当前位置:文档之家› 高等代数北大版课程教案-第3章线性方程组

高等代数北大版课程教案-第3章线性方程组

高等代数北大版课程教案-第3章线性方程组
高等代数北大版课程教案-第3章线性方程组

第三章 线性方程组

§1消元法

一 授课内容:§1消元法

二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组.

三 教学重难点:用消元法解线性方程组.

四 教学过程:

所谓的一般线性方程组是指形式为

???????=+++=+++=+++n

n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项.

所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合.

解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的.

显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵

??????

? ??s sn s s n n b b b a a a a a a a a a ΛΛΛΛΛΛΛΛ21212222111211 来表示.

在中学代数里,我们学习过用加减消元法和代入消元法解二元,三元

线性方程组,实际上,这个方法比用行列式解方程组更具有普遍性.

分析一下消元法,不难看出,它实际上是反复的对方程组进行变换,而所做的变换也只是由以下三种基本的变换所构成:

1.用一非零的数乘某一方程.

2.把一个方程的倍数加到另一方程.

3.互换两个方程的位置.

定义1 变换1,2,3称为线性方程组的初等变换.

消元法的过程就是反复的施行初等变换的过程.

可以证明,初等变换总是把方程组变成同解的方程组.

对于线性方程组反复的施行初等变换,一步一步做下去,最后就得到一个阶梯形方程组.

??????

???????====++=++++=++++++000001222222111212111ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛr r n rn r rr n n r r n n r r d d x c x c d x c x c x c d x c x c x c x c (5) 显然(5)与(1)是同解的.考察(5)的解的情况.

如(5)中的方程10+=r d ,而01≠+r d 这时不管 n x x x ,,,21Λ取什么值都不能使它成为等式,故(5)无解,因而(1)也无解.

当 01=+r d ,或(5)中根本没有“00=”的方程时,分两种情况:

1)n r =,这时阶梯形方程组为

???

????==++=+++n n nn n n n n d x c d x c x c d x c x c x c ΛΛΛΛΛΛ2222211212111 有唯一解.

例 解方程组??

???=+=++=+-622452413231321321x x x x x x x x .

解 上述方程有唯一的解 )6,1,9(--.

2)n r <,这时阶梯形方程组为

???

????=+++=++++=+++++++n n nn r r r r rr n n r r n n r r d x c x c x c d x c x c x c d x c x c x c x c ΛΛΛΛΛΛΛΛΛ11,222222********* 其中0≠ii c ,s i ,,2,1Λ= ,把它改写成

???

????--=+---=++---=+++++++++++n nn r r r n r r r r rr n n r r r r n n r r r r x c x c d x c x c x c x c d x c x c x c x c d x c x c x c ΛΛΛΛΛΛΛΛΛ11,11,211,222222111,111212111 (7) 由(7)我们可以把 r x x x ,,,21Λ 通过 n r x x ,,1Λ+ 表示出来,这样一组表达式称为方程组(1)的一般解,而 n r x x ,,1Λ+ 称为一组自由未知量.

例 解方程组?????-=+-=+-=+-1424524132321

321321x x x x x x x x x .

解 一般解为?????-=+=2

)7(21321x x x . 定理1 在齐次线性方程组

???????=+++=+++=+++0

........................................0......0......221122221211212111n nn n n n n n n x a x a x a x a x a x a x a x a x a 中,如果n s <,那么它必有非零解.

把矩阵 ??????

? ??s sn s s n n b b b a a a a a a a a a ΛΛΛΛΛΛΛΛ212122221

11211

称为线性方程组(1)的增广矩阵,显然,用初等变换花线性方程组(1)成阶梯形就相当于用初等行变换化增广矩阵成阶梯形矩阵.

例 解方程组?????=+-=+-=+-0424524132321

321321x x x x x x x x x .

解: ????? ??---0412********→????? ??---110021001312→????

? ??--100021001312

从最后一行可以看出原方程组无解.

§2 n 维向量空间

一 授课内容:§2 n 维向量空间

二 教学目的:理解和掌握n 维向量空间的概念,掌握n 维向量空间的两种运算及八条运算律

三 教学重难点: n 维向量空间的概念.

四 教学过程:

定义2 所谓数域P 上一个n 维向量就是由数域P 中n 个数组成的有序数组

),,,(21n a a a Λ (1) i a 称为向量(1)的分量.

定义 3 如果n 维向量 =α),,,(21n a a a Λ,=β),,,(21n b b b Λ的对应分量都相等,即

i a i b = n i ,,2,1Λ=.

就称这两个向量是相等的,记作=αβ

定义4 向量=γ),,,(2211n n b a b a b a +++Λ称为向量

=α),,,(21n a a a Λ,=β),,,(21n b b b Λ的和,记为βαγ+=.

由定义立即推出

(1)交换律:βα+αβ+=.

(2)结合律:)(γβα++γβα++=)(.

定义 5 分量全为零的向量)0,,0,0(Λ称为零向量,记为0,向量),,,(21n a a a ---Λ 称为向量=α),,,(21n a a a Λ的负向量,记为α-.

显然对于所有的α,都有αα=+0,0)(=-+αα.

定义6 )(βαβα-+=-.

定义7 设k 为数域P 中的数,向量),,,(21n ka ka ka Λ称为向量=α),,,(21n a a a Λ与数k 的数量乘积,记为αk .

由定义立即推出

βαβαk k k +=+)(

αααl k l k +=+)(

ααkl l k =)(

αα=1

定义8 以数域P 中的数作为分量的n 维向量的全体,同时考虑到定义在它们上面的加法和数量乘法,称为数域P 上的n 维向量空间.

向量通常是写成一行 =α),,,(21n a a a Λ

有时候也可以写成一列 ??????

? ??=n a a a M 21α 前者称为行向量,后者称为列向量.

§3线性相关性

一 授课内容:§3 线性相关性

二 教学目的: 理解和掌握以下概念:线性组合、线性表出、线性相关、线性无关、极大线性无关组、向量组的秩.

三 教学重难点:线性相关与线性无关的概念.

四 教学过程:

定义9 向量α称为向量组s βββ,,,21Λ的一个线性组合,如果有数域P 中的数s k k k ,,,21Λ,使α=s s k k k βββ+++Λ2211.

任何一个n 维向量α都是向量组

???????==)

1,,0,0()0,,1,0()0,,0,1(21ΛΛΛΛΛΛn εεε 的一个线性组合,因为n n a a a εεεα+++=Λ2211

向量n εεε,,,21Λ称为n 维单位向量.

当向量α是向量组的一个线性组合时,我们也说α可以线性表出. 定义10 如果向量组 t ααα,,,21Λ中的每一个向量i α(t i ,,2,1Λ=)都可以由向量组s βββ,,,21Λ线性表出,那么向量组t ααα,,,21Λ就称为可以由向量组s βββ,,,21Λ 线性表出,如果两个向量组互相可以线性表出,它们就称为等价.

由定义知,向量组之间的等价有以下性质

1.反身性 每一个向量组与它自身等价.

2.对称性 如果向量组t ααα,,,21Λ与s βββ,,,21Λ等价,那么向量组s βββ,,,21Λ也与t ααα,,,21Λ等价.

3.传递性 如果向量组t ααα,,,21Λ与s βββ,,,21Λ等价,向量组s βββ,,,21Λ与t γγγ,,,21Λ等价,那么向量组t ααα,,,21Λ与t γγγ,,,21Λ等价.

定义11 如果向量组s ααα,,,21Λ(2≥s )中有有一向量可以经其余的向量线性表出,那么向量组s ααα,,,21Λ称为线性相关的.

显然,因为零向量可以被任一个向量组线性表出,那么任意一个包含零向量的向量组必线性相关.

定义11' 向量组s ααα,,,21Λ(1≥s )称为线性相关,如果数域P 中不全为零的数s k k k ,,,21Λ,使02211=+++s s k k k αααΛ

定义12 一向量组不线性相关,即没有不全为零的数s k k k ,,,21Λ,使02211=+++s s k k k αααΛ就称为线性无关,或者说,一向量组s ααα,,,21Λ称为线性无关,如果由02211=+++s s k k k αααΛ可以推出021====s k k k Λ.

由定义立即得出,如果一向量组的一部分线性相关,那么这个向量组就线性相关.换个说法,如果一向量组线性无关,那么它的任何一个非空的部分组也线性无关.

显然,由n 维单位向量 n εεε,,,21Λ组成的向量组是线性无关的. 定理2 设 r ααα,,,21Λ与s βββ,,,21Λ是两个向量组,如果

1)向量组r ααα,,,21Λ可以经s βββ,,,21Λ线性表出.

2)s r >.

那么向量组r ααα,,,21Λ必线性相关.

推论1 如果向量组可以经s βββ,,,21Λ线性表出,且r ααα,,,21Λ线性无关,那么s r ≤.

推论2 任意1+n 个n 维向量必线性相关.

推论3 两个线性无关的等价向量组,必含有相同个数的向量.

定义13 一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且从这个向量组中任意添一个向量(如果还有的话),所得的部分向量组都线性相关.

显然,任意一个极大线性无关组都与向量组本身等价,向量组的两个极大线性无关组是等价的.

定理3 一向量组的极大线性无关组都含有相同个数的向量.

定义14 向量组的极大线性无关组所含向量的个数称为这个向量组的秩.

由定义立即得出,一向量组线性无关的充分必要条件是它的秩与它所含向量的个数相同.

显然,等价的向量组有相同的秩.

§4矩阵的秩

一 授课内容: §4矩阵的秩

二 教学目的: 理解和掌握行秩、列秩、矩阵的秩,掌握矩阵的秩与k 级子式的关系,会求矩阵的秩.

三 教学重难点:定理4的证明.

四 教学过程:

如果我们把矩阵的每一行看成一个向量,那么矩阵就可以看作由这些行向量所组成的,同样的,如果我们把矩阵的每一列看成一个向量,那么矩阵就可以看作由这些列向量所组成的.

定义15 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是指矩阵的列向量组的秩.

引理 如果齐次线性方程组

???????=+++=+++=+++0

........................................0......0......221122221211212111n sn s s n n n n x a x a x a x a x a x a x a x a x a 的系数矩阵

??????

? ??=sn s s n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211 的行秩n s <,那么它有非零解.

定理4 矩阵的行秩与列秩相等.

因为矩阵的行秩与列秩相等,所以下面就统称为矩阵的秩.

定理5 n n ?矩阵

??????

? ??=nn n n n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211 的行列式为零的充分必要条件是A 的秩小于n .

推论 齐次线性方程组

???????=+++=+++=+++0

........................................0......0......221122221211212111n nn n n n n n n x a x a x a x a x a x a x a x a x a 有非零解的充分必要条件是它的系数矩阵

??????

? ??=nn n n n n a a a a a a a a a A ΛΛΛΛΛΛΛ2122221

11211 的行列式等于零.

定义16 在一个n s ?矩阵A 中任意选定k 行和k 列,位于这些选定的行和列的交点上的2k 个元素按原来的次序所组成的k k ?矩阵的行列式,称为A 的一个k 级子式.

定理 6 一矩阵的秩是r 的充分必要条件为矩阵中有一r 级子式不为零,同时所有的1+r 级子式全为零.

怎样计算矩阵的秩,可以用初等变换化矩阵为阶梯形矩阵,其中非零行的数目就是原矩阵的秩.

§5线性方程组有解的判定定理

一 授课内容: §5线性方程组有解的判定定理

二 教学目的: 理解和掌握线性方程组有解判定定理,利用克兰姆法则写出一般解

三 教学重难点:判定定理的证明.

四 教学过程:

线性方程组有解的判定定理 线性方程组(1)有解的充分必要条件为它的系数矩阵

??????? ??=sn s s n n a a a a a a a a a A Λ

ΛΛΛΛΛΛ21

2222111211 与增广矩阵 ??????? ??=s sn s s n n b b b a a a a a a a a a A ΛΛ

ΛΛΛΛΛΛ2121

2222111211 有相同的秩.

§6线性方程组解的结构

一 授课内容: §6线性方程组解的结构

二 教学目的: 理解和掌握基础解系的概念,掌握方程组解的性质,

掌握一般线性方程组解的结构.

三 教学重难点:基础解系,解的结构.

四 教学过程:

对于齐次线性方程组

???????=+++=+++=+++0

........................................0......0......221122221211212111n sn s s n n n n x a x a x a x a x a x a x a x a x a (1) 它的解构成的集合具有下面两个重要性质:

1.两个解的和还是方程组的解.

2.一个解的倍数还是方程组的解.

综上,解的线性组合还是方程组的解.

定义17 齐次线性方程组(1)的一组解t ηηη,,,21Λ称为(1)的一个基础解系,如果

1)(1)的任何一个解都可以表示为t ηηη,,,21Λ的线性组合. 2)t ηηη,,,21Λ线性无关.

定义7 在齐次线性方程组有非零解的情况下,它有基础解系,并且它所含解的个数就等于r n -,这里r 表示系数矩阵的秩.(以下将看到,r n -也是自由未知量的个数)

由定义容易看出,任何一个线性无关的与某一个基础解系等价的向量组都是基础解系.

对于一般的线性方程组:

???????=+++=+++=+++s

n sn s s n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (9) 如果把常数项换成零,就得到齐次线性方程组(1),方程组(1)称为方程组(9)的.

方程组(9)的解与它的导出组(1)的解有密切的关系:

1.方程组(9)的两个解的差是它的导出组(1)的解.

2.方程组(9)的一个解与它的导出组(1)的一个解之和还是这个线性方程组的一个解.

由这两点容易证明

定理8 如果0γ是方程组(9)的一个特解,那么方程组(9)的任一个解γ都可以表成ηγγ+=0 (10)

中η是导出组(1)的一个解.因此,对于方程组(9)的任一个特解0γ,当η取遍它的导出组的全部解时,(10)就给出(9)的全部解.

推论 在方程组有解的情况下,解是唯一的充分必要条件是它的导出组(1)只有零解.

例 用消元法解方程组

?????????=+-++=-++-=+----=--++=-++6

2234322122314535432154321

54321543215321x x x x x x x x x x x x x x x x x x x x x x x x .

例 把向量组β表示为向量组4321,,,αααα的线性组合:)1,1,2,1(=β,)1,1,1,1(1=α,)1,1,1,1(2--=α,)1,1,1,1(3--=α,)1,1,1,1(4--=α.

例 证明 如果向量组r ααα,,,21Λ线性无关,而r ααα,,,21Λ,β线性相关,则向量β可以由r ααα,,,21Λ线性表出.

例 设r t t t ,,,21Λ是互不相同的数,n r ≤,证明:),,,1(1-=n i i i t t Λα r i ,,2,1Λ=是线性无关的.

例 证明 如果向量组)1(可以由向量组(2)线性表出,那么(1)的秩不超过(2)的秩.

例 设r ααα,,,21Λ是一组n 维向量,证明:r ααα,,,21Λ线性无关的充分必要条件是任一n 维向量都可以被它们线性表出.

例 证明

???????=+++=+++=+++n

n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 对任何的n b b b ,,,21Λ都有解的充分必要条件是系数行列式0≠ij a .

例 计算矩阵??????? ??----63789770057878421110的秩.

高等代数北大版课程教案-第5章二次型

第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 n n n x x a x x a x a x x x f 11211221112122),,,( n n x x a x a 2222222 (2) n nn x a (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0 ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示:

令 ji ij a a ,j i 由于 i j j i x x x x ,那么二次型(3)就可以写为 n n n x x a x x a x a x x x f 112112211121),,,( n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n 矩阵 nn n n n n a a a a a a a a a A 21 22221 112 11 它称为二次型(5)的矩阵.因为ji ij a a ,n j i ,,2,1, ,所以 A A . 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令 n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, n x x x AX X 2 1 nn n n n n a a a a a a a a a 21 22221 11211 n x x x 21 n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 221 122221 21121211121 n i n j j i ij x x a 11. 故 AX X x x x f n ),,,(21 .

高等代数(北大版)第6章习题参考答案

第六章线性空间 . 设 M N , 证 明: M N M , M N N 。 1 证任 取M , 由 M N , 得 N , 所 以M N , 即证 M N M 。又因 M N M , 故 M N M 。再证第二式,任 取 M 或N , 但 M N , 因此无论 哪一种情形,都有N , 此即。但 N M N , 所以 M N N 。 2.证明 M ( N L ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。 证x M (N L), 则 x M 且 x N L. 在后一情形,于是 x M N或 x M L. 所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。反之,若 x (M N ) ( M L) ,则 x M N或 x M L. 在前一情形, x M , x N , 因此 x N L. 故得 x M ( N L ), 在后一情形,因而 x M , x L, x N L ,得 x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。 若 x M ( N L),则 x M , x N L 。 在前一情形 X x M N ,且 X M L,因而 x ( M N) ( M L)。 在后一情形, x N ,x 因而 x M N , 且 X M ,即 X ( M N)(M L)所以L, L (M N)(M L) M (N L) 故 M ( N L) =()(M L) M N 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量 乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: ( a1,b1)( a b ( a1a2,b1b2a1 a2) (kk 1) 2

高等代数-北京大学第三版--北京大学精品课程

第一学期第一次课 第一章 代数学的经典课题 §1 若干准备知识 1.1.1 代数系统的概念 一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。 1.1.2 数域的定义 定义(数域) 设K 是某些复数所组成的集合。如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有 K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素0≠∈a K a ,且。于是 K a a K a a ∈= ∈-=10, 。 进而∈?m Z 0>, K m ∈+??++=111。 最后,∈?n m ,Z 0>, K n m ∈,K n m n m ∈-=-0。这就证明了Q ?K 。证毕。 1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。 定义(集合的映射) 设A 、B 为集合。如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ). (, :a f a B A f α→ 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射。若 ,B b ∈?都存在A a ∈,使得b a f =)(,则称f 为满射。如果f 既是单射又是满射,则称f 为双射,或称一一对应。 1.1.4 求和号与求积号 1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数n a a a ,,,21Λ,我们使用如下记号:

高等代数北大版教案-第5章二次型

高等代数北大版教案- 第5章二次型 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

48 第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 ++++=n n n x x a x x a x a x x x f 11211221112122),,,( +++n n x x a x a 2222222 (2) n nn x a + (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 ???????+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示:

49 令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为 ++++=n n n x x a x x a x a x x x f 112112211121),,,( ++++n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a +++ ∑∑===n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n ?矩阵 ?? ? ? ? ?? ??=nn n n n n a a a a a a a a a A 2122221 112 11 它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以 A A ='. 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令???? ?? ? ??=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, ()n x x x AX X 2 1 ='??????? ??nn n n n n a a a a a a a a a 2 1 22221 11211??? ? ? ? ? ??n x x x 21 ()? ??? ??? ??+++++++++=n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 221 122221 2112121112 1 ∑∑===n i n j j i ij x x a 11.

高等代数(张禾瑞版)教案-第5章矩阵

高等代数(张禾瑞版) 教案-第5章矩阵 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五章 矩 阵 教学目的: 1. 掌握矩阵的加法,乘法及数与矩阵的乘法运算法则。及其基本性质,并熟练地对矩阵进行运算。 2. 了解几种特殊矩阵的性质。 教学内容: 5.1 矩阵的运算 1 矩阵相等 我们将在一个数域上来讨论。令F 是一个数域。用F 的元素a ij 作成的一个m 行n 列矩阵 A= ?????? ? ??a a a a a a a a a mn m m n n 2 1 222 2111211 叫做F 上一个矩阵。A 也简记作(a ij )。为了指明 A 的行数和列数,有时也把它记作A mn 或 (a ij )mn 。 一个 m 行n 列矩阵简称为一个m*n 矩阵。特别,把一个n*n 矩阵叫做一个 n 阶正方阵,或n 阶矩阵。 F 上两个矩阵,只有在它们有相同的行数和列数,并且对应位置上的 元素都相等时,才认为上相等的。 以下提到矩阵时,都指的是数域F 上的矩阵。 我们将引进三种运算:数与矩阵的乘法,矩阵的加法以及矩阵的乘法。 先引入前两种运算。 2 矩阵的线性运算 定义 1 数域F 的数 a 与F 上一个m*n 矩阵A=(a ij ) 的乘法aA 指的是m*n 矩阵(aa ij ) 定义 2 两个m*n 矩阵A=(a ij ),B=(b ij ) 的和A+B 指的是m*n 矩阵(a ij +b ij )。 注意 ,我们只能把行数相同,列数相同的两个矩阵相加。 以上两种运算的一个重要特例是数列的运算。 现在回到一般的矩阵。我们把元素全是零的矩阵叫做零矩阵,记作0。如果矩阵 A=(a ij ), 我们就把矩阵(- a ij ),叫做A 的负矩阵,记作—A 。 3 矩阵线性运输的规律 A+B=B+A ; (A+B)+C=A+(B+C); 0+A=A ; A+(-A)=0; a(A+B)=Aa+Ab ; (a+b)A=Aa+Ba ; a(bA)=(ab)A ; 这里A,B 和 C 表示任意m*n 矩阵,而a 和 b 表示 F 中的任意数。 利用负矩阵,我们如下定义矩阵的减法: A —B=A+(— B )。 于是有 A+B=C ?A=C —B 。 由于数列是矩阵的特例,以上运算规律对于数列也成立。 4 乘法

高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第二部分,其他请搜索,谢谢!

12.设A 为一个n 级实对称矩阵,且0'A X X , 0>'B X X , 因此 ()0>'+' =+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。 14.证明:二次型()n x x x f ,,,21Λ是半正定的充分必要条件是它的正惯性指数与秩相等。

(完整word版)高等代数教案北大版第六章.doc

授课内容教学时数教学目标教学重点教学难点 教学方法与 手段 教 学 过 程 第六章线性空间第一讲集合映射 2授课类型讲授通过本节的学习, 掌握集合映射的有关定义、运算, 求和号与乘积号的定义 集合映射的有关定义 集合映射的有关定义 讲授法启发式 1.集合的运算 , 集合的映射 ( 像与原像、单射、满射、双射 ) 的概念 定义 : ( 集合的交、并、差 ) 设S是集合 , A与B的公共元素所组成的集合 成为 A 与 B 的交集,记作A B ;把 A 和B中的元素合并在一起组成的集合成 为 A 与 B 的并集,记做 A B ;从集合 A中去掉属于 B 的那些元素之后剩下的元素组成的集合成为 A 与B的差集,记做A B . 定义 : ( 集合的映射 ) 设 A B 为集合 . 如果存在法则 f , 使得 A 中任意元素 、 a 在法则f下对应B中唯一确定的元素( 记做f (a) ), 则称f是A到B的一个映射 , 记为 f : A B, a f (a). 如果 f (a) b B , 则 b 称为a在 f 下的像,a称为 b 在 f 下的原像. A 的所有元素在 f 下的像构成的 B 的子集称为 A 在 f 下的像,记做 f ( A) ,即f ( A) f ( a) | a A . 若 a a' A, 都有 f (a) f (a'), 则称 f 为单射.若 b B, 都存在a A , 使得f (a) b ,则称 f 为满射 . 如果f既是单射又是满射, 则称f为双射 , 或称一一对应 . 2.求和号与求积号 (1)求和号与乘积号的定义

为了把加法和乘法表达得更简练 , 我们引进求和号和乘积号 . 设给定某个数域 K 上 n 个数 a 1, a 2 , , a n , 我们使用如下记号 : n n a 1 a 2 a n a i , a 1a 2 a n a i . i 1 i 1 当然也可以写成 a 1 a 2 a n a i , a 1 a 2 a n a i . 1 i n 1 i n (2) 求和号的性质 容易证明 , n n n n n n m m n a i a i , (a i b i ) a i b i , a ij a ij . i 1 i 1 i 1 i 1 i 1 i 1 j 1 j 1 i 1 事实上 , 最后一条性质的证明只需要把各个元素排成如下形状 : a 11 a 12 a 1 m a 21 a 22 a 2 m a n1 a n2 a nm 分别先按行和列求和 , 再求总和即可 . 讨论、练习与 作业 课后反思

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等代数北大版教案-第5章二次型教学内容

高等代数北大版教案-第5章二次型

仅供学习与交流,如有侵权请联系网站删除 谢谢48 第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 ++++=n n n x x a x x a x a x x x f 11211221112122),,,( +++n n x x a x a 2222222 (2) n nn x a + (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 ???????+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4)

仅供学习与交流,如有侵权请联系网站删除 谢谢49 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示: 令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为 ++++=n n n x x a x x a x a x x x f 112112211121),,,( ++++n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a +++ ∑∑===n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n ?矩阵 ?? ? ? ? ?? ??=nn n n n n a a a a a a a a a A 2122221 112 11 它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以 A A ='. 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令???? ?? ? ??=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, ()n x x x AX X 2 1 ='??????? ??nn n n n n a a a a a a a a a 2 1 22221 11211??? ? ? ? ? ??n x x x 21

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

高等代数北大版第5章习题参考答案

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1)323121224x x x x x x ++-; 2)2 3322221214422x x x x x x x ++++; 3)3231212 2216223x x x x x x x x -+--; 4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++; 6)4342324131212 422212222442x x x x x x x x x x x x x x x ++++++++; 7)4332212 4232221222x x x x x x x x x x ++++++。 解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换 ?????=-=+=3 32122 11y x y y x y y x (1) 则 ()312 221321444,,y y y y x x x f ++-= 2 223233121444y y y y y y ++-+-= ()2 22333142y y y y ++--=, 再作非退化线性替换 ??? ????==+=3 3223 1121 21z y z y z z y (2) 则原二次型的标准形为 ()2 322213214,,z z z x x x f ++-=, 最后将(2)代入(1),可得非退化线性替换为

???? ?????=+-=++=333212321121212121z x z z z x z z z x (3) 于是相应的替换矩阵为 ???????? ? ?-=??????? ??????? ??-=10021121210 2110001021021100011011T , 且有 ???? ? ??-='100040001AT T 。 2)已知()=321,,x x x f 23322221214422x x x x x x x ++++, 由配方法可得 ()()() 233222222121321442,,x x x x x x x x x x x f +++++= ()()2 322212x x x x +++=, 于是可令 ?????=+=+=33 3222112x y x x y x x y , 则原二次型的标准形为 ()2221321,,y y x x x f +=, 且非退化线性替换为 ?????=-=+-=33 322321122y x y y x y y y x , 相应的替换矩阵为 ???? ? ??--=100210211T ,

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

高等代数北大版教案-第3章线性方程组

------------------------------------------------------------------------------------------------------------第三章 线性方程组 §1消元法 一 授课内容:§1消元法 二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三 教学重难点:用消元法解线性方程组. 四 教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵

高等代数北大编 第1章习题参考答案

第一章 多项式 一 、习题及参考解答 1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(2 2 3 +-=---=x x x g x x x x f ; 2) 2)(,52)(24+-=+-=x x x g x x x f 。 解 1)由带余除法,可得9 2926)(,9731)(--=-= x x r x x q ; 2)同理可得75)(,1)(2 +-=-+=x x r x x x q 。 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+3 2 |1, 2)q px x mx x ++++2 4 2 |1。 解 1)由假设,所得余式为0,即0)()1(2 =-+++m q x m p , 所以当???=-=++0 012m q m p 时有q px x mx x ++-+3 2|1。 2)类似可得???=--+=--0 10 )2(2 2m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。 综上所诉,当?? ?+==10q p m 或???=+=2 12 m p q 时,皆有q px x mx x ++++2 42|1。 3.求()g x 除()f x 的商()q x 与余式: 1)5 3 ()258,()3f x x x x g x x =--=+; 2)3 2(),()12f x x x x g x x i =--=-+。 解 1) 432()261339109()327 q x x x x x r x =-+-+=-; 2) 2()2(52)()98q x x ix i r x i =--+=-+。

高等代数北大版第章习题参考答案

高等代数北大版第章习 题参考答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第六章 线 性空 间 1.设,N M ?证明:,M N M M N N ==。 证任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈,X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;

高等代数(北大版)第7章习题参考答案

第七章线性变换 1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V中,A,其中V是一固定的向量; 2)在线性空间V中,A其中V是一固定的向量; 3)在P 322 中,A(,,)(,,) x1xxxxxx; 231233 4)在P 3中,A(,,)(2,,) x1xxxxxxx 2312231 ; 5)在P[x]中,A f(x)f(x1); 6)在P[x]中,A()(), fxfx其中 0 x P是一固定的数;0 7)把复数域上看作复数域上的线性空间,A 。 nn 中,A X=BXC其中B,CP 8)在P 解1)当0时,是;当0时,不是。nn 是两个固定的矩阵. 2)当0时,是;当0时,不是。 3)不是.例如当(1,0,0),k2时,k A()(2,0,0),A(k)(4,0,0), A(k)k A()。 4)是.因取(x1,x2,x3),(y1,y2,y3),有 A()=A(x1y1,x2y2,x3y3) =(2x12y1x2y2,x2y2x3y3,x1y1) =(2x1x2,x2x3,x1)(2y1y2,y2y3,y1) =A+A, A(k)A(kx1,kx2,kx3) (2kx 1 k x 2 ,k x 2 k x, 3 k x) 1 (2kx 1 k x 2 ,k x 2 k x, 3 k x) 1 =k A(), 3 故A是P 上的线性变换。 5)是.因任取f(x)P[x],g(x)P[x],并令 u(x)f(x)g(x)则 A(f(x)g(x))=A u(x)=u(x1)=f(x1)g(x1)=A f(x)+A(g(x)), 再令v(x)kf(x)则A(kf(x))A(v(x))v(x1)kf(x1)k A(f(x)),故A为P[x]上的线性变换。 6)是.因任取f(x)P[x],g(x)P[x]则. A(f(x)g(x))=f(x0)g(x0)A(f(x))A(g(x)), A(kf(x))kf(x0)k A(f(x))。 7)不是,例如取a=1,k=I,则A(ka)=-i,k(A a)=i,A(ka)k A(a)。 8)是,因任取二矩阵X,Y nn

高等代数-北京大学第三版--北京大学精品课程

一个集合,如果在它里面存在一种或若干种代数运算, 这些运算满足一定的运算法则, 则称这样的一个体系为 定义(数域) 设K 是某些复数所组成的集合。如果 K 中至少包含两个不同的复数,且 K 对复数的加、减、乘、 四则运算 是封闭的,即对K 内任 两个数a 、 b ( a 可 以等于b ), 必有 b K , ab K ,且当b 0时,a/b K ,则称 K 为一个数域。 1.1典型的数域举例: 复数域C ;实数域R ;有理数域 Q ; Gauss 数域:Q (i) = { a b i | a, b € Q},其中 i = ?. 1 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素 K ,且 a 0。于是 进而 最后, m, n Z 巴K 。这就证明了 n K 。证毕。 1.1.3 集合的运算, 集合的映射(像与原像、单射、满射、双射)的概念 和B 中的元素合并在一起组成的集合成为 A 与 B 的并集, 记做A B ;从集合A 中去掉属于B 的那些元素之后剩 定义(集合的映射) 设A 、B 为集合。如果存在法则 f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定 若a a'代都有f (a) 第一章代数学的经典课题 § 1若干准备知识 1.1.1代数系统的概念 个代数系统。 1.1.2数域的定义 定义(集合的交、并、差)设S 是集合,A 与B 的公共元素所组成的集合成为 A 与 B 的交集,记作A B ;把A 下的元素组成的集合成为 A 与 B 的差集,记做A B 。 的元素(记做f(a)),则称f 是A 到B 的一个映射,记为 B, f (a). 如果f(a) b B ,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的 B 的 子集称为A 在f 下的像,记做 f (A),即 f (A) f(a)| a A 。 f(a'),则称f 为单射。若 b B,都存在a A ,使得f(a) b ,则称f 为满射。 1.1.4 求和号与求积号 1 ?求和号与乘积号的定义.为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数a 1,a 2, ,a n ,我们使用如下记号: 第一学期第一次课 如果f 既是单射又是满射,则称 f 为双射,或称一一对应。

高等代数北大版课程教案-第3章线性方程组

第三章 线性方程组 §1消元法 一 授课内容:§1消元法 二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三 教学重难点:用消元法解线性方程组. 四 教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵 ?????? ? ??s sn s s n n b b b a a a a a a a a a ΛΛΛΛΛΛΛΛ21212222111211 来表示. 在中学代数里,我们学习过用加减消元法和代入消元法解二元,三元

相关主题
文本预览
相关文档 最新文档