当前位置:文档之家› 水热法和溶剂热法的区别

水热法和溶剂热法的区别

水热法和溶剂热法的区别
水热法和溶剂热法的区别

溶剂热法是在水热法的基础上发展起来的,指密闭体系如高压釜内,以有机物或非水溶媒为溶剂,在一定的温度和溶液的自生压力下,原始混合物进行反应的一种合成方法。它与水热反应的不同之处在于所使用的溶剂为有机物而不是水。水热法往往只适用于氧化物功能材料或少数一些对水不敏感的硫属化合物的制备与处理,涉及到一些对水敏感(与水反应、水解、分解或不稳定)的化合物如Ⅲ一V族半导体、碳化物、氟化物、新型磷(砷)酸盐分子筛三维骨架结构材料的制备与处理就不适用,这也就促进了溶剂热法的产生和发展。

另外,物相的形成、粒径的大小、形态也能够控制,而且,产物的分散性较好。在溶剂热条件下,溶剂的性质(密度、粘度、分散作用)相互影响,变化很大,且其性质与通常条件下相差很大,相应的,反应物(通常是固体)的溶解、分散过及化学反应活性大大的提高或增强。这就使得反应能够在较低的温度下发生。

水热法(Hydrothermal)是19 世纪中叶地质学家模拟自然界成矿作用而开始研究的。1900 年后科学家们建立了水热合成理水热法论,以后又开始转向功能材料的研究。目前用水热法已制备出百余种晶体。水热法又称热液法,属液相化学法的范畴。是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。其中水热结晶用得最多。在这里简单介绍一下它的原理: 水热结晶主要是溶解———再结晶机理。首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。利用强烈对流(釜内上下部分的温度差而在釜内溶液产生) 将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区) 形成过饱和溶液,继而结晶。

溶剂热法(Solvothermal)是将反应物按一定比例加入溶剂,然后放到高压釜中以相对较低的温度反应。在这种方法中,溶剂处在高于其临界点的温度和压力下,可以溶解绝大多数物质,从而使常规条件下不能发生的反应可以进行,或加速进行。溶剂的作用还在于它可以在反应过程中控制晶体的生长,实验证明使用不同的溶剂可以得到不同形貌的产品。另外此方法还具有能耗低、团聚少、颗粒形状可控等优点。该方法的不足之处是产率较低、产品的纯度不够,并且在产品尺寸和形貌的均一程度上不尽如人意。

水热一般对材料的性能不会造成负面的影响,但溶剂热由于溶剂的不同,对材料性能的影响一般来说比较大。不过溶剂热做出的材料得到更好的形貌的可能性要比水热大一些!

水热是的溶剂是水,而溶剂热的溶剂是甲醇,乙醇等非水类的

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

水热法合成二氧化钛及研究进展

水热法合成二氧化钛及研究进展 摘要:水热法合成了不同晶型、形貌、大小和研定形貌的二氧化钛。究了pH值、水热反应温度和水热反应时间对纳米二氧化钛晶型、形貌和晶粒尺寸的影响,对TiO2晶形影响光催化活性的原因进行了探讨。同时从二氧化钛水解制氢、废水处理、空气净化、抗菌、除臭方面介绍了纳米二氧化钛在环境治理方面的应用和发展趋势,并对纳米二氧化钛的制备方法与应用作出展望。 关键词:二氧化钛;晶型;水热法;光催化;制备;应用 纳米二氧化钛(TiO2)具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能。纳米TiO2是一种重要的无机功能材料, 可应用于随角异色涂料、屏蔽紫外线、光电转换、光催化等领域,在光催化领域环境治理方面具有举足轻重的地位,可应用在环保中的各个领域,它在环境污染治理中将日益受到人们的重视,具有广阔的应用前景,因此制备高光催化性能的纳米TiO2,拓展纳米二氧化钛的应用也是学者研究的重点。水热法合成纳米TiO2粉体具有晶粒发育完整、粒径分布均匀、不需作高温煅烧处理、颗粒团聚程度较轻的特点。 1.TiO2的制备方法、材料的性能 1.1不同晶型纳米二氧化钛的水热合成 1.1.1实验方法 边搅拌边将2mol·L- 1的四氯化钛水溶液缓慢滴加到115mol·L- 1的氢氧化钠水溶液中,保持30℃反应,生成纳米TiO2前驱体,反应终点的pH值分别控制为110、310、510、810、1110、1210。把纳米TiO2前驱体装入内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,120℃~200℃反应1h~48h,反应结束后,冷却至室温,产物经过滤和蒸馏水洗至滤液中无Cl-,在100℃下鼓风干燥10h,粉碎后得到不同结构的纳米TiO2 粉体。选择不同的特征峰(金红石型选110面、锐钛矿型选101面,板钛矿型选121面),根据特征衍射峰的半高宽,利用Scherrer 公式展宽法估算出其晶粒尺寸。 1.1.2研究与开发 1.1. 2.1pH值对纳米TiO2晶型和形貌的影响 在水热反应温度为200 ℃和水热反应时间24 h的条件下。当pH = 1.0时,产

水热法和溶剂热法的区别

溶剂热法是在水热法的基础上发展起来的,指密闭体系如高压釜内,以有机物或非水溶媒为溶剂,在一定的温度和溶液的自生压力下,原始混合物进行反应的一种合成方法。它与水热反应的不同之处在于所使用的溶剂为有机物而不是水。水热法往往只适用于氧化物功能材料或少数一些对水不敏感的硫属化合物的制备与处理,涉及到一些对水敏感(与水反应、水解、分解或不稳定)的化合物如Ⅲ一V族半导体、碳化物、氟化物、新型磷(砷)酸盐分子筛三维骨架结构材料的制备与处理就不适用,这也就促进了溶剂热法的产生和发展。 为有机溶剂而不是水。在溶剂热反应中,通过把一种或几种前驱体溶 的比较活泼,反应发生,产物缓慢生成。该过程相对简单而且易于控

制,并且在密闭体系中可以有效的防止有毒物质的挥发和制备对空气敏感的前驱体。 另外,物相的形成、粒径的大小、形态也能够控制,而且,产物的分散性较好。在溶剂热条件下,溶剂的性质(密度、粘度、分散作用)相互影响,变化很大,且其性质与通常条件下相差很大,相应的,反应物(通常是固体)的溶解、分散过及化学反应活性大大的提高或增强。这就使得反应能够在较低的温度下发生。 水热法(Hydrothermal)是19 世纪中叶地质学家模拟自然界成矿作用而开始研究的。1900 年后科学家们建立了水热合成理水热法论,以后又开始转向功能材料的研究。目前用水热法已制备出百余种晶体。水热法又称热液法,属液相化学法的范畴。是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。其中水热结晶用得最多。在这里简单介绍一下它的原理: 水热结晶主要是溶解———再结晶机理。首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。利用强烈对流(釜内上下部分的温度差而在釜内溶液产生) 将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区) 形成过饱和溶液,继而结晶。溶剂热法(Solvothermal)是将反应物按一定比例加入溶剂,然后放到高压釜中以相对较低的温度反应。在这种方法中,溶剂处在高于其临界点的温度和压力下,可以溶解绝大多数物质,从而使常规条件下不能发生的反应可以进行,或加速进行。溶剂的作用还在于它可以在

水热法制备石墨烯TiO2催化剂

水热法制备石墨烯/TiO2催化剂 2.1 水热法制备石墨烯/TiO2 2.1.1实验准备 主要试剂:天然石墨粉(含碳量90.0%~99.9%,国药集团化学试剂有限公司),双氧水(浓度≥30%,分析纯A.R,上海桃浦化工厂),过硫酸钾(分析纯A.R,天津市科密欧化学试剂有限公司),五氧化二磷(分析纯A.R,天津市光复科技有限公司),浓硫酸(质量分数95%~98%,分析纯A.R,白银化学试剂厂),浓盐酸(质量分数36%~38%,分析纯A.R,成都市科龙化工试剂厂),三氯化钛(质量分数15%,分析纯A.R,国药集团化学试剂有限公司),去离子水,无水乙醇(分析纯A.R,烟台市双双化工有限公司),高锰酸钾(分析纯A.R,成都市科龙化工试剂厂)。 仪器:85-2型恒温磁力搅拌器(上海司乐仪有限公司),电子天平(上海越平科学仪器有限公司),电热鼓风干燥箱(上海一恒科学仪器有限公司),KH-100B 型超声波清洗器(昆山禾创超声仪器有限公司),离心机(安徽中科中佳科学仪器有限公司)。 2.1.2实验过程 (1)氧化石墨烯的制备 氧化石墨烯是通过修正后的Hummer法合成。具体步骤如下: 浓硫酸50ml加入300ml烧杯,升温加热到90度;过硫酸钾10g,五氧化二磷10g加入烧杯中,磁力搅拌至完全溶解;溶液冷却到80度,向其中加入12g 石墨粉;混合物在80度保持4.5h后用2L水稀释,过滤纸过滤,清洗去除酸;过滤并真空干燥;将400ml浓硫酸加入到2L的烧杯,冷却到0度(冰水浴),再将预氧化的石墨加入。称取高锰酸钾60g缓慢加入使温度不高于10度;加热到35度,2h后将920ml的水加入,搅拌2h,向其中加入2.8L水,再加50ml 左右的过氧化氢,溶液变成亮黄色;放置一天,移出上清液,剩余的溶液用5升10%的HCl和5L去离子水离心清洗;清洗后的氧化石墨烯溶液透析两个星期,去除其他金属离子;将透析好的溶液冷冻干燥备用。 (2)石墨烯/TiO2复合催化剂的制备 称取7mg 氧化石墨烯加入20ml去离子水中,超声分散20min得到溶液A;将2mL的15wt% TiCl3加入到20ml不同浓度(本实验中分别选取0.5mol/L、

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

水热合成法在制备纳米材料中的应用

水热合成法在纳米材料制备中的研究进展和应用 化学1401班1412010121 周钰坤 (沈阳化工大学应用化学学院,辽宁沈阳110142) 摘要:纳米材料的制备是近年来的研究热点之一。其中水热合成法制备纳米颗粒的方法由于其独特的优良性能被广泛应用。本文综述了水热合成的分类,特点,装置,应用研究现状与进展,分析了水热合成法存在的问题和发展方向。 关键词:水热合成纳米材料溶剂热合成 Research Progress and Application of Hydrothermal Synthesis for Preparing Nanomaterial Yukun Zhou (School of Applied Chemistry ,Shenyang University of Chemical and Technology,Shenyang, 100142 Liaoning) Abstract:Preparation of nanomaterial is one of the hottest research in recent years. Hydrothermal synthesis is widely used to prepare nanomaterial due to its unique and excellent performance. The catalogue ,characteristicand its research and development were widely reviewed based on a large number of documents .The problem existing in its using and the development directions were also analysed in this paper . Key words : hydrothermal synthesis nanomaterial solvothermalsynthesis 纳米材料狭义上指的是至少有一维在1-100纳米范围内的材料,广义上讲,纳米材料是指具有纳米小尺寸效应的材料。由于纳米材料有常规材料不具备的特性,制备成为近几十年来的研究热点。水热法收到了很多学者的青睐。 水热法是指将反应物放置在高压反应釜中,用水作溶剂,对反应物进行高温加热和加压,使得在正常情况下难溶或者不溶于水的物质溶解并参与反应的方法。 1、水热法的分类 按照设备分类分为:“普通水热法”和“特殊水热法”。特殊水热法是指在“普通水热法”的基础上,加上外加力场,如微波场,电场和磁场等等。 按照温度分类,分为低温水热法和超临界水热法。低温水热法温度范围在100-250℃之间。超临界水热法指的是在水的临界点(374℃,22.1MPa)下进行反应。 2、水热法的特点 在高温高压下,水的物理化学性质发生改变,比如,粘度下降,溶解度增强等等。这都可以促进反应物分解和加速离子反应,可以用来制备微晶和单组分和多组分特殊化合物粉末,克服某些高温制备不可克服的晶型转变,分解和会发的困难[1]。 水热法的优点: ①设备简单便宜,主要运用高压反应釜,容易操作,能耗低; ②水热条件下,水的粘度下降,使得传质阻力减小,扩散速率增大,反应活性提高; ③原料易得,产率较高,物相均匀,纯度高,特别适用于合成特殊结构和晶形完美的材料。

葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球 广州华南农业大学理学院09材化(2)班林勋,200930750211 引言 炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。碳微球的形状和大小显著影响着其电学性能。 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer 模型(见图1),当0.5 mol·L-1 的葡萄糖溶液在低于140 C 或反应时间小于1h 时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5 mol·L-1、160℃、3h 时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500 nm。 由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。 图1 水热法形成炭球的结构变化示意图 1 实验部分 1.1 实验仪器与试剂

葡萄糖,去离子水,95%乙醇,50mL 高压反应釜,鼓风干燥箱,电子天平,抽滤装置(有机滤膜),滤纸,玻璃棒 1.2 纳米碳球的制备 纳米碳球的制备参见文献[1]。用电子天平称取 6g 葡萄糖放入50mL 反应釜内衬(图2)中,用移液管准确移取35mL 去离子水(葡萄糖溶液的浓度为0.952 mol·L -1 )加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。设定反应条件为:温度 180?C ,反应时间 4~12 h 。待反应结束后,降至室温,取出反应釜,将釜内黑褐色溶液抽滤(用40 um 有机滤膜),并及时清洗反应釜内衬,抽滤时用去离子水和 95% 乙醇清洗至滤液为无色。将样品用滤纸包好放入干燥箱中70℃干燥 4h 。收集样品,称重并计算产率。 图2 反应釜实物与结构示意图 1.3 纳米碳球的表征 1.3.1 X-射线衍射分析 测定所制备碳球的晶型以判断该碳球所属的类型(如普通碳还是石墨型碳) 1.3.2 红外光谱分析 测定碳球的活性官能团,表征不同制备条件下得到的碳球活性官能团变化 2 结果与讨论 2.1 实验数据 实验最终制备得到的纳米碳球的质量为 0.1255 g ,根据下列化学方程式 C 6H 12O 6 6C+6H 2O 可得产率23%.5100%4 .21255.0100%理论产率实际产率ω=?=?=

水热法制备催化剂的研究进展

水热法制备催化剂的研究进展 杨琴 201010703124 再生资源科学与技术101班 摘要:催化剂的制备是催化剂研究开发的一个重要方面,是影响催化剂性能的重要因素。本文综合概述水热法制备催化剂的技术特点,水热法制备催化剂的研究现状和进展,并介绍了水热技术与其他方法的组合与创新。 关键词:催化剂;水热技术; Research progress on the preparation of catalyst with the hydrothermal method Abstract: The preparation of catalyst is one of the most important aspects of the research and development of it, acting as an important factor showing influence on the properties of it.The article summarizes the features, research status and process of the preparation of catalyst with the hydrothermal method comprehensively and also introduces some innovation and collaboration of hydrothermal method and other techniques. Keywords: catalyst hydrothermal method. 1.引言 催化剂的制备是催化剂研究开发的一个重要方面,是影响催化剂性能的重要因素。相同组成的催化剂如果制备方法不一样,其性能可能会有很大的差别。即使是同一种制备方法,加料顺序的不同也有可能导致催化剂性能很大的不同【1】。因此,研究催化剂的制备方法具有极为重要的意义。目前催化剂的制备方法有浸渍法、沉淀法、溶胶—凝胶法、微乳液法、水热合成方法等,此外还有一些其他的制备方法(混合法、离子交换法、熔融法等)。其中水热法合成A型分子筛,纳米氧化物催化剂,纳米TiO2粉体等十分引人注目,是很有前景的一个发展方向,现在还处在积极探索和发展的阶段,需解决的问题还不少,诸如:催化剂水热过程中各种因素的影响规律,水热过程的机制和动力学研究,有机溶剂介质中的水热研究还不多,水热反应设备的大型化,水热法制备的催化剂活性评价工作还很不够,水热制备技术的放大和工业化报道很少等等【2】。但是,近几年的研究表明,水热法制备催化剂已经慢慢受到关注,尤其是水热法制备高活性和超高活性TiO2已引起研究者的高度重视,估计在未来10-20年间,以上存在的问题将会得到圆满解决,使水热法成为有前景的纳米催化剂合成技术之一。 2.水热法的特点及其反应机理 “水热”一词最早是在研究地壳热液演化时使用的,地质学中用来描述水在温度和压力共同作用下的自然过程,模拟地层下的水热条件研究某些矿物和岩石的形成原因,系统的水热研究是由华盛顿地球物理实验室进行的,通过对水热

课程设计报告水热法制备超细二氧化钛粉体

目录

水热法制备超细二氧化钛粉体 1.1 超细二氧化钛粉体的性能 超微粉体由于粒度小、比表面积大、化学反应活性高而具有一系列特殊的性能,引起了人们的普遍关注,目前已开发出多种微粉体材料。二氧化钛微粉体的制备报道不多。二氧化钛微粉体具有良好的耐候性、耐化学腐蚀性、抗紫外线能力强、透明性优异、粒度分布均匀等特点,可用于紫外线吸收剂、化妆品原料、包装材料、涂料、精细陶瓷等行业。二氧化钛是一种价格便宜且应用极广的材料,制备简单并且无毒、稳定,且抗腐蚀性能好。日本钛工业公司和日本帝国公司相继开发了超细二氧化钛,已进行工业化生产,并把开发二氧化钛微粉体新产品列为重要课题之一[1 2]。 1.2 超细二氧化钛粉体的应用 工业作用 二氧化钛是世界上白色粉体,l克二氧化钛可以把450多平方厘米的面积涂得雪白。它比常用的白颜料一—锌钡白还要白5倍,因此是调制白油漆的最好颜料。世界上用作颜料的二氧化钛,一年多到几十万吨。二氧化钛可以加在纸里,使纸变白并且不透明,效果比其他物质大10倍,因此,钞票纸和美术品用纸就要加二氧化钛。 为了使塑料的颜色变浅,使人造丝光泽柔和,有时也要添加二氧化钛。 在橡胶工业上,二氧化钛还被用作为白色橡胶的填料。 半导体二氧化钛的光化学性能已使其可用于许多领域,如空气、水和流体的净化。以碳或其他杂原子掺杂的光催化剂也可用于具有散射光源的密封空间或区域。用于建筑、人行石板、混凝土墙或屋顶瓦上的涂料中时,它们可以明显增加对空气中污染物如氮氧化物、芳烃和醛类的分解。 此外还广泛应用于生产防晒霜,无毒性,对人体无害。 超细二氧化钛具有优异紫外光屏蔽性和透明性。被广泛用在化妆品、木器保护、食品包装塑料、耐久性家用薄膜、人造纤维和天然纤维、透明涂料中。在金属闪光涂料中的特殊光学效应,使之在高级轿车漆中得到重视和应用。[2] TiO2粉体的制备作为一种21世纪的新型多功能材料,广泛应用于环境保护、化妆品、涂料、特殊材料的制备以及医药等方面。

水热法制备纳米二氧化钛

水热法制备纳米二氧化钛 一、实验目的 1、了解水热法制备纳米二氧化钛的原理、方法和操作 2、掌握根据实验原理选择实验装置的一般方法。 二、实验原理 TiO2,在自然界中存在三种晶体结构。金红石型、锐钛矿型和板钛矿型,其中金红石型和锐钛矿型。TiO2 矿型光催化活性最佳 二氧化钛的用途极为广泛,目前已经用于化工、环保、医药卫生、电子工业等领域。纳米二氧化钛具有良好的紫外线吸收能力,且具有很好的光催化作用,因而可以用做织物的抗紫外和抗菌的整理剂。 纳米二氧化钛制备原理如下: Ti(OC4H9)4+2H2O → TiO2+4C4H9OH 可分为两个独立的反应,即:Ti(OC4H9)4+xH2O →Ti(OC4H9)4-xOHx+xC4H9OH Ti(OC4H9)4-xOHx+Ti(OC4H9)4 → (OC4H9)4-xTiOxTi(OC4H9)4-x+x C4H9OH ,当x=4时水解完全,反应为可逆反应,因此在反应过程中保持足够量的水保证醇盐水解完全。 三、主要仪器与药品 1、仪器 60ml250ml100ml量 筒电子分 析天平, pH试纸。

2、试剂 钛酸丁酯(化学纯); 二乙醇胺、十二胺(化学纯); 氨水(稀释至30)、无水乙醇(分析纯),去离子水。 四、操作步骤 在盛有0.5g表面活性剂十二胺的烧杯中加入20ml二次蒸馏水, 在磁力搅拌下使之充分溶解(可以适当加热), 然后加入氨水调节pH值至10。迅速加入钛酸丁酯溶液(Ti(OC4H9)4使Ti4+的浓度为0.25mol/L,M=340.36), 搅拌30min,生成胶状沉淀。将杯中沉淀物放入水热反应器(内衬聚四氟乙烯的不锈钢高压锅)内, 置于烘箱中,120℃加热4h,取出水热反应器自然冷却至室温。取出生成物,分别用二次蒸馏水和无水乙醇洗涤, 洗至中性。在80℃下干燥,得到二氧化钛纳米晶体,称重,计算产率。 方法二: 称取5g钛酸四丁酯(CH3CH2O)4Ti)加入到装有1.0ml二乙醇胺的干燥的小烧杯中(100ml或50ml),加20ml 四丁酯溶解后,继续搅拌1h,形成无色透明溶胶。将溶胶转移到水热反应器(内衬聚四氟乙烯的不锈钢高压锅)内,置于烘箱中,180℃加热4h,取出水热反应器自然冷却至室温。取出生成物,分别用二次蒸馏水和无水乙醇洗涤,洗至中性。在80℃下干燥,得到二氧化钛纳米晶体称重,计算产率。

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a 过量浸渍法 b 等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b 多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d 超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e 浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f 导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 (3)共混合法混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 °C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-AI 2O3;用磁铁矿Fe3O4、KNO3和Al2O3咼温熔融而得。 (7)电解法用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经

洗涤、干燥和活化后即可使用 (8) 离子交换法 NaY 制 HY (9) 滚涂法和喷涂法 (10) 均相络合催化剂的固载化 (11) 金属还原法 (12) 微波法 (13) 燃烧法(高温自蔓延合成法) 常用尿素作为燃烧机 (14) 共沸蒸馏法 通过醇和水的共沸,改变沉淀的形貌、孔结构。 2、催化剂制备新技术 (1)溶胶-凝胶法(水溶液Sol-gel 法和醇盐Sol-gel 法) a 胶体凝胶法(胶溶法) 胶体凝胶法是通过金属盐或醇盐完全水解后产生无机水合金属氧化物,水 解产物与胶溶剂(酸或碱)作用形成溶胶,这种溶胶转化成凝胶是胶粒聚集在一 起构成网络,胶粒间的相互作用力是静电力(包括氢键)和范德华力。 b 聚合凝胶法(分子聚合法) 聚合凝胶法通过金属醇盐控制水解,在金属上引入 0H 基,这些溶胶转化 成凝胶时,在介质中继续缩合,靠化学键形成氧化物网络。 两种方法的区别在于加入水量的不同, 注意事项:1)水的加入量;2)醇的加入量;3)水解温度;4)胶溶剂加入量 (2)超临界技术 a 气凝胶催化剂的制备(超临界干燥) b 超临界条件下的催化反应 能够改进反应的传质、传热性能,改进产物的分离过程 c 用于因结焦、积垢和中毒 而失活催化剂的再生。 具有温度低、不发生局部过热现象的特性,从而有效地防止催化剂的 烧结失活。 (3)纳米技术 a 固相合成法 1)物理粉碎法(又称为机械研磨法或机械合金化法) 采用超细磨制备超微粒,很难使粒径小于 100 nm 。 金属醇盐 醇 水 水解 聚合 胶溶剂 解胶 陈化

实验三 液相法粉体材料的制备

实验三陶瓷粉体的制备 (液相法粉体材料的制备) [实验目的] (1)了解超细粉的基本概念及其应用 (2)了解超细粉体的液相制备方法及其实验原理 [实验原理介绍] (I)超细粉 超细粉通常是指粒径为1~100 nm的微粒子,其处于微观粒子和宏观物体之间的过渡状态。由于极细的晶粒大量处于晶界和晶粒内,缺陷的中心原子以及其本身具有的量子体积效应、量子尺寸效应、表面效应、介电限域效应和宏观量子隧道效应,使超细粉体材料在光、电、磁等方面表现出其他材料所不具备的特性,是重要的高科技的结构和功能材料,因而受到极大关注,目前在冶金、化工、轻工、电子、航天、医学和生物工程等领域有着广泛的应用。 目前,超细粉的研究主要有制备、微观结构、宏观性能和应用等四个方面,其中超细粉的制备技术是关键,因为制备工艺和过程控制对纳米微粒的微观结构和宏观性能具有重要的影响。本文将介绍超细粉体的一些主要的液相制备方法及其技术特点。 (II)超细粉体的液相制备方法 液相法制备的主要特征:(1)可将各种反应的物质溶于液体中,可以精确控制各组分的含量,并实现了原子、分子水平的精确混合; (2)容易添加微量有效成分,可制成多种成分的均一粉体;(3)合成的粉体表面活性好; (4)容易控制颗粒的形状和粒径; (5)工业化生产成本较低等。 液相法制备按原理可分为物理法和化学法。(1)物理法:将溶解度高的盐的水溶液雾化成小液滴,使其中盐类呈球状均匀地迅速析出.为了使盐类快速析出,可以采用加热蒸发或冷冻干燥等方法,最后将这些微细的粉末状盐类加热分解,即可得到氧化物微粉。主要包括超临界法和溶剂蒸发法;(2)化学法是指通过在溶液中的化学反应生成沉淀,将沉淀物加热分解,可制成纳米粉体材料,

粉体制备方法

粉体制备方法 摘要:本文列举了几种粉体制备合成方法,包括物理方法和化学方法。物理方法有粉碎法,蒸发冷凝法等,化学方法有气相合成法,液相反应法,固相合成法。同时比较了三种化学方法的优缺点,浅诉了近年来的几种物理新技术。 关键词:粉体制备合成方法物理方法化学方法优缺点新技术Abstract:This paper lists several powder preparation synthesis methods ,including physical method and chemical methods. The physical methods have comminuting method, evaporative cooling method, etc. Chemical methods include gas agree the diagnosis, liquid phase reaction methods, solid agree the diagnosis. And compares the advantages and disadvantages of the three kinds of chemical methods. Describes several new physical technologies in recent years Keywords: powder preparation synthesis methods physical methods chemical methods advantages and disadvantages new physical technologies 如今,粉体的合成制备经过多年的发展,制备合成方法已经变得各种各样按理论也可分为物理和化学方法等纳米粒子的制备方法很多,可分为物理方法和化学方法[1]。 1 物理方法 1.1 粉碎法:借用各种外力,如机械力、流能力、化学能、声能、热能等使现有的块状物料粉碎成粉体。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 粉碎法是超细粉体中最常用的方法之一,在金属、非金属、有机、无机、药材、食品、日化、农药、化工、电子、军工、航空及航天等行业广泛应用。常用的:辊压式、辊碾式、高速旋转式、球磨式、介质搅拌式、气流式粉碎机;新近开发的:液流式、射流粉碎机、超低温、超临界、超声粉碎机等。 1.2蒸发冷凝法:用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 蒸发冷凝( IGC) 法是纳米粉体制备的主要物理方法之一, 可成功应用于金属、合金、金属氧化物等多种类型纳米粉体的制备; 制备装置容易实现, 可采用多种加热方式, 如电阻加热法、等离子喷射加热法、感应加热法、电子束加热法、激光加热法等; 目前关于制备工艺的研究主要集中在对影响纳米粉体粒径的工艺参数的研究和提高纳米粉体产率的研究上, 而粉体粒径的影响因素多、产率难以明显提高也一直是制约该法发展的瓶颈; 对采用该法制备的纳米粉体的性能

水热法制备纳米材料3

水热法制备ZnO纳米棒 xxxx 一、实验目的: 1、掌握水热合成方法。 2、掌握晶体分析方法。 二、实验原理: 压强是高压釜内填充度、温度的函数,提高压强会提高成核速率,有利于粉体的产生,粉体粒径较小。根据公式 (1)P1V=nRT (1)P2=P0(2) P=P 1+P 2=nRT/V+P0(3) 式中:P1——T温度时高压釜内空气的压强; P 2——T温度时高压xx的压强; P——T温度时高压釜内的总压强; P 0——T温度时水的饱和蒸汽压; V——高压xx气体体积。 可以看出在一定的水热温度下,压强的大小依赖于反应器中的原始溶剂的填充度。反应釜内的压强随填充度增大而升高。

ZnO纳米棒的形成过程可以分为两个阶段: 第一阶段是成核阶段,第二阶段是生长阶段。具体的形成过程可以用下列反应式表示: Zn2++2OH-→Zn(OH)2(4)(CH 2) 6N 4+10H 2O →6HCHO + 4NH 3·H 2O (5) NH 3·H 2O ?NH4++OH- (6) Zn2++4NH 3→Zn(NH 3) 42+ (7)Zn(OH) 2→ZnO+H 2O (8)Zn(OH) 42-→ZnO+ H

2O+2OH- (9)当将氢氧化钠滴入含有Zn2+的水溶液中,边滴入边搅拌,溶液变浑浊,这是由于有Zn(OH) 2白色胶体生成(见反应式4),同时六次甲基四胺水解产生的氨水(见反应式5),作为螯合剂通过和Zn2+结合而形成胺化合物Zn(NH 3) 42+(见反应式7),而溶液中生成的Zn(OH) 42-为这个过程提供了条件,在这种溶液环境下,一部分的Zn(OH) 2胶体分解成Zn2+和OH-,当Zn2+和OH-的浓度大到超过某个临界值时,就会有大量的ZnO 晶核形成,那么最终的晶体生长过程就开始了(见反应式8和9)。 方法一(首选) 三、实验仪器和试剂: 1、仪器: 超声清洗机,烧杯,水热合成反应釜,鼓风干燥箱,XRD衍射仪,扫描电子显微镜,紫外可见分光光度计。 2、试剂: 铜衬底,丙酮,无水乙醇(C 2H 5OH,分析纯),去离子水,硫酸锌(ZnSO 4·7H 2O,分析纯),氢氧化钠(NaOH,分析纯),六次甲基四胺(又名HMTA,C

水热法制备纳米氧化铈粉体

水热法制备纳米氧化铈粉体 摘要:CeO2是一种价廉且用途极广的工业材料,具有广阔的市场应用前景。近年来,氧化铈纳米材料的形貌、尺寸控制以及性能应用方面已成为研究的热点之一。本论文对氧化铈进行结构、形貌以及光学性能的表征,分析了固相法,液相法,气象法制备纳米材料的优缺点并采用水热法制备出氧化铈纳米材料。 关键词:纳米CeO2;水热法;制备方法 Hydrothermal synthesis ,Preparation of nano-sized CeO2 particles Abstract:Ceria is a cheap and widely used industry material, which has a broad market applied prospect. In this paper, the preparation, characterization and optical properties of as ceria nanomaterials have been studied,the advantage and disadvantage of solid method ,liquid method and gas method have been contrasted and ceria nanomaterials were prepared by hydrothermal method. Keyword:nanometer CeO2;Hydrothermal synthesis;preparation method 随着纳米技术的不断进步,纳米CeO2由于粒径比较小,具有高的表面效应、量子尺寸效应、小尺寸效应以及宏观量子隧道效应等特性,因此产生了与传统材料不同的许多特殊性质,成为近年来材料科学中研究的热点。CeO2作为稀土家族中一种重要的化合物,可用于汽车尾气净化催化材料[1]、高温氧敏材料[2]、固体氧化物燃料电池(SOFC)电极材料[3][4]、化学机械抛光(CMP)研磨材料[5]等行业,对人类改善工作条件、提高生活质量、保障身体健康,节约能源、加强环境保护具有重要的现实意义,并具有显著的经济效益和社会效益。 1 氧化铈纳米材料概述 1.1 氧化铈的结构和性质 由于Ce具有独特的4f 层电子结构,氧化铈属于立方晶系,是面心立方结构,具有萤石结构。所属点群为Fm3m点群。从热动力学方面讲,其(111)面是最稳定的。CeO2晶胞中的Ce4+ 按面心立方阵排列,O2-占据所有的四面体位置,每个Ce4+被8个O2-包围,而每个O2-则与4个Ce4+配位,如下图所示。氧化铈经高温(T>950°C)还原后,CeO2转化为具有氧空位、非化学计量比的CeO2-x 氧化物(0

水热法制备氧化锌粉体

水热法制备氧化锌粉体 内容:原料的计算,工艺流程(每组四个工艺参数),反应机理,过程操作 1、原料的计算: 取m(ZnO)=4.069g ,则 Zn(NO 3) + 2NaOH=ZnO↓+ 2NaNO 3 + H 2O 189.4 81.38 n 4.069g 则 n = 9.47g 由反应方程式得,取硝酸锌为9.47克,氢氧化钠为10克 2、工艺流程(每组四个工艺参数): Zn(NO 3) NaOH CH 3CH 3 (超声波) 加离子水 N 2HCH 2CH 2NH 2 160 3、反应机理: Zn(NO 3) + 2NaOH=ZnO↓+ 2NaNO 3 + H 2O CH 3CH 2OH + NaOH = CH 3CH 2ONa +H 2O CH 3CH 2OH + 2NaNO 3 = CH 3CH 2ONa +H 2O CH 3CH 2ONa + N 2HCH 2CH 2NH 2 = CH 3CH 2O- NHCH 2CH2NH- CH 3CH 2O

4、过程操作 去离子水与无水乙醇比例(单位:ml) 取9.47g硝酸锌与10g氢氧化钠溶解在去离子水中,形成50ml水溶液,在1、2、3、4的水热高压釜各加入上述溶液3ml,按表配比,在四个水热高压釜中各加入去离子水与无水乙醇形成混合物。随后四个水热高压釜均加入5ml乙二胺,用超声波震荡30min,将水热高压釜置于水热炉中,保温160℃,24h,待水热炉温度降至室温(40-50℃)后将水热高压釜从水热炉中取出,放置于阴凉处,2h后,开启水热高压釜,将所得纳米氧化锌,用去离子水和丙酮洗净,干燥,称取。

水热法制备碳颗粒

专业实验(2) 五:水热法制备碳颗粒 这是材料系设置的基础实验课。材料专业实验(2)要求针对材料领域的各种制备方法以及热处理方法进行自我设计,自我准备,完成工艺的全过程,并得到预期的实验结果,并结合理论知识,分析实验结果与制备工艺参数之间的关系。通过材料专业实验(2),让学生基本掌握常用的类制备方法或热处理工艺的原理和工艺过程,了解工艺过程对最终的结果的影响规律,进一步强化学生的理论知识,培养学生的实际动手操作能力,为其毕业设计做基础。 一、实验目的 本实验让学生熟练掌握水热合成法这种新型的材料制备方法,熟悉该制备方法的基本流程,培养动手操作能力和自主设计实验的能力,为毕业论文设计作基础和必要的实验准备。 二、实验要求 要求学每个学生能独立查阅文献资料,小组讨论,确定实验方案,并将实验方案提前一天给任课老师审阅;所有的实验必须在我们已有的设备条件和时间条件下完成;实验方案中对每一个工艺必须给出具体的工艺参数,如反应物浓度、合成温度、反应时间等。该实验更要求学生发挥自己的主观能动性,自主设计,自主完成实验全过程。实验完成后认真分析实验结果,撰写实验报告。 三、实验所需仪器设备 本实验所需的主要仪器设备有:高压反应釜,离心机,烘箱等。 四、实验原理 水热法是在特制的密闭反应容器(高压釜)里,采用水溶液作为反应介质,通过对反应容器加热,创造一个高温、高压反应环境,使得通常难溶或不溶的物质溶解、反应并重结晶,从而得到理想的产物[1]。 按研究对象和目的的不同,水热法可分为水热晶体生长、水热合成、水热反应、水热处理、水热烧结等。分别用来生长各种单晶,制备超细、无团聚或少团聚、结晶良好的陶瓷粉体[2],完成某些有机反应或对一些危害人类生存环境的有机废弃物质进行处理,以及在相对较低的温度下完成某些陶瓷材料的烧结等。按设备的差异,水热法又可分为“普通水热法”和“特殊水热法”。所谓“特殊水热法”指在水热条件反应体系上再添加其他作用力场,如直流电场、磁场(采用非铁电材料制作的高压釜)、微波场等。作为一种方法,水热法不仅在实验室里得到了应用和持续的研究,而且已实现了产业规模的人工水晶水热生长。特别是自1982年开始用水热反应制备超细微粉的水热法已引起国内外的重视。用水热法制备的超细粉末,最小粒径已经达到数纳米的水平,归纳起来可分成以下几种类型[3]: ①水热氧化:典型反应可用下式表示: mM+ nH2O → M m O n + H2其中M可为铬、铁及合金等。 ②水热沉淀: 比如 KF + MnCl2→ KM n F2 ③水热合成: 比如 TiCl4+ 4KOH → TiO2 + 4KCl + H2O ④水热还原: 比如 Me x O y + yH2→ xMe + yH2O 其中Me可为铜、银等。 ⑤水热分解:

水热法制备纳米材料研究进展

水热法制备纳米材料研究 张自强 (华中农业大学理学院武汉430070) 摘要:水热法由于设备简单、操作简便、产物产率高、结晶良好,在合成纳米材料方面表现出了良好的多样性,从而得到越来越多的应用。水热法合成过程中依然存在着很多需要解决的问题。本文对近年来利用水热法合成纳米材料的实验进行了整理,并探讨了其研究进展。 关键字:水热法纳米材料合成产物控制研究进展 正文: 水热法生长晶体是19世纪中叶地质学家模拟自然界成矿作用而开始研究的,水热法属于液相反应的范畴,是指在特定的密闭反应器中,采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法,在水热条件下可以使反应得以实现,在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进,水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 1.水热法合成SnO2 2005年,韦志仁等采用水热法,以SnCl4·5H2O为前驱物,NaOH为矿化剂,在180℃,填充度为68% ,通过加入不同量的NaOH,调节溶液pH值分别为2、4、11,合成了三种具有不同形态的金红相SnO2纳米晶体。在研究过程中合成了一维定向生长SnO2纳米柱晶体,通过调节反应溶液的酸碱度,可以控制晶体的形貌,在较强的酸性或碱性条件下(pH为2或11时)获得了100~200nm长,直径约为10~20nm的棒状晶体。而当pH为4时,所获得SnO2金红相晶体没有较清晰的形貌特征。 2.水热法制备氧化锌 2006年,付三玲等人水热法制备纳米ZnO材料研究现状,研究了其制备特点及制备机理,从纳米ZnO晶体、阵列或薄膜、粉体三个方面制备实例研究了水热制备方法,最后探讨了纳米ZnO 材料发展前景。2010年,郑兴芳在研究纳米氧化锌的过程中发现,对于水热法制备纳米氧化锌,原料的选择、反应物的浓度、反应温度、反应时间和添加剂等都影响着产物的尺寸、形貌和性能。未来的工作应该对反应过程中的影响因素进行系统的研究,各种影响因素相互制约,要综合考虑所有可能影响晶体生长的因素,通过调整反应条件或参数,可以实现ZnO 纳米材料的可控合成。 3.水热法制备二氧化钛 2006年,夏金德采用水热法, 使用无水TiCl4 及钛酸四正丁酯为原料在反应温度120 ℃、反应时间5 h 的条件下,分别制备了不同晶相的二氧化钛( 即锐钛矿相和金红石相) 。采用X 射线衍射( XRD) 、透射电子显微镜( TEM) 分析手段对样品的物相、结构、形貌进行了表征和分析。XRD 结果表明,使用TiCl4作为原料,可以得到低温稳定的锐钛矿二氧化钛相;使用钛酸四正丁酯为原料,可以制备高温金红石相二氧化钛。TEM照片清晰地显示了锐钛

相关主题
文本预览
相关文档 最新文档