c c d c c B 00000000

0010000111

1111

.则(1)与B 相应的方程组同解;由上节讨论知:当m r =或m r <且01===+m r d d 时,即()()r A r A =时(1)有解;当m r <且m r d d ,,1 +不全为零时,即()()r A r A <时,(1)无解.总之:(1)有解()()r A r A ?=,且在(1)有解时:当r n =,即()()r A r A n ==时有唯一解;当r n <,即()()r A r A n =<时有无穷解.此即

TH4.2.2-3线性方程组(1)有解()()()r A r A r ?==;当r n =,即()()r A r A n ==时有唯一解;当r n <,即()()r A r A n =<时有无穷解.

例1 判断方程组有无解?有解时,求一般解.

1234512345

2345123451

3233226654331

x x x x x x x x x x x x x x x x x x x ++++=??+++-=-??

+++=??+++-=-? 例2 对λ进行讨论,何时方程组有解,无解;有解时求一般解.

1231232

12

31x x x x x x x x x λλλλλ++=??

++=??++=? 4.3 线性方程组的公式解

一 教学思考

1.本节在理论上解决了当线性方程组有解时,用原方程组的系数和常数项将解表示出来——即公式解,结论的实质是克拉默法则的应用.其中过程是在有解判定的基础上选择r 个适当方程而得,可归纳方法步骤(方程的选择、自由未知量的选择),内容规范完整,理论作用较大,实用性较小.

2.作为特殊的线性方程组——齐次线性方程组的解的理论有特殊的结果,易于叙述和理解,需注意其特殊性(与一般的区别,解的存在性、解的个数等). 二 内容要求

1.内容:线性方程组的公式解,齐次线性方程组的解

2.要求:了解线性方程组的公式解,掌握齐次线性方程组的解的结论 三 教学过程

1.线性方程组的公式解

本节讨论当方程组???????=+++=+++=+++m

n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 2211222221211

1212111 (1)有解时,用方程组的系数和常数项把解表示出来的问题——公式解.处理这个问题用前面的方法——消元法是不行的,因为这个过程使得系数和常数项发生了改变,但其思想即化简得同解线性方程组的思想是重要的,所以现今能否用其它方法把(1)化简得同解方程组且系数和常数项不变,才可能寻求公式解.

为此看例,考察12311232123

322,()233,()47,()

x x x G x x x G x x x G +-=??

-+=??+-=? (2)

显然123,,G G G 间有关系3122G G G =+,此时称3G 是12,G G 的结果(即可用12,G G 线性表示).则方程组(2)与??

?=+-=-+)(332)

(222321

1321G x x x G x x x 同解.

同样地,把(1)中的m 个方程依次用12,,

,m G G G 表示,若在这m 个方程中,某个方程i G 是其它若

干个方程的结果,则可把(1)中的i G 舍去,从而达到化简的目的.即现在又得到化简(1)的方法:不考虑(1)中那些是其它若干个方程的结果,而剩下的方程构成与(1)同解的方程组.现在的问题是这样化简到何种程度为止,或曰这样化简的方程组最少要保留原方程组中多少个方程.由初等变换法,若(1)的

()r A r =,则可把(1)归结为解一个含有r 个方程的线性方程组.同样

TH4.3.1设方程组(1)有解,()()(0)r A r A r ==≠,则可以在(1)中的m 个方程中选取r 个方程,使得剩下的m r -个方程是这r 个方程的结果.因而解(1)归结为解由这r 个方程组成的方程组.

下看如何解方程组:

此时原方程组与111122111111112211r r r r n n r r rr r rr r rn n r a x a x a x a x a x b a x a x a x a x a x b +++++++++

+=??

?

?

???

???

??++

+++

+=??

同解. 当r n =时有唯一解,且上述方程组的系数行列式不等于0,由克拉姆法则可得其解(公式解). 当r n <时有无穷多解,取12,,

,r r n x x x ++为自由未知量,将这些项移至等号右端得:

111122111111112211r r r r n n r r rr r r rr r rn n a x a x a x b a x a x a x a x a x b a x a x ++++++

+=--

-??

????????

??++

+=---??

视12,,

,r r n x x x ++为任意数,由克拉姆法则可得

1

1,,r

r D D x x D

D

=

=; (其中11

1111111

11r r n n

r

J r r rr r rn n rr

a b a x a x a D a b a x a x a ++++--

-=

---)

其展开为12,,,r r n x x x ++

的表达式,且为用原方程组的系数及常数项表示的,因而是公式表示的一般解的

形式.

2.齐次线性方程组的解的理论

齐次线性方程组1

111110

n n m mn n a x a x a x a x ?++=?

?

?++=? (2)总有(零)解,因而关注的是其非零解的情况,由

解的个数定理易得:

TH4.3.2(2)有非零解()r A n ?<.

Cor1:若(2)中m n <,则有非零解.(因()r A m n ≤<)

Cor2:含有n 个未知数n 个方程的齐次线性方程组有非零解的充要条件是系数行列式为0.(由秩的定义易得)

教学大纲-厦门大学高等代数

教学大纲 一.课程的教学目的和要求 通过这门课的学习,使学生掌握高等代数的基本知识,基本方法,基本思路,为进一步学习专业课打下良好的基础,适当地了解代数的一些历史,一些背景。 要突出传授数学思想和数学方法,让学生尽早地更多地掌握数学的思想和方法。突出高等代数中等价分类的思想,分解结构的思想,同构对应的思想,揭示课程内部的本质的有机联系。 二.课程的主要内容: 代数学是研究代数对象的结构理论与表示方法的一门学科。代数对象是在一个集合上定义若干运算,且满足若干公理所构成的代数系统,线性空间则是数学类专业本科生所接触和学习的第一个代数对象。本课程力求突出代数学的思想和方法。 《高等代数》分为两个部分主要内容。一部分是基本工具性质的,包括多项式,行列式,矩阵初步,二次型。既然是工具性质的,因而除了多项式内容外,也是数学专业以外的理科、工科、经管类《线性代数》的内容,以初等变换为灵魂的矩阵理论是这部分内容的核心。另外一部分是研究线性空间的结构,这是研究代数结构的起点和模型,也是《高等代数》有别于《线性代数》之所在。《高等代数》从三个角度进行研究。从元素的角度看,研究向量间的线性表示,线性相关性,基向量;从子集角度看,研究子空间的运算和直和分解;从线性空间之间的关系来研究线性空间结构,就是线性映射,线性变换,线性映射的像与核,Jordan 标准形对应的空间分解。而欧氏空间则是具体的研究空间的例子。在研究线性空间中,始终贯穿着几何直观和矩阵方法的有机结合,矩阵的相似标准形和对应的线性空间分解则是这种有机结合的生动体现和提升,因而是本课程的精华内容。 本课程力求突出几何直观和矩阵方法的对应和互动。我们强调矩阵理论,把握简洁和直观的代数方法,同时重视线性空间和线性映射(变换)的主导地位和分量,从几何观点理解和把握课程内容。 三.课程教材和参考书: 教材:林亚南编著,高等代数,高等教育出版社,第一版 参考书:1. 姚慕生编著,高等代数(指导丛书),复旦大学出版社,第二版 2. 北京大学数学系编,高等代数,高等教育出版社,北京(1987) 3. 张禾瑞、郝炳新,高等代数,高等教育出版社,北京(1999)

高等代数北大版课程教案-第5章二次型

第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 n n n x x a x x a x a x x x f 11211221112122),,,( n n x x a x a 2222222 (2) n nn x a (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0 ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示:

令 ji ij a a ,j i 由于 i j j i x x x x ,那么二次型(3)就可以写为 n n n x x a x x a x a x x x f 112112211121),,,( n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n 矩阵 nn n n n n a a a a a a a a a A 21 22221 112 11 它称为二次型(5)的矩阵.因为ji ij a a ,n j i ,,2,1, ,所以 A A . 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令 n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, n x x x AX X 2 1 nn n n n n a a a a a a a a a 21 22221 11211 n x x x 21 n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 221 122221 21121211121 n i n j j i ij x x a 11. 故 AX X x x x f n ),,,(21 .

数学系《高等代数》课程教学大纲

数学系《高等代数》课程教学大纲 学时:153学时学分:9 适用专业:数学与应用数学 执笔人:储茂权审定人:殷晓斌 说明: 1、课程的性质、地位和任务 本课程是高等师范院校以及综合性大学数学和应用数学专业的一门重要基础课程,它的任务是使学生初步掌握基本的、系统的代数知识和抽象的、严格的代数方法,以加深对初等数学的理解,并为进一步学习打下基础,要求学生掌握数域上一元多项式的因式分解理论以及多元多项式和对称多项式的基本知识;掌握行列式,矩阵和线性方程组中的基本理论和方法,掌握实二次型、线性空间、线性变换的基本理论和常用的数学方法。 2、课程教学的基本要求 (1)掌握数域和一元多项式的概念、整除的概念。对数域上一元多项式的因式分解及唯一定理及证明的思想有较深刻的认识。熟练掌握一元多项 式的带余除法和辗转相除法;多项式函数和重因式的基本知识;掌握有 关复数域、实数域和有理数域上的一元多项式的基本结果和基本方法; 掌握多元多项式的基本知识并能将对称多项式表为初等对称多项式的多 项式。 (2)掌握行列式的基本性质和计算;线性方程组的基本理论;矩阵的概念、运算、分块矩阵的初等变换和初等矩阵;二次型和标准形、规范形和正定性,掌握 -矩阵的基本知识,矩阵相似的条件,矩阵的Jordan标准形的基本知识;线性空间中向量的线性相关性,线性空间的维数、基和向量的坐标,基变换和坐标变换,线性子空间的基本知识;掌握欧氏空间的基本知识;熟练掌握线性变换的定义、运算和线性变换的矩阵;掌握线性变换的特征值和特征向量,值域和核、不变子空间等基本知识。 3、课程教学改革 (1)注重能力的培养 本课程教学中,在讲授有关内容的基本概念、基本理论和基本方法的同时,应注重培养学生的运算能力,运用获取的基本知识和基本技能去分析问题和解决问题的能力,同时注意培养抽象思维能力和逻辑推理能力,逐步提高自学和创新能力。 (2)注重本课程与其它课程的联系 《高等代数》是数学系的重要基础课程之一,它的基础地位不仅表现在它

高等代数北京大学第三版北京大学精品课程

第一学期第一次课 第一章 代数学的经典课题 §1 若干准备知识 1.1.1 代数系统的概念 一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。 1.1.2 数域的定义 定义(数域) 设K 是某些复数所组成的集合。如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有 K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素0≠∈a K a ,且。于是 K a a K a a ∈= ∈-=10, 。 进而∈?m Z 0>, K m ∈+??++=111。 最后,∈?n m ,Z 0>, K n m ∈,K n m n m ∈-=-0。这就证明了Q ?K 。证毕。 1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把 A 和 B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后 剩下的元素组成的集合成为A 与B 的差集,记做B A \。 定义(集合的映射) 设A 、B 为集合。如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ). (, :a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射。若 ,B b ∈?都存在A a ∈,使得b a f =)(,则称f 为满射。如果f 既是单射又是满射,则称f 为双射,或称一一对应。 1.1.4 求和号与求积号

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

(完整word版)高等代数教案北大版第六章.doc

授课内容教学时数教学目标教学重点教学难点 教学方法与 手段 教 学 过 程 第六章线性空间第一讲集合映射 2授课类型讲授通过本节的学习, 掌握集合映射的有关定义、运算, 求和号与乘积号的定义 集合映射的有关定义 集合映射的有关定义 讲授法启发式 1.集合的运算 , 集合的映射 ( 像与原像、单射、满射、双射 ) 的概念 定义 : ( 集合的交、并、差 ) 设S是集合 , A与B的公共元素所组成的集合 成为 A 与 B 的交集,记作A B ;把 A 和B中的元素合并在一起组成的集合成 为 A 与 B 的并集,记做 A B ;从集合 A中去掉属于 B 的那些元素之后剩下的元素组成的集合成为 A 与B的差集,记做A B . 定义 : ( 集合的映射 ) 设 A B 为集合 . 如果存在法则 f , 使得 A 中任意元素 、 a 在法则f下对应B中唯一确定的元素( 记做f (a) ), 则称f是A到B的一个映射 , 记为 f : A B, a f (a). 如果 f (a) b B , 则 b 称为a在 f 下的像,a称为 b 在 f 下的原像. A 的所有元素在 f 下的像构成的 B 的子集称为 A 在 f 下的像,记做 f ( A) ,即f ( A) f ( a) | a A . 若 a a' A, 都有 f (a) f (a'), 则称 f 为单射.若 b B, 都存在a A , 使得f (a) b ,则称 f 为满射 . 如果f既是单射又是满射, 则称f为双射 , 或称一一对应 . 2.求和号与求积号 (1)求和号与乘积号的定义

为了把加法和乘法表达得更简练 , 我们引进求和号和乘积号 . 设给定某个数域 K 上 n 个数 a 1, a 2 , , a n , 我们使用如下记号 : n n a 1 a 2 a n a i , a 1a 2 a n a i . i 1 i 1 当然也可以写成 a 1 a 2 a n a i , a 1 a 2 a n a i . 1 i n 1 i n (2) 求和号的性质 容易证明 , n n n n n n m m n a i a i , (a i b i ) a i b i , a ij a ij . i 1 i 1 i 1 i 1 i 1 i 1 j 1 j 1 i 1 事实上 , 最后一条性质的证明只需要把各个元素排成如下形状 : a 11 a 12 a 1 m a 21 a 22 a 2 m a n1 a n2 a nm 分别先按行和列求和 , 再求总和即可 . 讨论、练习与 作业 课后反思

高等代数课程的基本内容与主要方法

2010年第2期 牡丹江教育学院学报 No 12,2010 (总第120期) JOU RN A L OF M U D AN JIA N G CO LL EG E OF EDU CA T IO N Serial N o 1120[收稿日期]2009-10-25 [作者简介]戴立辉(1963-),男,江西乐安人,闽江学院教授,研究方向为矩阵论;林大华(1959-),男,福建福州人,闽江学院副教授,研究方向为代数学;吴霖芳(1979-),女,福建永安人,闽江学院讲师,硕士,研究方向为微分方程;陈翔(1980-),男,福建连江人,闽江学院讲师,硕士,研究方向为代数环论。 [基金项目]/十一五0国家课题/我国高校应用型人才培养模式研究0数学类子课题项目(F IB070335-A2-03)。 高等代数课程的基本内容与主要方法 戴立辉 林大华 吴霖芳 陈 翔 (闽江学院,福建 福州 350108) [摘 要] 对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时体现高等代数课程要求学生掌握的知识体系。 [关键词] 高等代数;基本内容;主要方法[中图分类号]O 15 [文献标识码]A [文章编号]1009-2323(2010)02-0146-03 高等代数是高等学校数学专业的一门必修的专业基础课程,它是由多项式理论和线性代数两部分组成。多项式部分以一元多项式的因式分解理论为中心,线性代数部分主要包括行列式、线性方程组、矩阵、二次型、线性空间、线性变换、K -矩阵与若尔当标准形、欧几里得空间等。 通过高等代数课程的教学,要求学生掌握一元多项式及线性代数的基本知识和基础理论,熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,提高抽象思维、逻辑推理及运算能力。根据我们多年的教学经验,本文拟对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时也体现出了高等代数课程要求学生掌握的知识体系。 一、多项式 一元多项式理论主要讨论了三个问题:整除性理论,因式分解理论和根的理论。其中整除性是基础,因式分解是核心。 (一)基本内容 1.整除性理论)))整除,最大公因式,互素。 2.因式分解理论)))不可约多项式,典型分解式,重因式。 3.根的理论)))多项式函数,根的个数,根与系数的关系。 (二)主要方法 1.多项式除多项式的带余除法。 2.用辗转相除法求两个多项式的最大公因式,最大公因式的判别法。 3.两多项式互素的判别法。 4.不可约多项式的判别法,多项式标准分解式求法,重因式的判别法。 5.多项式函数值的求法,x -c 除多项式f (x )的综合除法,多项式按x -x 0的方幂展开的方法。 6.多项式根的判别法,多项式重根的判别法。 7.整系数多项式有理根的求法,艾森斯坦判断法。二、行列式 行列式是线性方程组理论的一个重要组成部分,是一种重要的数学工具。 (一)基本内容 n 级排列及其性质,n 级行列式的概念,行列式的性质,行列式的计算,克拉默规则。 (二)主要方法 1.求一个排列的逆序数的方法。 2.行列式的计算方法:定义法,性质法,化为三角形行列式的方法,降级法(按一行或一列展开法、拉普拉斯展开法),化为范得蒙行列式的方法,递推法,加边法,数学归纳法,拆项法。 3.一些特殊行列式的计算方法)))三角形行列式,ab 型行列式,范得蒙行列式,爪型行列式,三对角行列式。 4.克莱姆规则。三、线性方程组 /线性方程组0这部分在理论上解决了线性方程组有解的判定、解的个数及求法、解的结构等。 (一)基本内容 1.向量的线性关系)))n 维向量,向量的线性运算,线性组合,线性表出,线性相关,线性无关,极大线性无关组,向量组等价,向量组的秩。 2.矩阵的秩)))矩阵的秩=矩阵行(列)向量组的秩,即矩阵的行(列)秩=矩阵不为零的子式的最大级数,初等变换不改变矩阵的秩,用初等变换计算矩阵的秩。 3.线性方程组的解的情形)))线性方程组有解的判定,线性方程组解的个数,齐次线性方程组解的情形。 4.线性方程组解的结构)))齐次线性方程组的基础解系,齐次线性方程组解的表示,非齐次线性方程组解的表示。

高等代数北大版教案-第3章线性方程组

------------------------------------------------------------------------------------------------------------第三章 线性方程组 §1消元法 一 授课内容:§1消元法 二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三 教学重难点:用消元法解线性方程组. 四 教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵

高等代数教案第四章线性方程组

第四章 线性方程组 一 综述 线性方程组是线性代数的主要内容之一.本章完满解决了关于线性方程组的三方面的问题,即何时有解、有解时如何求解、有解时解的个数,这在理论上是完美的. 作为本章的核心问题是线性方程组有解判定定理(相容性定理),为解决这个问题,从中学熟知的消元法入手,分析了解线性方程组的过程的实质是利用同解变换,即将方程的增广矩阵作行变换和列的换法变换化为阶梯形(相应得同解方程组),由此相应的简化形式可得出有无解及求其解.为表述由此得到的结果,引入了矩阵的秩的概念,用它来表述相容性定理.其中实质上也看到了一般线性方程组有解时,也可用克莱姆法则来求解(由此得所谓的公式解——用原方程组的系数及常数项表示解).内容紧凑,方法具体.其中矩阵的秩的概念及求法也比较重要,也体现了线性代数的重要思想(标准化方法). 线性方程组内容的处理方式很多,由于有至少五种表示形式,其中重要的是矩阵形式和线性形式,因而解线性方程组的问题与矩阵及所谓线性相关性关系密切;本教材用前者(矩阵)的有关问题讨论了有解判定定理,用后者讨论了(有无穷解时)解的结构.实际上线性相关性问题是线性代数非常重要的问题,在以后各章都与此有关.另外,从教材内容处理上来讲,不如先讲矩阵及线性相关性,这样关于线性方程组的四个问题便可同时讨论. 二 要求 掌握消元法、矩阵的初等变换、秩、线性方程组有解判定定理、齐次线性方程组的有关理论. 重点:线性方程组有解判别法,矩阵的秩的概念及求法. 4.1 消元法 一 教学思考 本节通过具体例子分析解线性方程组的方法——消元法,实质是作方程组的允许变换(同解变换)化为标准形,由此得有无解及有解时的所有解.其理论基础是线性方程组的允许变换(换法、倍法、消法)是方程组的同解变换.而从形式上看,施行变换的过程仅有方程组的系数与常数项参与,因而可用矩阵(线性方程组的增广矩阵)表述,也就是对(增广)矩阵作矩阵的行(或列换法)初等变换化为阶梯形,进而化为标准阶梯形,其体现了线性代数的一种重要的思想方法——标准化的方法. 二 内容要求 主要分析消元法解线性方程组的过程与实质,以及由同解方程组讨论解的情况(存在性与个数),为下节作准备,同时指出引入矩阵的有关问题(初等变换等)的必要性,矩阵的初等变换和方程组的同解变换间的关系. 三 教学过程 1.引例:解方程组???? ?????=++=++=++2534233351 3121321321321x x x x x x x x x (1) 定义:我们把上述三种变换叫做方程组的初等变换,且依次叫换法变换、倍法变换、消法变换. 2.消元法的理论依据 3.转引 在上面的讨论中,我们看到在对方程组作初等变换时,只是对方程组的系数与常数项进行了运算,而未知数没有参加运算,也就是说线性方程组有没有解以及有什么样的解完全决定于它的系数和常数项,因此在讨论线性方程组时,主要是研究它的系数和常数项.因而消元法的过程即用初等变换把方程组化为阶梯形方程组,来解决求解问题,此可转用另一种形式表述.为此引入:

高等代数教学改革研究

龙源期刊网 https://www.doczj.com/doc/7518841074.html, 高等代数教学改革研究 作者:陈林 来源:《科技视界》2012年第26期 【摘要】高等代数是高等院校数学专业的主干课程,该门课程的教学改革对整个数学专业学生的教学质量的提高以及培养目标的完成都起着主导作用。本文在分析目前高等代数课程教与学的基础上,为高等代数的课程内容、教学方法、指导思想和教育观念进行改革。 【关键词】高等代数;教学内容;教学方法;改革 0 引言 高等代数这门课程是各高等院校数学专业学生的必修课,它不仅仅是中学数学理论的延续,而且还是整个现代数学大厦的基石。通过对这门课程的系统的学习,有助于学生养成严谨的处事习惯,增强学生逻辑推理能力,培养学生的数学抽象思维能力。绝大多数大中专院校将高等代数课程列为研究生入学考试的必考科目之一。 但是,目前高等代数的主要内容,在文革之前就已经确定了,还基本上是沿用前苏联的高等代数内容体系。近年来,国内许多学者对高代的内容进行大量的革新尝试,但其中几道丝线基本内容变动不大,仍然难以适应日新月异的科学技术发展的趋势,难以发挥高等代数作为自然科学原动力的作用,不能适应目前教学、科研的诸多需求。况且,近30年来,数学的理论分支发展迅猛,新思想、新知识、新研究方法不断涌现,更加强调理论的适应性,即如何提高生产力和更多的创造经济价值。但现行的高等代数教材的内容过分强调数学的纯理论性,往往是直接突兀的给出一个定义或一个定理,而没有关于这个定义或定理形成过程的介绍,同时缺乏讨论这些数学理论的发展和应用。在传统的高等代数课程教学中,往往只注重向学生灌输知识,课堂教学基本上还是“教材+粉笔+黑板”模式。从而难以提高学生的学习积极性,学生很难在认识上有所突破。 总之,为了应对数学理论日益迅猛的发展形势,为了紧跟时代发展的脚步,为了遵循我国教育发展的规律,为了提高办学质量、培养新时代的创新型人才,必须对高等代数课程的指导思想、内容以及教学方法进行改革。 1 指导原则 1.1 突出师范特色 大部分师范院校学生毕业后是进中学和小学参加教书。许多师范院校的毕业生工作以后感到大学里学到的东西在中学里用不到。因此,作为师范院校高等代数课程的内容要坚持师范性与学术性的统一,重点要突出师范性。必须将该课程的教学内容由学术型向教育学术型转化,

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

高等代数教学大纲

中国海洋大学本科生课程大纲 课程属性:学科基础 课程性质:必修 一、课程介绍 1.课程描述: 高等代数是数学科学学院各专业的重要专业必修基础课,是学习其它数学课程的主要先修课之一。高等代数的内容主要包含两个模块:第一模块,方程和方程组的求解问题,主要内容有:多项式、行列式、线性方程组、矩阵、二次型;第二模块,线性空间相关理论,主要内容有:线性空间、线性变换、λ-矩阵、欧几里得空间。高等代数内容包含理工科所开设的线性代数的主要内容。 2.设计思路: 开设高等代数课程的目的是:一方面,使数学院本科生在中学所学初等代数的基础上继续学习更加高深的代数学知识,使其掌握系统的经典代数内容,为学习其它数学课程(如数值代数、近世代数、计算方法等等)提供坚实的代数基础知识;另一方面,通过本课程的学习,逐步培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生在数学思想、数学方法方面的修养。 19世纪以前的代数研究内容主要是解方程和方程组以及由此产生的相关理论,称为经典代数;19世纪以后的代数主要研究一些抽象代数结构,如群、环、域、模等,称为抽象代数或近世代数。高等代数课程的内容主要是经典代数内容,涵盖学习其它数学课程所要求的基本的代数基础知识。 - 2 -

高等代数的内容基本按照经典代数的发展编排的,主要有两条主线:第一,方程和方程组求解问题,第二,线性空间相关理论。第一条主线的主要内容有:多项式理论——对应高次方程,其求解需要降次,需研究多项式的因式分解;行列式理论——求解线性方程组的主要工具之一;线性方程组理论——解的判定与求法;矩阵理论——解线性方程组时用到的矩阵运算与性质;二次型理论——二次齐次方程的化简与对称矩阵。第二条主线的主要内容多是解析几何中内容的推广,主要有:线性空间——几何空间的推广与抽象;线性变换——线性空间中点的运动的描述;λ-矩阵——证明线性变换的矩阵与其标准形相似;欧几里得空间——带有长度、夹角与距离等度量性质的线性空间,是几何空间的推广。 3.课程与其他课程的关系: 先修课程:无; 并行课程:数学分析、空间解析几何; 后置课程:近世代数。高等代数与近世代数内容恰好实现对接,完整体现了代数学的基本内容,联系密切。 二、课程目标 本课程目标是:一方面使学生系统地掌握经典代数的内容,包括多项式、线性方程组、矩阵、二次型、线性空间、线性变换、欧几里得空间等,为学习其它数学课程打下坚实的代数知识基础;另一方面,通过本课程的学习,培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生运用数学思想、数学方法分析问题、解决问题的能力。 到课程结束时,学生应达到以下几方面要求: (1)知识掌握良好。会判断多项式的可约性,能计算两多项式的最大公因式;会计算行列式;会判定线性方程组是否可解,掌握线性方程组解的结构;熟练掌握矩阵的各种运算;可将二次型化为标准形;掌握线性空间基底理论以及子空间的运算;会写线性变换的矩阵,会判定矩阵是否对角化、准对角化,并能求出其相应对角形与准 - 2 -

高等代数 第四章 线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则

高等代数《高等代数》教学大纲

《高等代数》课程教学大纲 Advanced Algebra 执笔人:颜昌元编写日期:2012.7 一、课程基本信息 1.课程编号: 07010112,07010113 2.课程性质/类别:专业基础课/ 必修课 3.学时/学分:160 学时/ 10 学分 4.适用专业:数学与应用数学、信息与计算科学、统计学 二、课程教学目标及学生应达到的能力 《高等代数》是大学数学专业三门重要基础课程之一。因其内容的抽象性和理论的结构化及应用之广泛,既是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。 该课程的教学目标是使学生掌握代数基本知识和理论,逐步培养学生的抽象思维能力和逻辑推理能力,使学生获得较熟练的演算技能与初步的应用能力,为后续专业课程的学习打下基础,适当了解代数的一些历史与背景。 该课程应突出传授数学思想和数学方法,突出高等代数中等价分类、结构分解、同构对应的思想,揭示课程内部本质的有机联系。 在教学过程中根据具体教学内容,帮助学生体会人类认识客观世界的一般规律:从具体个例提升到抽象本质再应用到一般情形,及本课程中体现的唯物主义辩证法;帮助学生体会本课程统一性、简单性、对称性、整齐性、不变性、奇异性等数学的内在美。 三、课程教学内容与基本要求 本课程开课时间:第一学年(共两学期),共160 学时;其中,第一学期,每周5学时,共80学时;第二学期,每周5学时,共 80学时。 (一)多项式 (20 学时) 1.主要内容: (1)数域 (2)一元多项式 (3)整除的概念 (4)最大公因式 (5)因式分解定理 (6)重因式 (7)多项式函数 (8)复系数与实系数多项式的因式分解 (9)有理系数多项式

《高等代数》课程教学大纲

《高等代数》课程教学大纲 课程编号:090085、090022 总学时:162 学分:8 适用专业:数学与应用数学、信息与计算科学 课程类型:专业必修课 开课单位: 一、课程的性质、目的与任务 通过本课程的教学,使学生对高等代数乃至代数学的思想和方法有较深刻的认识, 提高他们的抽象思维、逻辑推理和运算的能力;使学生初步地掌握基本的、系统的代数知识和抽象的、严格的代数方法,进而加深对中学代数的理解;使学生能应用代数思想和方法去理解与处理有关的问题, 培养与提高代数的理论分析问题与解决问题的能力;使学生学习数学学科后续课程(如近世代数、离散数学、计算方法、偏微分方程、泛函分析等)提供一些所需要的基础理论和知识;使学生在智能开发、创新能力培养等方面获得重要的平台。 《高等代数》是数学与应用数学、信息与计算科学本科专业最重要的基础课程之一,是数学各专业报考研究生的必考课程之一,也是理论性、应用性很强的一门数学基础课。讲授本课程的目的主要在于培养学生的代数基础理论和思想素质,基本掌握代数中的论证方法, 获得较熟练的演算技能和初步应用的技巧, 提高分析问题、解决问题的能力,为进一步学习其它数学知识打下坚实的基础。 本课程的主要任务是通过教学的主要环节(课堂讲授与讨论、习题课、作业、辅导答疑等),使学生学习和掌握多项式理论、线性代数的代数理论(行列式、线性方程组、矩阵、λ矩阵)及线性代数的几何理论(线性空间、线性变换、欧氏空间)。 二次型、- 二、课程教学内容和基础要求 (1)理解多项式的定义,掌握最大公因式,互素,不可约多项式, 因式分解等有关的一系列性质。 (2)理解行列式的定义, 掌握行列式的基本运算性质和行列式的行(列)展开性质;理解向量组的线性相关性,掌握线性方程组的通解求法;理解矩阵的概念和运算,掌握矩阵的可逆、矩阵的分块、矩阵的等价关系的性质及应用;理解二次型的定义,掌握二次型的标准形的求法及正定二次型的一系列性质。 (3)理解线性空间的定义,掌握交空间、和空间及直和的判定及性质;理解线性变换的定义及简单性质,掌握线性变换在不同基下的矩阵的性质、线性变换的值域与核的应用问

高等代数 线性变换自测题

线性变换自测题 一、填空题(每小题3分,共18分) 1.σ是22?F 上的线性变换,若??? ? ??=100 71 )(A σ,则=-)3(A σ . 2.σ:22R R →,)0,2(),(y x y x +-=σ;τ:22R R →,) ,3(),(y x y y x + -=τ, 则=+),)((y x τσ .=),)((y x τσ .=-),)(2(y x σ . 3.设???? ? ?=2231 A ,则向量???? ??11是A 的属于特征值 的特征向量. 4.若???? ? ??--=10 0001 011 A 与???? ? ? ?--10101 01k k B 相似,则k = . 5.设三阶方阵A 的特征多项式为322)(2 3 +--=λλλλf ,则=||A . 6.n 阶方阵A 满足A A =2,则A 的特征值为 . 二、判断说明题(每小题5分,共20分) 1.n 阶方阵A 至少有一特征值为零的充分必要条件是0||=A . 2.已知1 -=PBP A ,其中P 为n 阶可逆矩阵,B 为一个对角矩阵.则A 的特 征向量与P 有关. 3.σ为V 上线性变换,n ααα,,,21 为V 的基,则)(,),(),(21n ασασασ 线性无关. 4.α为V 上的非零向量,σ为V 上的线性变换,则} )(|{)(1 αησηασ==-是 V 的子空间. 三、计算题(每小题14分,共42分) 1.设??? ? ? ? ?----=a A 3 3242 111 与??? ? ? ??=b B 0 0020 002 相似. (1)求b a ,的值; (2)求可逆矩阵,使B AP P =-1.

高等代数北大版课程教案-第3章线性方程组

第三章 线性方程组 §1消元法 一 授课内容:§1消元法 二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三 教学重难点:用消元法解线性方程组. 四 教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵 ?????? ? ??s sn s s n n b b b a a a a a a a a a ΛΛΛΛΛΛΛΛ21212222111211 来表示. 在中学代数里,我们学习过用加减消元法和代入消元法解二元,三元

专业课《高等代数》考研大纲和参考书目

专业课《高等代数》考研大纲和参考书目 参考教材及参考书:《高等代数》(第三版),北京大学编,高等教育出版社 《高等代数教程》(上、下册),王萼芳等编,清华大学出版社 课程内容(打*部分内容或章节要求重点掌握) 多项式: *整除概念,带余除法理论; 最大公因式定义及求法; *多项式互素的概念与性质; *因式分解定理和不可约多项式的性质; *复系数与实系数多项式的因式分解; 行列式: *行列式的定义; *行列式性质及按行按列展开法则,并用此计算行列式; Laplace定理; *克莱拇法则; *线性方程组: 消元法; 向量组的线性相关与线性无关性,向量组的极大无关组与秩; 矩阵的秩及求法; 线性方程组有解判别定理; 线性方程组基础解系、通解及解的结构; *矩阵: 矩阵线性运算,乘法,转置及运算律; 矩阵初等变换,初等矩阵; 逆矩阵极其存在条件,求逆矩阵; 分块矩阵运算; 二次型: *二次型的矩阵表示; 矩阵合同 *可逆线性变换化二次型为标准型; 惯性定理; *正定二次型判定; 线性空间 线性空间的定义与性质; *有限维线性空间的基与维数,向量坐标; *基变换与坐标变换; *子空间定义,维数与基、维数公式; *子空间的交与和,直和; 线性空间的同构; *线性变换 线性变换的运算,线性变换的矩阵

特征值与特征向量; 可对角化问题; 线性变换的值域与核; 不变子空间; 若尔当标准型的概念; 最小多项式; λ-矩阵 λ-矩阵等价标准型; *不变因子、行列式因子、初等因子的概念及其关系; *矩阵相似的条件; 若尔当标准型理论及求法; 欧氏空间 内积与欧氏空间定义,度量矩阵; 施密特正交化方法求标准正交基; *正交变换,对称变换; *对称矩阵的标准型及用正交线性替换化二次型为标准型; 酉空间介绍。

相关主题
文本预览
相关文档 最新文档