当前位置:文档之家› 【高中数学】导数综合讲义(教师版)

【高中数学】导数综合讲义(教师版)

【高中数学】导数综合讲义(教师版)
【高中数学】导数综合讲义(教师版)

导数讲义终极版

导数目录 【导数的计算与几何意义】 【三次函数】 【导数与单调性】 【导数与极最值】 【导数与零点】 【导数中的恒成立与存在性问题】 【原函数导函数混合还原】 【导数中的距离问题】 【导数题基础练习】 【分离参数】 【构造新函数类】 【导数中的函数不等式放缩】 【导数中的卡根思想 【可使用洛必达法则】 【先构造,再赋值,证明和式或积式不等式】 【极值点偏移问题】 【极值点减元思想】 【导数解决含有x ln与x e的证明题】 【导数解决含三角函数的证明】 【高考导数真题研究】

[基础知识整合] 1、导数的定义:,)()(lim )(000 0x x f x x f x f x ?-?+='→? x x f x x f x f x ?-?+='→?) ()(lim )(0 2、导数的几何意义: 导数值)(0x f '是曲线)(x f y =上点))(,(00x f x 处的切线的斜率 3、常见函数的导数: ;sin )(cos ;cos )(sin );()(;01x x x x Q n nx x C n n -='='∈='='- ;)(;log 1 )(log ;1)(ln x x a a e e e x x x x ='='= ' ;ln )(a a a x x =' 4、导数的四则运算:[])()(;)(;)(;)(2 x u k x ku v u v v u v u u v v u uv v u v u '=' '+'=''+'=''±'='±; 5、复合函数的导数:[])()())((x u f x f ??'?'=' 6、导函数与单调性: 求增区间,解0)(>'x f ; 求减区间,解0)(<'x f 若函数)(x f 在区间),(b a 上是增函数0)(≥'?x f 在),(b a 上恒成立; 若函数)(x f 在区间),(b a 上是减函数0)(≤'?x f 在),(b a 上恒成立; 若函数)(x f 在区间),(b a 上存在增区间0)(>'?x f 在),(b a 上成立; 若函数)(x f 在区间),(b a 上存在减区间0)(<'?x f 在),(b a 上成立. 7、导函数与极最值: 确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题: 强化变形技巧、巧妙构造函数、一定要多记题型,总结方法

(word完整版)高二导数讲义

导数 【知识归纳】 1、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+) ()(00。如果当0 →?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作 f’(x 0)或y’|0x x =。 即f (x 0)=0 lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在 点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率 x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f / (x 0)(x -x 0)。 3、几种常见函数的导数: ①0;C '= ②()1 ;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 4、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)' ' ' v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)(' ' ' uv v u uv += 若C 为常数,' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积再除以分母的平方:?? ? ??v u ‘=2 ''v uv v u -(v ≠0)。

高中数学全套讲义 选修1-1 导数概念中挡 学生版

目录 目录 (1) 考点一导数的概念 (2) 题型1 变化的快慢和变化率 (2) 题型2 导数的概念 (4) 考点二导数的几何意义 (4) 题型3 有关斜率的判断与计算 (4) 课后综合巩固练习 (5)

考点一 导数的概念 1.平均变化率:已知函数()y f x =在点0x x =及其附近有定义, 令0x x x ?=-,0000()()()()y y y f x f x f x x f x ?=-=-=+?-,则当0 x ?≠时,比值00()()f x x f x y x x +?-?= ??叫做函数()y f x =在0x 到0x x +?之间的平均变化率. 2.瞬时变化率:如果当x ?趋近于0时,平均变化率00()() f x x f x x +?-?趋近于一个常数l ,则 数l 称为函数()f x 在点0x 的瞬时变化率. 可用符号记为:当0x ?→时,00()() f x x f x l x +?-→?. 还可以说:当0x ?→时,函数平均变化率的极限等于函数在0x 的瞬时变化 率l ,记作:000()() lim x f x x f x l x ?→+?-=?. 3.导数:函数在0x 的瞬时变化率,通常就定义为()f x 在0x x =处的导数.并记作()0f x '0 |x x y ='可以写为:0000()() lim ()x f x x f x f x x ?→+?-'=?. 4.导函数:如果()f x 在开区间()a b ,内每一点x 导数都存在,则称()f x 在区间()a b ,可导, 这样,对于开区间()a b ,内的每个值x ,都对应一个确定的导数()f x ',于是在区间()a b , 内构成一个新的函数,我们把这个函数称为函数()y f x =的导函数,记为()f x '.导函数通常简称为导数,今后,如不特别指明求某一点的导数,求导数指的就是求导函数. 题型1 变化的快慢和变化率 1.(2018春?菏泽期中)已知函数()y f x =,其导函数()y f x '=的图象如图,则对于函数 ()y f x =的描述正确的是( ) A .在(,0)-∞上为减函数 B .在0x =处取得最大值 C .在(4,)+∞上为减函数 D .在2x =处取得最小值 2.(2019春?韩城市期末)设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x ='的图象可能为( )

(word完整版)高中数学导数练习题(分类练习)讲义

导数专题 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22 y x =+,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1 (1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线32 242y x x x =--+在点(1 3)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(1 3)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在() 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴ 2632302 0020+-=+-x x x x , 整理得:03200=-x x ,解得:2 3 0=x 或00=x (舍),此时,830- =y ,41-=k 。所以,直线l 的方程为x y 4 1 -=,切点坐标是?? ? ??-83,23。 答案:直线l 的方程为x y 41- =,切点坐标是?? ? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在 R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。

高三数学导数基础讲义教案

高三数学导数基础讲义教案 二、考试要求 ⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。 ⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, log x的导数)。掌 a 握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。 ⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。 三、复习目标 1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念. x的导数)。 2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, log a 掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。 四、双基透视 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 5.瞬时速度

[实用参考]导数讲义(学生版).doc

导数 一、导数的概念 函数P=f(G),如果自变量G 在G 0处有增量x ?,那么函数P 相应地有增量y ?=f (G 0+x ?)-f (G 0),比值x y ??叫做函数P=f (G )在G 0到G 0+x ?之间的平均变 化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们就说函 数P=f(G)在点G 0处可导,并把这个极限叫做f (G )在点G 0处的导数,记作f ’ (G 0)或P ’|0x x =。f ’(G 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 例、若k x x f x x f x =?-?+→?)()(lim 000,则x x f x x f x ?-??+→?) ()2(lim 000等于() A .k 2B .k C .k 2 1 D .以上都不是 变式训练:设函数)(x f 在点0x 处可导,试求下列各极限的值. 1.x x f x x f x ?-?-→?) ()(lim 000; 2..2) ()(lim 000h h x f h x f h --+→ 3.若2)(0='x f ,则k x f k x f k 2) ()(lim 000--→=? 二、导数的几何意义 函数P=f (G )在点G 0处的导数的几何意义是曲线P=f (G )在点p (G 0,f (G 0)) 处的切线的斜率。也就是说,曲线P=f (G )在点p (G 0,f (G 0))处的切线的斜率是f ’(G 0)。 切线方程为P -P 0=f /(G 0)(G -G 0)。 三、导数的运算 1.基本函数的导数公式: ①0;C '=(C 为常数) ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1 ln x x '=; ⑧()1 l g log a a o x e x '=. 习题:求下列函数的导数:(8分钟独立完成) (1)()f x π=(2)4()f x x =(3)()f x =4)()sin f x x =

高中数学竞赛教材讲义第十四章极限与导数讲义

第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为 )(lim ),(lim x f x f x x -∞ →+∞ →,另外)(lim 0 x f x x + →=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x - →表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导, 此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x) 在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1)'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7) )'(log x a x x a log 1= ;(8).1 )'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3) )(')]'([x u c x cu ?=(c 为常数);(4) ) () (']')(1[2x u x u x u -=;(5))()()(')(')(]')()([2x u x v x u x v x u x u x u -=。

高中数学导数讲义之定积分

第一部分 定积分的概念 问题一 曲边梯形的面积 如图,阴影部分类似于一个梯形,但有一边是曲线()y f x =的一段, 我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形 称为曲边梯形.如何计算这个曲边梯形的面积? 例如:求由抛物线2 y x =,直线1=x 以及x 轴所围成的平面图形的面积S 。 ★求曲边梯形面积的四个步骤:第一步:分割.第二步:近似代替。第三步:求和.第四步:取极限。 (说明:最后所得曲边形的面积不是近似值,而是真实值) 问题二 汽车行驶的路程 汽车以速度v 组匀速直线运动时,经过时间t 所行驶的路程为S vt =.如果汽车作变速直线运动,在时刻t 的速度为()2 2v t t =-+(单位:km/h ),那么它在0≤t ≤1(单位:h)这段时间内行驶的路程S (单位:km ) 是多少? 问题三 定积分的概念 : 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,在每个小区间 []1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:()()i n i n i i f n a b x f ξξ∑ ∑==-=??1 1 当n →+∞)时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分。记为: ()b a f x dx ? 即 ()b a f x dx ? =()i n i n f n a b ξ∑ =∞ →-1 lim 其中函数()f x 叫做 ,x 叫做 变量,区间[,]a b 为 区间,b 积分 ,a 积分 。 说明:(1)定积分 ()b a f x dx ? 是一个常数 (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? (3)曲边图形面积:()b a S f x dx = ? ;变速运动路程2 1 ()t t S v t dt =? ☆定积分的几何意义 从几何上看,如果在区间[a,b]上的函数()f x 连续且恒有()0f x ≥。那么定积分 ()b a f x dx ? 表示由直 线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积。 ☆定积分的性质

(完整word版)导数讲义(学生新版)

导数 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即 x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们就说函 数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y ’|0x x =。f ’(x 0)=0 lim →?x x y ??=0 lim →?x x x f x x f ?-?+)()(00。 例、 若k x x f x x f x =?-?+→?)()(lim 000,则x x f x x f x ?-??+→?) ()2(lim 000等于( ) A .k 2 B .k C .k 2 1 D .以上都不是 变式训练: 设函数)(x f 在点0x 处可导,试求下列各极限的值. 1.x x f x x f x ?-?-→?) ()(lim 000; 2..2) ()(lim 000h h x f h x f h --+→ 3.若2)(0='x f ,则k x f k x f k 2) ()(lim 000--→=? 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f ’(x 0)。 切线方程为y -y 0=f /(x 0)(x -x 0)。 三、导数的运算 1.基本函数的导数公式: ①0;C '=(C 为常数)

最新高中数学选修1-1《导数及其应用》知识点讲义

第三章 导数及其应用 1 一、变化率与导数 2 ()()()()()()()() 000000000000000 10,0lim lim lim . x x x x x y f x x x x x y y x x x x x y x x f x x f x y x x y x x f x y f x x f x f x x ?→?→=?→==??≠??+???→=+?-?=??=+?-=?'''、定义:设在处取得一个增量. 函数值也得到一个增量称 为从到的平均变化率.若当时时,有极限存在,则称此极限值为函数在处的瞬时变化率,记为,也称为函 数在处的导数,记作或, 即 3 4 ()0y f x x x ==说明:导数即为函数在处的瞬时变化率. 5 6 7 ()()00. PT x f x P PT f x k ?→='2、几何意义:时,Q 沿图像无限趋近于点时,切线的斜率.即 8 9 ()()()()003==lim lim . x x f x x f x y y f x y f x y x x ?→?→+?-?==??''''、导函数(简称为导数)称为导函数,记作,即 10 二、常见函数的导数公式 11 1若()f x c =(c 为常数),则()0f x '=; 12 2 若()f x x α=,则1()f x x αα-'=; 13 3 若()sin f x x =,则()cos f x x '= 14 4 若()cos f x x =,则()sin f x x '=-; 15 5 若()x f x a =,则()ln x f x a a '= 16 6 若()x f x e =,则()x f x e '= 17

高中数学导数讲义之函数求导

第一部分 函数求导 一、导数定义 1. 简单函数的定义求导的方法(一差、二比、三取极限) (1)求函数的增量)()(00x f x x f y -?+=?; (2)求平均变化率 x x f x x f x y ?-?+=??)()(00。 (3)取极限求导数=)(0'x f x x f x x f x ?-?+→?)()(lim 000 2.导数与导函数的关系:特殊与一般的关系。函数在某一点)(0'x f 的导数就是导函数)(x f ,当0x x =时的函数值。 3.常用的导数公式及求导法则: (1)公式 (2)法则: 二、例: (1)()324y x x =- (2)sin x y x = (3)3cos 4sin y x x =- (4)()223y x =+ (5)()ln 2y x =+ 第二部分 复合函数的导数 一、基本公式:如果函数)(x ?在点x 处可导,函数f (u )在点u=)(x ?处可导,则复合函数y= f (u )=f [)(x ?]在点x 处也可导,并且 (f [)(x ?])ˊ= [])(x f ?')(x ?' 或记作 x y '=u y '?x u ' 二、例题: 例1求下列函数的导数 4)31(1x y -= x y 23-= 51x x y -= 例2求下列函数的导数 (1)y=ln (x +21x +) (2)22()(32)sin 3f x x x x =-+g (3) ()ln(ln(ln ))f x x = (4) y=x 21-cos x 三、求下函数的导数. 1、(1)cos 3 x y = (2)y =2、(1)y =(5x -3)4 (2)y =(2+3x )5 (3)y =(2-x 2)3 (4)y =(2x 3+x )2 3、(1)y =32)12(1-x (2)y =41 31+x (3)y =sin(3x -6π) (4)y =cos(1+x 2) 4、⑴32)2(x y -=; ⑵2sin x y =;⑶)4 cos(x y -=π ; ⑷)13sin(ln -=x y . 5、 (1) y =sin x 3+sin 33x ; (2)1 22sin -= x x y (3))2(log 2-x a (4))132ln(2++x x 导数的应用一 求切线方程

高中数学导数讲义完整版

高中数学导数讲义完整版 第一部分 导数的背景 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? (2 2 1gt s =,其中g 是重力加速度). 2. 切线的斜率 问题2:P (1,1)是曲线2 x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况. 3. 边际成本 问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2 +=q q C ,我们来研究当q =50时,产量变化q ?对成本的影响. 二、小结: 瞬时速度是平均速度 t s ??当t ?趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率x y ??当x ?趋近于0时的极限;边际成本是平均成本 q C ??当q ?趋近于0时的极限. 三、练习与作业: 1. 某物体的运动方程为2 5)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线2 2x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522 +=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2 t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线2 2 1x y = 在(1,21)处是否有切线,如果有,求出切线的方程. 6. 已知成本C 与产量q 的函数关系为742 +=q C ,求当产量q =30时的边际成本.

导数综合讲义(教师版).pdf

导数综合讲义 第1讲导数的计算与几何意义 (3) 第2讲函数图像 (4) 第3讲三次函数 (7) 第4讲导数与单调性 (8) 第5讲导数与极最值 (9) 第6讲导数与零点 (10) 第7讲导数中的恒成立与存在性问题 (11) 第8讲原函数导函数混合还原(构造函数解不等式) (13) 第9讲导数中的距离问题 (17) 第10讲导数解答题 (18) 10.1 导数基础练习题 (21) 10.2 分离参数类 (24) 10.3 构造新函数类 (26) 10.4 导数中的函数不等式放缩 (29) 10.5 导数中的卡根思想 (30) 10.6 洛必达法则应用 (32) 10.7 先构造,再赋值,证明和式或积式不等式 (33) 10.8 极值点偏移问题 (35) 10.9 多元变量消元思想 (37) 10.10 导数解决含有ln x与e x的证明题(凹凸反转) (39) 10.11 导数解决含三角函数式的证明 (40) 10.12 隐零点问题 (42) 10.13 端点效应 (44) 10.14 其它省市高考导数真题研究 (45)

导数 【高考命题规律】 2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高考考查了导数判断函数的单调性,含参零点的分类讨论。近四年的高考试题基本形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。预测 2018 年高考导数大题以对数函数、指数函数、反比例函数以及一次函数、二次函数中的两个或三个为背景,组合成一个函数,考查利用导数研究函数的单调性与极值及切线,不等 式结合考查恒成立问题,另外 2016 年全国卷 1 理考查了极值点偏移问题,这一变化趋势应引起考生注意。 【基础知识整合】 1、导数的定义: f ' (x ) = lim f (x 0 + ?x ) - f (x 0 ) , f ' (x ) = lim f (x + ?x ) - f (x ) 0 ?x →0 ?x ?x →0 ?x 2、导数的几何意义:导数值 f ' (x ) 是曲线 y = f (x ) 上点 (x , f (x )) 处切线的斜率 3、常见函数的导数: C ' = 0 ; (x n )' = nx n -1 ; (sin x )' = cos x ; (cos x )' = -sin x ; (ln x )' = 1x ; (log a x )' = x ln 1 a ; (e x )' = e x ; (a x )' = a x ln a 4、导数的四则运算: (u ± v )' = u ' ± v ' ;; (u ?v )' = u ' v + v ' u ; (u )' = u 'v -2 v 'u v v 5、复合函数的单调性: f ' x (g (x )) = f ' (u )g ' (x ) 6、导函数与单调性:求增区间,解 f ' (x ) > 0 ;求减区间,解 f ' (x ) < 0 若函数在 f (x ) 在区间 (a , b ) 上是增函数 ? f ' (x ) ≥ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上是减函数 ? f ' (x ) ≤ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在增区间 ? f ' (x ) > 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在减区间 ? f ' (x ) < 0 在 (a , b ) 上恒成立; 7、导函数与极值、最值:确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题:强化变形技巧、巧妙构造函数、一定要多练记题型,总结方法

高中数学 极限与导数【讲义】

极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|< ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞ →,另外)(lim 0 x f x x + →=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x - →表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, 0 lim x x →[f(x)?g(x)]=ab, lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导,此极限值称为f(x)在 点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即0 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知 f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1)'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1 =;(8).1 )'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3))(')]'([x u c x cu ?=(c 为常数);(4))()(']')(1[ 2x u x u x u -=;(5)) () ()(')(')(]')()([2x u x v x u x v x u x u x u -=。 8.复合函数求导法:设函数y=f(u),u=?(x),已知?(x)在x 处可导,f(u)在对应的点u(u=?(x))处可导,则复合函数y=f[?(x)]在点x 处可导,且(f[?(x)])'=)(')](['x x f ??. 9.导数与函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有0)('>x f ,则f(x)在(a,b)单调递增;(3)若对一切x ∈(a,b)有0)('

2016高考数学专题-导数讲义doc

导数知识要点 一、导数与积分 1. 导数 设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数 )(x f Y =相应地有增量)()(00x f x x f y -?+=?,如果0→?x 时,y ?与x ?的比 x y ??有极限(即 x y ??无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作)(0/ x f 或0 / x x y = 即 x x f x x f x y x f x x ?-?+=??=→?→?) ()(lim lim )(0000 0/ 注:当x ?趋近于0时,x 趋近于0x 0000/) ()(lim )()(lim )(0x x x f x f x x f x x f x f x x o x --=?-?+=→→? 2. 导函数 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作)(/ x f 或/ y 即 )(/ x f =/ y =x x f x x f x y x x ?-?+=??→?→?) ()(lim lim 00 注:导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。它们之间的关系是函数)(x f y =在点0x 处的导数就是导函数)(/ x f 在点0x 的函数值。 3. 导数的几何意义 函数)(x f 在0x x =处的导数就是曲线)(x f y =在点))(,(00x f x 处的切线的斜率,因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为

最新高中数学导数专题讲义(答案版)

导数专题讲座内容汇总 目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (52) 导数专题四、零点问题 (76) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (168) 导数专题七、特殊值法判定超越函数的零点问题 (187) 导数专题八、避免分类讨论的参变分离和变换主元 (198) 导数专题九、公切线解决导数中零点问题 (211) 导数专题十、极值点偏移问题 (216) 导数专题十一、构造函数解决导数问题 (224)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论,讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域); 第四步、(列表)根据第五步的草图列出()'f x ,()f x 随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为或恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较; ()0f x '≥()0f x '≤

导数复习讲义

高中数学复习讲义 第十二章 导数及其应用 【知识图解】 【方法点拨】 导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。 1.重视导数的实际背景。导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。 2.深刻理解导数概念。概念是根本,是所有性质的基础,有些问题可以直接用定义解决。在理解定义时,要注意“函数()f x 在点0x 处的导数0()f x '”与“函数()f x 在开区间(,)a b 内的导数()f x '”之间的区别与联系。 3.强化导数在函数问题中的应用意识。导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。 4.重视“数形结合”的渗透,强调“几何直观”。在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。 5.加强“导数”的实践应用。导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。 6.(理科用)理解和体会“定积分”的实践应用。定积分也是解决实际问题(主要是几何和物理问题)的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速

直线运动的路程和变力作的功等,逐步体验微积分基本定理。 第1课 导数的概念及运算 【考点导读】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等); 2.掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念; 3.熟记基本导数公式; 4.掌握两个函数和、差、积、商的求导法则; 5.了解复合函数的求导法则.会求某些简单函数的导数.(理科) 【基础练习】 1.设函数f (x )在x =x 0处可导,则0 lim →h h x f h x f ) ()(00-+与x 0,h 的关系是 仅与x 0有关而 与h 无关 。 2.已知)1()('23f x x x f +=, 则=)2(' f 0 。 3.已知),(,cos 1sin ππ-∈+= x x x y ,则当2'=y 时,=x 3 2π ± 。 4.已知a x x a x f =)(,则=)1(' f 2ln a a a +。 5.已知两曲线ax x y +=3和c bx x y ++=2 都经过点P (1,2),且在点P 处有公切线,试求 a,b,c 值。 解:因为点P (1,2)在曲线ax x y +=3 上,1=∴a 函数ax x y +=3和c bx x y ++=2 的导数分别为a x y +='23和b x y +='2,且在点P 处有 公切数 b a +?=+?∴12132,得b=2 又由c +?+=12122,得1-=c 【范例导析】 例1.下列函数的导数: ①2(1)(231)y x x x =++- ②y = ③()(cos sin )x f x e x x =?+ 分析:利用导数的四则运算求导数。 解:①法一:13232223-++-+=x x x x x y 125223-++=x x x ∴ 26102y x x '=++ 法二:)132)(1()132()1(22'-+++-+'+='x x x x x x y =1322 -+x x +)1(+x )34(+x 26102x x =++ ② 2 31 2 12 332- ---+-=x x x x y

相关主题
文本预览
相关文档 最新文档