当前位置:文档之家› 新课标高中化学选修3第二节杂化轨道理论配合物理论

新课标高中化学选修3第二节杂化轨道理论配合物理论

新课标高中化学选修3第二节杂化轨道理论配合物理论
新课标高中化学选修3第二节杂化轨道理论配合物理论

第2课时

杂化轨道理论配合物理论

学业要求素养对接

1.能运用杂化轨道理论解释和预测简单分子的立体构型。

2.知道配位键的特点,认识简单的配位化合物的成键特征,了解配位化合物的存在与应用。微观探析:运用杂化轨道理论、配合物理论。

模型认知:根据杂化轨道理论确定简单分子的立体构型、根据配合物理论模型解释配合物的某些典型性质。

[知识梳理]

一、杂化轨道理论简介

1.用杂化轨道理论解释甲烷分子的形成

在形成CH4分子时,碳原子的一个2s轨道和三个2p轨道发生混杂,形成四个能量相等的sp3杂化轨道。四个sp3杂化轨道分别与四个H原子的1s轨道重叠成键形成CH4分子,所以四个C—H键是等同的。可表示为

C原子的杂化轨道

2.杂化轨道的类型与分子立体构型的关系

杂化类型sp sp2sp3

参与杂化的原子轨道及数目n s 1 1 1 n p 1 2 3

杂化轨道数目 2 3 4 杂化轨道

间的夹角

180°120°109°28′

杂化轨道示意图

立体构型直线形

平面

三角形

正四面

体形

实例BeCl2、

CO2、

CS2

BCl3、

BF3、

BBr3

CF4、

SiCl4、

SiH4

【自主思考】

1.用杂化轨道理论分析CH4的杂化类型和呈正四面体形的原因?

提示在形成CH4分子时,碳原子的一个2s轨道与三个2p轨道混杂,形成4个能量相等的sp3杂化轨道,分别与四个氢原子的1s轨道重叠成键形成CH4分子,4个σ键之间作用力相等,键角相等形成正四面体形。

二、配合物理论简介

1.配位键

(1)概念:共用电子对由一个原子单方面提供而跟另一个原子共用的共价键,即“电子对给予-接受键”,是一类特殊的共价键。

(2)实例:在四水合铜离子中,铜离子与水分子之间的化学键是由水分子提供孤电子对给予铜离子,铜离子接受水分子的孤电子对形成的。

(3)表示:配位键可以用A→B来表示,其中A是提供孤电子对的原子,叫做配体;B是接受电子对的原子。例如:

①NH+4中的配位键表示为。

②[Cu(NH3)4]2+中的配位键表示为。

③[Cu(H2O)4]2+中的配位键表示为。

2.配位化合物

(1)定义:金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物,简称配合物。

(2)写出生成下列配合物的反应方程式:

[Cu(H2O)4]Cl2:CuCl2+4H2O===[Cu(H2O)4]Cl2;

Fe(SCN)3:Fe3++3SCN-===Fe(SCN)3。

(3)配合物的稳定性

配位键的强度有大有小,因而有的配合物很稳定,有的很不稳定。许多过渡金属离子对多种配体具有很强的结合力,因而过渡金属配合物远比主族金属配合物多。【自主思考】

2.配制银氨溶液时,向AgNO3溶液中滴加氨水,先生成白色沉淀,后沉淀逐渐溶解,为什么?

提示因为氨水呈弱碱性,滴入AgNO3溶液中,会形成AgOH白色沉淀,当氨水过量时,NH3分子与Ag+形成[Ag(NH3)2]+配离子,配离子很稳定,会使AgOH逐渐溶解,反应过程如下:

Ag++NH3·H2O===AgOH↓+NH+4AgOH+2NH3===[Ag(NH3)2]++OH-

[自我检测]

1.判断正误,正确的打“√”;错误的打“×”。

(1)所有原子轨道都参与杂化。()

(2)杂化轨道能量集中,有利于牢固成键。()

(3)杂化轨道中不一定有电子。()

(4)杂化方式相同的分子,空间构型一定相同。()

(5)并非任意两个原子轨道都能发生杂化。()

(6)形成配位键的条件是一方有空轨道一方有孤电子对。()

(7)NH4NO3、H2SO4都含有配位键。()

(8)任何分子都能形成配位键。()

(9)配合物都有颜色。()

答案(1)×(2)

√(3)√(4)×(5)√(6)√(7)√(8)×(9)×

2.ClO-、ClO-2、ClO-3、ClO-4中,Cl都是以sp3杂化轨道方式与O原子成键,则ClO -的立体构型是________;ClO-2的立体构型是________;ClO-3的立体构型是________;ClO-4的立体构型是________。

答案直线形V形三角锥形正四面体形

3.完成下表:

物质中心离子配体

电子对

给予体

电子对

接受体[Ag(NH3)2]OH

Na3[AlF6]

答案[Ag(NH3)2]OH:Ag+NH3NH3Ag+

Na3[AlF6]:Al3+F-F-Al3+

学习任务一杂化轨道理论及分子立体构型与杂化轨道类型的关系

【合作交流】

在形成多原子分子时,中心原子价电子层上的某些能量相近的原子轨道发生混杂,重新组合成一组新的轨道的过程,叫做轨道的杂化。双原子分子中,不存在杂化过程。例如sp杂化、sp2杂化的过程如下:

1.观察上述杂化过程,分析原子轨道杂化后,数量和能量有什么变化?

提示杂化轨道与参与杂化的原子轨道数目相同,但能量不同。s轨道与p轨道的能量不同,杂化后,形成的一组杂化轨道能量相同。

2.2s轨道与3p轨道能否形成sp2杂化轨道?

提示不能。只有能量相近的原子轨道才能形成杂化轨道。2s与3p不在同一能级,能量相差较大。

3.你能用杂化轨道理论解释NH3、H2O的立体构型?

提示NH3分子中N原子的价电子排布式为2s22p3。1个2s轨道和3个2p经杂化后形成4个sp3杂化轨道,其中3个杂化轨道中各有1个未成对电子,分别与H原子的1s轨道形成共价键,另1个杂化轨道中是成对电子,不与H原子形成共价键,sp3杂化轨道为正四面体形,但由于孤电子对的排斥作用,使3个N—H键的键角变小,成为三角锥形的立体构型。

H2O分子中O原子的价电子排布式为2s22p4。1个2s轨道和3个2p轨道经杂化后形成4个sp3杂化轨道,其中2个杂化轨道中各有1个未成对电子,分别与H原子的1s轨道形成共价键,另2个杂化轨道是成对电子,不与H原子形成共价键,sp3杂化轨道为正四面体形,但由于2对孤电子对的排斥作用,使2个O—H键的键角变得更小,成为V形的立体构型。

4.CH4、NH3、H2O中心原子的杂化类型都为sp3,键角为什么依次减小?从杂化轨道理论的角度比较键角大小时有什么方法?

提示CH4、NH3、H2O中心原子都采取sp3杂化,中心原子的孤电子对数依次为0个、1个、2个。由于孤电子对对共用电子对的排斥作用使键角变小,孤电子对数越多排斥作用越大,键角越小。比较键角时,先看中心原子杂化类型,杂化类型不同时:一般键角按sp、sp2、sp3顺序依次减小;杂化类型相同时,中心原子孤电子对数越多,键角越小。

【点拨提升】

1.杂化轨道理论要点

(1)只有能量相近的原子轨道才能杂化。

(2)杂化轨道数目和参与杂化的原子轨道数目相等,杂化轨道能量相同。

(3)杂化改变原有轨道的形状和伸展方向,使原子形成的共价键更牢固。

(4)杂化轨道为使相互间的排斥力最小,故在空间取最大夹角分布,不同的杂化轨道伸展方向不同。

(5)杂化轨道只用于形成σ键或用于容纳未参与成键的孤电子对。

(6)未参与杂化的p轨道可用于形成π键。

2.中心原子轨道杂化类型的判断

方法1:根据价层电子对数判断

杂化轨道只能用于形成σ键或者用来容纳孤电子对,而两个原子之间只能形成一个σ键,故有下列关系:

杂化轨道数=价层电子对数=中心原子孤电子对数+中心原子结合的原子数。

根据杂化轨道数判断杂化类型,如下表所示:

AB n型分子中心原子

价层电子

对数

中心原子

孤电子

对数

中心原子

结合的原

子数

杂化轨

道类型

示例

AB22 0 2 sp

BeCl2、

CO2

3 1 2 sp2SO2

4 2 2 sp3

H2O、

H2S

AB33 0 3 sp2

BF3、

SO3、

CH2O 4 1 3 sp3

NH3、

PCl3

AB4 4 0 4 sp3CH4、CCl4

方法2:根据共价键类型判断

由于杂化轨道形成σ键或容纳孤电子对,未参与杂化的轨道可用于形成π键,故有如下规律:

(1)中心原子形成1个三键,则其中有2个π键,是sp杂化,如CH≡CH。

(2)中心原子形成2个双键,则其中有2个π键,是sp杂化,如O===C===O。

(3)中心原子形成1个双键,则其中有1个π键,是sp2杂化,如:,

CH2===CH2。

(4)中心原子只形成单键,则按方法1判断。

方法3:根据等电子体原理判断

等电子体的结构相似、立体构型也相似,中心原子杂化类型相同。如:H2O和H2S,CO2、CS2和N2O,BF3、SO3、NO-3和CO2-3,CCl4、SO2-4和PO3-4,NF3,PCl3和SO2-3等。

3.分子的立体构型与杂化类型的关系

(1)当杂化轨道全部用于形成σ键时,分子或离子的立体构型与杂化轨道的立体构型相同。

sp杂化:直线形;sp2杂化:平面三角形;sp3杂化:正四面体形(或四面体形)。(2)当杂化轨道中有未参与成键的孤电子对时,孤电子对对成键电子对的排斥作用,会使分子或离子的立体构型与杂化轨道的形状有所不同。

【例1】下列分子中的中心原子杂化轨道的类型相同的是()

A.CO2与SO2

B.CH4与NH3

C.BeCl2与BF3

D.C2H4与C2H2

解析中心原子杂化轨道数=中心原子价层电子对数=1

2(中心原子的价电子数+

配位原子的成键电子数)

实例价层电子对数杂化类型

BeCl2n=1

2×(2+2)=2

sp

BF3n=1

2×(3+3)=3

sp2

CO2n=1

2×(4+0)=2

sp

SO2n=1

2×(6+0)=3

sp2

CCl4n=1

2×(4+4)=4

sp3

NH3n=1

2×(5+3)=4

sp3

C2H2和C2H4中每个碳原子连接的原子个数分别为2、3个,每个C原子分别形成2个σ键、2个π键和3个σ键、1个π键,C原子杂化类型分别为sp杂化、sp2杂化。

答案 B

判断分子的中心原子杂化轨道类型的方法

(1)根据杂化轨道的空间分布构型判断

①若杂化轨道在空间的分布为正四面体形,则分子的中心原子发生sp3杂化。

②若杂化轨道在空间的分布呈平面三角形,则分子的中心原子发生sp2杂化。

③若杂化轨道在空间的分布呈直线形,则分子的中心原子发生sp杂化。

(2)根据杂化轨道之间的夹角判断

若杂化轨道之间的夹角为109°28′,则分子的中心原子发生sp3杂化;若杂化轨道之间的夹角为120°,则分子的中心原子发生sp2杂化;若杂化轨道之间的夹角为180°,则分子的中心原子发生sp杂化。

【变式训练】

1.下表中各粒子对应的立体结构及杂化方式均正确的是()

选项粒子立体结构杂化方式

A SO3平面三角形S原子采取sp杂化

B SO2V形S原子采取sp3杂化

C CO2-3三角锥形C原子采取sp2杂化

解析A项,SO3分子中硫原子的价层电子对数=3+1

2×(6-3×2)=3,不含孤电

子对,采取sp2杂化,立体结构为平面三角形,错误;B项,SO2分子中硫原子的

价层电子对数=2+1

2×(6-2×2)=3,含1对孤电子对,采取sp

2杂化,立体结构

为V形,错误;C项,CO2-3中碳原子价层电子对数=3+1

2×(4+2-3×2)=3,不

含孤电子对,采取sp2杂化,立体结构为平面三角形,错误;D项,乙炔(CH≡CH)分子中每个碳原子均形成2个σ键和2个π键,价层电子对数是2,为sp杂化,立体结构为直线形,正确。

答案 D

2.CH+3、—CH3、CH-3都是重要的有机反应中间体,有关它们的说法正确的是()

A.它们互为等电子体,碳原子均采取sp2杂化

B.CH-3与NH3、H3O+互为等电子体,中心原子均为sp3杂化,几何构型均为正四面体形

C.CH+3中的碳原子采取sp2杂化,所有原子共平面

D.CH+3中的碳原子采取sp3杂化,所有原子均共面

解析A项,CH+3、—CH3、CH-3中原子个数相等但价电子总数不等,不互为等电子体,错误。B项,CH-3与NH3、H3O+中原子个数相等、价电子总数相等,互为等电子体,CH-3中碳原子价层电子对数是4且孤电子对数为1、NH3中氮原子价层电子对数是4且孤电子对数为1、H3O+中氧原子价层电子对数是4且孤电子对数为1,三者中心原子都为sp3杂化,几何构型都为三角锥形,错误。C项,CH+3中碳原子价层电子对数是3且不含孤电子对,所以碳原子采取sp2杂化,为平面三角形,所有原子共平面,C项正确,D项错误。

答案 C

3.计算下列各微粒中心原子的杂化轨道数,判断中心原子的杂化轨道类型,写出VSEPR模型名称。

答案(1)2sp直线形

(2)4sp3正四面体形

(3)4sp3四面体形

(4)4sp3四面体形

(5)3sp2平面三角形

学习任务二配位键与配位化合物

【合作交流】

在血液中氧气的输送是由血红蛋白来完成的,载氧前,血红蛋白中Fe2+与卟啉环中的四个氮原子和蛋白质链上咪唑环的氮原子通过配位键相连。此时,Fe2+的半径大,不能嵌入卟啉环平面,而位于其上方约0.08 nm处[下图(左)]。载氧后,氧分子通过配位键与Fe2+连接,使Fe2+半径缩小而滑入卟啉环中[右图]。

由于一氧化碳也能通过配位键与血红蛋白中的Fe2+结合,并且结合能力比氧气与Fe2+的结合能力强得多,从而导致血红蛋白失去载氧能力,所以一氧化碳能导致人体因缺氧而中毒。

配位键实质是一种特殊的共价键,配位键的共用电子对由成键原子单方面提供,普通共价键的共用电子对则由成键原子双方共同提供,但实质是相同的。

1.NH+4中的配位键与其他三个N—H键的键参数是否相同?

提示相同。NH+4可看成NH3分子结合1个H+后形成的,在NH3中中心原子氮采

取sp3杂化,孤电子对占据一个轨道,3个未成键电子占据另3个杂化轨道,分别结合3个H原子形成3个σ键,由于孤电子对的排斥,所以立体构型为三角锥形,键角压缩至107°。但当有H+时,N原子的孤电子对会进入H+的空轨道,以配位键形成NH+4,这样N原子就不再存在孤电子对,键角恢复至109°28′,故NH+4为正四面体形,4个N—H键完全一致,配位键与普通共价键形成过程不同,但性质相同。

2.配合物[Cu(NH3)4]SO4中含有的化学键类型有哪些?

提示[Cu(NH3)4]SO4中含有的化学键有离子键、共价键和配位键。

3.NH3和BF3可以通过配位键形成NH3·BF3,试分析提供孤电子对、空轨道的分别是哪种原子?你能写出NH3·BF3的结构式吗?

提示N原子提供孤电子对,B原子提供空轨道,NH3·BF3的结构式可表示为

【点拨提升】

1.配位键

(1)配位键实质是一种特殊的共价键,在配位键中原子一方提供孤电子对,另一方具有能接受孤电子对的空轨道。

(2)配位键与普通共价键只是在形成过程上有所不同。配位键的共用电子对由成键原子单方面提供,普通共价键的共用电子对则由成键原子双方共同提供,但实质是相同的,都是成键原子双方共用,如NH+4中4个N—H键完全等同。

2.配合物的组成

配合物[Cu(NH3)4]SO4的组成如下图表示。

(1)中心原子:提供空轨道能接受孤电子对的原子或金属阳离子。配合物的中心原

子一般是带正电荷的阳离子,最常见的是过渡金属的原子或离子。

(2)配体:含有孤电子对的原子、分子或阴离子。

①阴离子:如X-(卤素离子)、OH-、SCN-、CN-、RCOO-、PO3-4等。

②分子:如H2O、NH3、CO、醇、胺、醚等。

③原子:常为ⅤA、ⅥA、ⅦA族元素的原子。

(3)配位数:直接同中心原子配位的原子或离子的数目叫中心原子的配位数。如[Fe(CN)6]4-中Fe2+的配位数为6,[Cu(NH3)4]Cl2中Cu2+的配位数为4。

(4)配合物离子的电荷数:等于中心原子或离子与配位体总电荷数的代数和。如[Co(NH3)5Cl]n+中,中心离子为Co3+,n=2。

3.配合物在水溶液中的电离情况

配合物中外界离子能电离出来,而内界离子不能电离出去,通过实验及其数据可以确定内界和外界离子的个数,从而可以确定其配离子、中心离子和配体。

【例2】配位化学创始人维尔纳发现,取CoCl3·6NH3(黄色)、CoCl3·5NH3(紫红色)、CoCl3·4NH3(绿色)和CoCl3·4NH3(紫色)四种化合物各1 mol,分别溶于水,加入足量硝酸银溶液,立即产生氯化银沉淀的量分别为3 mol、2 mol、1 mol和1 mol。

(1)请根据实验事实用配合物的形式写出它们的化学式。

CoCl3·6NH3:________,

CoCl3·5NH3:________,

CoCl3·4NH3(绿色和紫色):________。

(2)后两种物质组成相同而颜色不同的原因是_______________________________________________________

_______________________________________________________。

(3)上述配合物中,中心离子的配位数都是________。

解析由题意知,四种配合物中位于外界的Cl-数目分别为3、2、1、1,则它们的化学式分别为[Co(NH3)6]Cl3、[Co(NH3)5Cl]Cl2、[Co(NH3)4Cl2]Cl、[Co(NH3)4Cl2]Cl,最后两种应互为同分异构体。

答案(1)[Co(NH3)6]Cl3[Co(NH3)5Cl]Cl2[Co(NH3)4Cl2]Cl(2)它们互为同分异构体(3)6

配合物的化学式相同,如果空间结构不同,则其颜色不同;根据各物质

配合物形式的化学式判断配体数目。

【变式训练】

4.回答下列问题:

(1)若BCl3与XY n通过B原子与X原子间的配位键结合形成配合物,则该配合物提供孤电子对的原子是________________。

(2)NH3与BF3可以通过配位键形成NH3·BF3,______原子提供孤电子对,________原子提供空轨道。写出NH3·BF3的结构式,并用“→”表示出配位键________。

(3)肼(N2H4)分子可视为NH3分子中的一个氢原子被—NH2(氨基)取代形成的另一种氮的氢化物。肼能与硫酸反应生成N2H6SO4。N2H6SO4晶体类型与硫酸铵相同,则N2H6SO4的晶体内存在________(填序号)。

a.离子键

b.配位键

c.共价键

(4)向盛有硫酸铜溶液的试管中滴加氨水,先生成难溶物,继续滴加氨水,难溶物溶解,得到深蓝色透明溶液。下列对此现象的说法正确的是________。

A.反应后溶液中不存在任何沉淀,所以反应前后Cu2+的浓度不变

B.沉淀溶解后,生成深蓝色的配离子[Cu(NH3)4]2+

C.[Cu(NH3)4]2+的立体构型为正四面体形

D.在[Cu(NH3)4]2+配离子中,Cu2+给出孤电子对,NH3提供空轨道

(5)向氯化铜溶液中加入过量浓氨水,然后加入适量乙醇,溶液中析出深蓝色的[Cu(NH3)4]Cl2晶体,深蓝色晶体中含有的化学键除普通的共价键外,还有________和________。

解析(1)BCl3分子中的B原子的1个2s轨道和2个2p轨道进行sp2杂化形成3个sp2杂化轨道。B原子还有1个空轨道(未杂化的2p轨道),所以B原子与X形成配位键时,X应提供孤电子对。

(2)NH3中N原子为sp3杂化,N原子上有一对孤电子对,BF3中B原子为sp2杂化,杂化轨道与F原子形成3个共价键,故有一个2p空轨道,与NH3形成配位键。

(3)(NH4)2SO4中,NH+4存在配位键、共价键,表示为,

SO2-4与NH+4之间以离子键结合。故N2H6SO4中,N2H2+6存在配位键、共价键,表

示为,SO2-4与N2H2+6之间以离子键结合。

(4)

(5)Cu2+中存在空轨道,NH3中N原子上有孤电子对,N与Cu2+之间以配位键结合、[Cu(NH3)4]2+与Cl-间以离子键结合。

答案(1)X(2)N B

(3)abc(4)B(5)离子键配位键

5.(1)丙酮()分子中碳原子轨道的杂化类型是________。

(2)I+3离子的几何构型为________,中心原子的杂化形式为________。

(3)CO2和CH3OH分子中C原子的杂化形式分别为________和________。

(4)Ge单晶具有金刚石型结构,其中Ge原子的杂化方式为________。

(5)CS2分子中,C原子的杂化轨道类型是____________________________。

(6)[Ni(NH3)6]SO4中阴离子的立体构型是________。

(7)AsCl3分子的立体构型为________,其中As的杂化轨道类型为________。

(8)化合物Cl2O的立体构型为________,中心原子的价层电子对数为________。

(9)在[Ni(NH3)6]2+中Ni2+与NH3之间形成的化学键称为________,提供孤电子对的

成键原子是________。

(10)配合物[Cr(H2O)6]3+中,与Cr3+形成配位键的原子是________(填元素符号)。

(11)CS2分子中,共价键的类型有____________。

(12)Ni能与CO形成正四面体形的配合物Ni(CO)4,1 mol Ni(CO)4中含有________ mol σ键。

答案(1)sp3和sp2(2)V形sp3(3)sp sp3

(4)sp3(5)sp(6)正四面体形(7)三角锥形sp3

(8)V形4(9)配位键N(10)O(11)σ键和π键

(12)8

分层训练

基础练

1.下列有关sp2杂化轨道的说明错误的是()

A.由同一能层上的s轨道与p轨道杂化而成

B.共有3个能量相同的杂化轨道

C.每个sp2杂化轨道中s能级成分占三分之一

D.sp2杂化轨道最多可形成2个σ键

解析同一能层上s轨道与p轨道的能量差异不是很大,相互杂化的轨道的能量差异也不能过大,A项正确;同种类型的杂化轨道能量相同,B项正确;sp2杂化轨道是由一个s轨道与2个p轨道杂化而成的,C项正确;sp2杂化轨道最多可形成3个σ键,D项错误。

答案 D

2.下列有关杂化轨道理论的说法不正确的是()

A.杂化轨道全部参与形成化学键

B.杂化前后的轨道数不变,但轨道的形状发生了改变

C.sp3、sp2、sp杂化轨道的夹角分别为109°28′、120°、180°

D.部分四面体形、三角锥形分子的结构可以用sp3杂化轨道解释

解析杂化轨道可以部分参与形成化学键,例如NH3中N发生了sp3杂化,形成了4个sp3杂化轨道,但是只有3个参与形成化学键,A项错误;杂化前后的轨道数不变,杂化后各个轨道尽可能分散、对称分布,导致轨道的形状发生了改变,B

项正确;sp3、sp2、sp杂化轨道的空间构型分别是正四面体形、平面三角形、直线形,所以其夹角分别为109°28′、120°、180°,C项正确;部分四面体形、三角锥形、V形分子的结构可以用sp3杂化轨道解释,如甲烷分子、氨气分子、水分子,D项正确。

答案 A

3.下列有关二氯化锡(SnCl2)分子的说法正确的是()

A.有一个σ键、一个π键

B.是直线形分子

C.中心原子Sn是sp2杂化

D.键角等于120°

解析氯原子只能形成单键,而单键只能是σ键,A项错误;由于中心原子Sn形成了两个σ键、还有一对孤电子对,故它是sp2杂化,SnCl2为V形结构,受孤电子对的影响,键角小于120°,B、D项错误,C项正确。

答案 C

4.将灼热的铜丝伸入盛氯气的集气瓶中,剧烈燃烧产生棕黄色烟,向集气瓶中加入少量水,观察到溶液呈黄绿色,主要原因是CuCl2溶液中存在黄绿色的

[CuCl4]2-。现向蓝色的硫酸铜溶液中,加入少量稀氨水,得到蓝色絮状沉淀,继续加入氨水后,蓝色沉淀溶解,得到深蓝色溶液,再向其中加入少量浓盐酸,得到绿色溶液,则该绿色溶液中主要存在的离子是()

A.Cu2+、[Cu(H2O)4]2+、SO2-4

B.[CuCl4]2-、[Cu(H2O)4]2+、NH+4、SO2-4

C.[CuCl]2-4、NH+4、SO2-4

D.[Cu(NH3)4]2+、[Cu(H2O)4]2+、SO2-4

解析由题中信息可推知,含[CuCl4]2-的溶液为黄绿色,含[Cu(H2O)4]2+的溶液为蓝色,故绿色溶液中含[CuCl4]2-和[Cu(H2O)4]2+;在整个反应过程中SO2-4未参与反应,NH3与H+结合生成了NH+4。

答案 B

5.如图所示,在乙烯分子中有5个σ键和一个π键,它们分别是()

A.sp2杂化轨道形成σ键,未杂化的2p轨道形成π键

B.sp2杂化轨道形成π键,未杂化的2p轨道形成σ键

C.C—H之间是sp2形成σ键,C—C之间是未参加杂化的2p轨道形成π键

D.C—C之间是sp2形成σ键,C—H之间是未参加杂化的2p轨道形成π键

解析在乙烯分子中碳原子与相连的氢原子、碳原子形成平面三角形,所以乙烯分子中每个碳原子均采取sp2杂化,其中杂化轨道形成5个σ键,未杂化的2p轨道形成π键。

答案 A

6.下列分子或离子中,能提供孤对电子与某些金属离子形成配位键的是()

①H2O②NH3③F-④CN-⑤CO

A.①②

B.①②③

C.①②④

D.①②③④⑤

解析这几种微粒的电子式分别为:

,由此可见,这几种微粒都能提供孤对电子与某些金属离子形成配位键,故选D。

答案 D

7.关于化学式为[TiCl(H2O)5]Cl2·H2O的配合物的下列说法正确的是()

A.配位体是Cl-和H2O,配位数是8

B.中心离子是Ti4+,配离子是[TiCl(H2O)5]2+

C.内界和外界中Cl-的数目比是1∶2

D.向1 mol该配合物中加入足量AgNO3溶液,可以得到3 mol AgCl沉淀

解析配合物[TiCl(H2O)5]Cl2·H2O,配体是Cl-和H2O,配位数是6,A项错误;中心离子是Ti3+,B项错误;配合物[TiCl(H2O)5]Cl2·H2O中内界Cl-的个数为1,外界Cl-的个数为2,内界和外界中Cl-的数目比是1∶2,C项正确;加入足量AgNO3

溶液,外界Cl-与Ag+反应,内界Cl-不与Ag+反应,故只能生成2 mol AgCl沉淀,D项错误。

答案 C

8.下列有关苯分子中的化学键描述正确的是()

A.每个碳原子的sp2杂化轨道中的其中一个形成大π键

B.每个碳原子的未参加杂化的2p轨道形成大π键

C.碳原子的三个sp2杂化轨道与其他原子形成三个π键

D.碳原子的未参加杂化的2p轨道与其他原子形成σ键

解析苯分子中每个碳原子的三个sp2杂化轨道分别与两个碳原子和一个氢原子形成σ键。同时每个碳原子还有一个未参加杂化的2p轨道,它们均有一个未成对电子,这些2p轨道相互平行,以“肩并肩”方式相互重叠,形成一个多电子的大π键。

答案 B

9.(1)在BF3分子中,F—B—F的键角是________,硼原子的杂化轨道类型为________,BF3和过量NaF作用可生成NaBF4,BF-4的立体构型为________。(2)肼(N2H4)分子可视为NH3分子中的一个氢原子被—NH2(氨基)取代形成的另一种氮的氢化物。NH3分子的立体构型是________;N2H4分子中氮原子轨道的杂化类型是________。

(3)H+可与H2O形成H3O+,H3O+中氧原子采用________杂化。H3O+中H—O—H 键角比H2O中H—O—H键角大,原因为_______________________________________________________。

(4)SO2-4的立体构型是________,其中硫原子的杂化轨道类型是________。

解析(1)因为BF3的立体构型为平面三角形,所以F—B—F的键角为120°。(3)H3O +中氧原子采用sp3杂化。(4)SO2-4的中心原子S的成键电子对数为4,无孤电子对,为正四面体结构,中心原子采用sp3杂化。

答案(1)120°sp2正四面体形(2)三角锥形sp3(3)sp3H2O中氧原子有2对孤电子对,H3O+中氧原子只有1对孤电子对,排斥力较小(4)正四面体形sp3 10.配位化合物在生产生活中有重要应用,请根据要求回答下列问题:

(1)光谱证实单质铝与强碱性溶液反应有[Al(OH)4]-生成,则[Al(OH)4]-中存在

________(填序号)。

a.共价键

b.非极性键

c.配位键

d.σ键

e.π键

(2)Co(NH3)5BrSO4可形成两种钴的配合物,已知Co3+的配位数是6,为确定钴的配合物的结构,现对两种配合物进行了如下实验:在第一种配合物的溶液中加BaCl2溶液时,产生白色沉淀,在第二种配合物的溶液中加BaCl2溶液时,则无明显现象。则第一种配合物的结构可表示为________,第二种配合物的结构可表示为________。若在第二种配合物的溶液中滴加AgNO3溶液,则产生的现象是________。(提示:TiCl(H2O)5Cl2这种配合物的结构可表示为[TiCl(H2O)5]Cl2。)

解析(1)光谱证实单质Al与强碱性溶液反应有[Al(OH)4]-生成,可看作铝原子和三个羟基形成三对共用电子对,形成三个极性共价键,形成Al(OH)3,Al(OH)3溶解在强碱性溶液中,和OH-结合形成[Al(OH)4]-,利用的是铝原子的空轨道和OH -的孤对电子形成的配位键;由两个原子轨道“头碰头”相互重叠而形成的共价键,叫σ键,所以[Al(OH)4]-中也形成了σ键。(2)由[CoBr(NH3)5]SO4的结构可知,硫酸根离子为配合物的外界,在水溶液中以离子形式存在,所以会与钡离子结合生成白色沉淀,若加入BaCl2溶液时无明显现象,说明硫酸根离子在内界,所以配合物的结构为[Co(SO4)(NH3)5]Br;溴离子为配合物的外界,在水溶液中以离子的形式存在,若加入AgNO3溶液,会产生淡黄色沉淀溴化银。

答案(1)acd

(2)[CoBr(NH3)5]SO4[Co(SO4)(NH3)5]Br生成淡黄色沉淀

素养练

11.氯吡苯脲是一种常用的膨大剂,其结构简式为,它是经国家批准使用的植物生长调节剂。

(1)氯元素基态原子核外电子的未成对电子数为________。

(2)氯吡苯脲晶体中,氮原子的杂化轨道类型为________,羰基碳原子的杂化轨道类型为________。

(3)查文献可知,可用2-氯-4-氨基吡啶与异氰酸苯酯反应,生成氯吡苯脲

,反

应过程中,每生成1 mol 氯吡苯脲,断裂________个σ键,断裂________个π键。

(4)膨大剂能在动物体内代谢,其产物较为复杂,其中有H 2O 、NH 3、CO 2等。 ①请用共价键知识解释H 2O 分子比NH 3分子稳定的原因:_______________________________________________________。

②H 2O 、NH 3、CO 2分子的空间构型分别是________________________, 中心原子的杂化类型分别是______________________________________。

解析 根据构造原理可知,氯元素基态原子核外电子排布式是1s 22s 22p 63s 23p 5,所以未成对电子数为1。(2)根据氯吡苯脲的结构简式可知,有2个氮原子均形成3个单键,孤电子对数为1,属于sp 3杂化;剩余1个氮原子形成1个双键和1个单键,孤电子对数为1,是sp 2杂化;羰基碳原子形成2个单键和1个双键,为sp 2杂化。(3)由于σ键比π键更稳定,根据反应方程式可以看出,断裂的化学键为异氰酸苯酯分子中的N===C 键中的π键和2-氯-4-氨基吡啶分子中的N —H 键。

(4)①O 、N 属于同周期元素,O 的原子半径小于N ,H —O 键的键能大于H —N 键的键能,所以H 2O 分子比NH 3分子稳定。②H 2O 分子中O 原子的价层电子对数=

2+6-2×12=4,孤电子对数为2,所以为V 形结构,O 原子采用sp 3杂化;NH 3

分子中N 原子的价层电子对数=3+

5-3×12

=4,孤电子对数为1,所以为三角锥形结构,N 原子采用sp 3杂化;CO 2分子中C 原子的价层电子对数=2+4-2×22=2,不含孤电子对,所以是直线形结构,C 原子采用sp 杂化。

答案 (1)1 (2)sp 2、sp 3 sp 2 (3)N A N A

(4)①H —O 键的键能大于H —N 键的键能 ②V 形、三角锥形、直线形 sp 3、sp 3、sp

12.完成下列各题:

(1)下列一组微粒中键角按由大到小的顺序排列为________(用编号填写)。

高中化学选修三知识点总结

高中化学选修三知识点总结 第一章原子结构与性质 1、电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图。离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小。 2、电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 3、原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。 4、原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子。 5、原子核外电子排布原理: (1)能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道;

(2)泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子;(3)洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同。 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1 6、根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 7、第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1)原子核外电子排布的周期性 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化: 每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到 ns2np6的周期性变化.

高中化学选修3练习:第二章第二节第2课时杂化轨道理论与配合物理论简介

与当今“教师”一称最接近的“老师”概念||,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学||,颖悟非凡貌||,属句有夙性||,说字惊老师。”于是看||,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”||,而一般学堂里的先生则称为“教师”或“教习”。可见||,“教师”一说是比较晚的事了。如今体会||,“教师”的含义比之“老师”一说||,具有资历和学识程度上较低一些的差别。辛亥革命后||,教师与其他官员一样依法令任命||,故又称“教师”为“教员”。 其实||,任何一门学科都离不开死记硬背||,关键是记忆有技巧||,“死记”之后会“活用”。不记住那些基础知识||,怎么会向高层次进军?尤其是语文学科涉猎的范围很广||,要真正提高学生的写作水平||,单靠分析文章的写作技巧是远远不够的||,必须从基础知识抓起||,每天挤一点时间让学生“死记”名篇佳句、名言警句||,以及丰富的词语、新颖的材料等。这样||,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累||,积少成多||,从而收到水滴石穿||,绳锯木断的功效。 死记硬背是一种传统的教学方式||,在我国有悠久的历史。但随着素质教育的开展||,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式||,渐渐为人们所摒弃||;而另一方面||,老师们又为提高学生的语文素养煞费苦心。其实||,只要应用得当||,“死记硬背”与提高学生素质并不矛盾。相反||,它恰是提高学生语文水平的重要前提和基础。 语文课本中的文章都是精选的比较优秀的文章||,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落||,对提高学生的水平会大有裨益。现在||,不少语文教师在分析课文时||,把文章解体的支离破碎||,总在文章的技巧方面下功夫。结果教师费劲||,学生头疼。分析完之后||,学生收效甚微||,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍||,其义自见”||,如果有目的、有计划地引导学生反复阅读课文||,或细读、默读、跳读||,或听读、范读、轮读、分角色朗读||,学生便可以在读中自然领悟文章的思想内容和写作技巧||,可以在读中自然加强语感||,增强语言的感受力。久而久之||,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中||,就会在写作中自觉不自觉地加以运用、创造和发展。第二章第二节第2课时杂化轨道理论与配合物理论简介 知识点一杂化轨道理论的考查 1.下列关于杂化轨道的说法错误的是 ( ) A.并不是所有的原子轨道都参与杂化 B.同一原子中能量相近的原子轨道参与杂化 C.杂化轨道能量集中||,有利于牢固成键 D.杂化轨道中一定有电子 2.下列描述正确的是( )

(完整版)高中化学选修3知识点总结

高中化学选修3知识点总结 二、复习要点 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。 2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。 (2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,n p能级各有3个原子轨道,相互垂直(用p x、p y、p z表示);n d能级各有5个原子轨道;n f能级各有7个原子轨道。 4、核外电子排布规律 (1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 (2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。 (3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。 (4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。 能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。 电子数 (5)(n-1)d能级上电子数等于10时,副族元素的族序数=n s能级电子数 (二)元素周期表和元素周期律 1、元素周期表的结构 元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。 (1)原子的电子层构型和周期的划分 周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。 (2)原子的电子构型和族的划分 族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。 (3)原子的电子构型和元素的分区 按电子排布可把周期表里的元素划分成5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。 2、元素周期律

高中化学选修3:物质结构与性质-知识点总结

选修三物质结构与性质总结 一.原子结构与性质. 1、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度 越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子 层.原子由里向 外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用 s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f 轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述 .在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具 有较低的能量和较大的稳定性.如24Cr[Ar]3d54s1、29Cu[Ar]3d104s1. (3).掌握能级交错1-36号元素的核外电子排布式. ns<(n-2)f<(n-1)d

高中参考资料化学人教版选修3 第二章 训练4 杂化轨道理论

训练4杂化轨道理论 [基础过关] 一、原子轨道杂化与杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.下列关于杂化轨道的叙述正确的是() A.杂化轨道可用于形成σ键,也可用于形成π键 B.杂化轨道可用来容纳未参与成键的孤电子对 C.NH3中N原子的sp3杂化轨道是由N原子的3个p轨道与H原子的s轨道杂化而成的 D.在乙烯分子中1个碳原子的3个sp2杂化轨道与3个氢原子的s轨道重叠形成3个C—H σ键二、杂化轨道类型及其判断 3.根据价层电子对互斥理论及原子的杂化轨道理论判断NF3分子的立体构型和中心原子的杂化方式为 () A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 4.在BrCH===CHBr分子中,C—Br键采用的成键轨道是() A.sp—p B.sp2—s C.sp2—p D.sp3—p 5.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2和SO2B.CH4和NH3 C.BeCl2和BF3D.C2H2与C2H4 三、杂化轨道类型与分子构型 6.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取s p3杂化的分子,其立体构型可能是四面体形或三角锥形或V形 D.AB3型的分子立体构型必为平面三角形 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为[H··N H , H · · H]+,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s-p σ键D.甲醛分子为平面三角形,有一个π键垂直于三角形平面 8.甲烷分子(CH4)失去一个H+,形成甲基阴离子(CH-3),在这个过程中,下列描述不合理的是

苏教版高中化学选修3讲义配合物的形成和应用

第二单元配合物的形成和应用目标与素养:1.知道简单配合物的基本组成和形成条件。(微观探析)2.理解配合物的结构与性质之间的关系。(宏观辨识)3.认识配合物在生产生活和科学研究方面的广泛应用。(社会责任) 一、配合物的形成 1.按表中实验操作步骤完成实验,并填写下表:

试管中先生成蓝色沉淀之后随浓氨水的滴入,沉淀逐渐溶解,最后变为深蓝色溶液 Cu(OH)2蓝色沉淀且沉淀溶于浓氨水 (1)写出上述反应的离子方程式。 Cu2++2NH3·H2O===Cu(OH)2↓+2NH+4; Cu(OH)2+4NH3·H2O===[Cu(NH3)4]2++2OH-+4H2O。 (2)[Cu(NH3)4]2+(配离子)的形成:氨分子中氮原子的孤电子对进入Cu2+的空轨 道,Cu2+与NH3分子中的氮原子通过共用氮原子提供的孤电子对形成配位键。配 离子[Cu(NH3)4]2+可表示为(如图所示) 。 2.配位化合物的概念 由提供孤电子对的配位体与接受孤电子对的中心原子以配位键结合形成的化合物。配合物是配位化合物的简称。如[Cu(NH3)4]SO4、[Ag(NH3)2]OH、NH4Cl 等均为配合物。

3.配合物[Cu(NH3)4]SO4的组成如下图所示: (1)中心原子是提供空轨道的金属离子(或原子)。 (2)配位体是提供孤电子对的阴离子或分子。 (3)配位数是直接与中心原子形成的配位键的数目。 (4)内界和外界:配合物分为内界和外界。 4.形成条件 (1)配位体有孤电子对;如中性分子H2O、NH3、CO等;离子有F-、Cl-、CN-等。 (2)中心原子有空轨道;如Fe3+、Cu2+、Ag+、Zn2+等。 5.配合物异构现象 (1)产生异构现象的原因 ①含有两种或两种以上配位体。 ②配位体空间排列方式不同。 (2) (3)异构体的性质 顺、反异构体在颜色、极性、溶解性、活性等方面都有差异。 二、配合物的应用

高中化学选修3第三章《晶体结构与性质》章教学设计

选修3第三章《晶体结构与性质》章教学设计 东莞市第一中学刘国强 一、本章教材体现的课标内容 1、主题:第一节晶体的常识 了解晶胞的概念,会计算晶胞中原子占有个数,并由此推导出晶体的化学式。 2、主题:第二节分子晶体与原子晶体 知道分子晶体与原子晶体的结构微粒、微粒间作用力的区别。 了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 3、主题:第三节金属晶体 知道金属键的涵义,能用金属键理论解释金属的一些物理性质。 能列举金属晶体的基本堆积模型。 知道金属晶体的结构微粒、微粒间作用力与分子晶体、原子晶体的区别。 4、主题:第四节离子晶体 能说明离子键的形成,能根据离子化合物的结构特征解释其物理性质。 知道离子晶体的结构微粒、微粒间作用力与分子晶体。原子晶体、金属晶体的区别。 了解晶格能的应用,知道晶格能的大小可以衡量离子晶体中离子键的强弱。 二、本章教材整体分析 (一)教材地位 本单元知识是在原子结构和元素周期律以及化学键等知识的基础上介绍的,是原子结构和化学键知识的延伸和提高;本单元知识围绕晶体作了详尽的介绍,晶体与玻璃体的不同,分子晶体、原子晶体、金属晶体、离子晶体,从构成晶体的微粒、晶胞、微粒间的作用力,熔沸点比较等物理性质做了比较,结合许多彩图及详尽的事例,对四大晶体做了阐述;同时,本单元结合数学立体几何知识,充分认识和挖掘典型晶胞的结构,去形象、直观地认识四种晶体,在学习本单元知识时,应多联系生活中的晶体化学,去感受生活中的晶体美,去感受环境生命科学、材料中的晶体知识。 “本章比较全面而系统地介绍了晶体结构和性质,作为本书的结尾章,与前两章一起构成“原子结构与性质、分子结构与性质、晶体结构与性质”三位一体的“物质结构与性质”模块的基本内容。” “通过本章的学习,结合前两章已学过的有关物质结构知识,学生能够比较全面地认识物质的结构及结构对物质性质的影响,提高分析问题和解决问题的能力。” (二)内容体系 本单元知识内容分为两大部分,第一节简单介绍晶体的常识,区别晶体与非晶体,认识什么是晶胞:第二部分分为三节内容,第二节“分子晶体和原子晶体”分别介绍了分子晶体和原子晶体的结构特征及晶体特性,在陈述分子晶体的结构特征时,以干冰为例,介绍了如果分子晶体中分子问作用力只是范德华力时,分子晶体具有分子密堆积特征;同时,教科书以冰为例,介绍了冰晶体里由于存在氢键而使冰晶体的结构具有其特殊性。在第三节“金属晶体”中,首先从“电子气理论”介绍了金属键及金属晶体的特性,然后以图文并茂的方式描述了金属晶体的四种基本堆积模式。在第四节“离子晶体”中,由于学生已学过离子键的概念,教科书直接给出了NaCl和CsCl两种典型离子晶体的晶胞,然后通过“科学探究”讨论了NaCl和CsCl两种晶体的结构;教科书还通过例子重点讨论了影响离子晶体结构的几何因素和电荷因素,而对键性因素不作要求。晶格能是反映离子晶体中离子键强弱的重要数据,教科书通过表格形式列举了某些离子晶体的晶格能,以及晶格能的大小与离子晶体的性质的关系。

杂化轨道理论(图解)

杂化轨道理论(图解)一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数101246含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特和美国的马利肯两位化学家提出分子轨道理论,简称MO理论。马利肯由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1 1. 金刚石晶体结构(硅单质相同) 1mol 金刚石中含有 mol C —C 键, 最小环是 元环,(是、否) 共平面。 每个C-C 键被___个六元环共有,每个C 被_____ 个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C 键夹角:_______。C 原子的杂化方式是______ SiO 2晶体中,每个Si 原子与 个O 原子以共价键相结合, 每个O 原子与 个Si 原子以共价键相结合,晶体中Si 原子与 O 原子个数比为 。 晶体中Si 原子与Si —O 键数目之比 为 。最小环由 个原子构成,即有 个O , 个Si ,含有 个Si-O 键,每个Si 原子被 个十二元环,每 个O 被 个十二元环共有,每个Si-O 键被__个十二元环共 有;所以每个十二元环实际拥有的Si 原子数为_____个,O 原子数为____个,Si-O 键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 2 . 在NaCl 晶体中,与每个Na +等距离且最近的Cl -有 个, 这些Cl -围成的几何构型是 ;与每个Na +等距离且最近的 Na +有 个。由均摊法可知该晶胞中实际拥有的Na +数为____个 Cl -数为______个,则次晶胞中含有_______个NaCl 结构单元。 3. CaF 2型晶胞中,含:___个Ca 2+和____个F - Ca 2+的配位数: F -的配位数: Ca 2+周围有______个距离最近且相等的Ca 2+ F - 周围有_______个距离最近且相等的F ——。

2 4.如图为干冰晶胞(面心立方堆积),CO 2分子在晶胞 中的位置为 ;每个晶胞含二氧化碳分子的 个数为 ;与每个二氧化碳分子等距离且最 近的二氧化碳分子有 个。 5.如图为石墨晶体结构示意图, 每层内C 原子以 键与周围的 个C 原子结合,层间作用力为 ; 层内最小环有 _____个C 原子组成;每个C 原子被 个最小环所共用;每个 最小环含有 个C 原子, 个C —C 键;所以C 原子数和C-C 键数之比是_________。C 原子的杂化方式 是__________. 6. 冰晶体结构示意如图 ,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7. 金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8. 金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________ 。

(完整版)【人教版】高中化学选修3知识点总结:第二章分子结构与性质(可编辑修改word版)

第二章分子结构与性质 课标要求 1.了解共价键的主要类型键和键,能用键长、键能和键角等说明简单分子的某些性质 2.了解杂化轨道理论及常见的杂化轨道类型(sp、sp2、sp3),能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的空间结构。 3.了解简单配合物的成键情况。 4.了解化学键合分子间作用力的区别。 5.了解氢键的存在对物质性质的影响,能列举含氢键的物质。 要点精讲 一.共价键 1.共价键的本质及特征 共价键的本质是在原子之间形成共用电子对,其特征是具有饱和性和方向性。 2.共价键的类型 ①按成键原子间共用电子对的数目分为单键、双键、三键。 ②按共用电子对是否偏移分为极性键、非极性键。 ③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性。 3.键参数 ①键能:气态基态原子形成 1 mol 化学键释放的最低能量,键能越大,化学键越稳定。 ②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。 ③键角:在原子数超过 2 的分子中,两个共价键之间的夹角。 ④键参数对分子性质的影响 键长越短,键能越大,分子越稳定. 4.等电子原理[来源:学§科§网] 原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。二.分子的立体构型 1.分子构型与杂化轨道理论 杂化轨道的要点 当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同。

2 分子构型与价层电子对互斥模型 价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。 (1)当中心原子无孤对电子时,两者的构型一致; (2)当中心原子有孤对电子时,两者的构型不一致。 3.配位化合物 (1)配位键与极性键、非极性键的比较

高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1.金刚石晶体结构(硅单质相同) 1mol金刚石中含有_______ IC—C键, 最小环是______ 元环,(是、否)______ 共平面。 每个C-C键被—个六元环共有,每个C被________ 个六元环共有。每个六元环实际拥有的碳原子数为 个。C-C键夹角:_____ 。C原子的杂化方式是 sq晶体中,每个Si原子与个O原子以共价键相结合, 每个。原子与_____ Si原子以共价键相结合,晶体中Si原子与 O原子个数比为__________ o晶体中Si原子与Si—O键数目之比 为___ O最小环由______ 个原子构成,即有_______ 个O, ____________ 个 si,含有________ 亍Si?o键,每个Si原子被个十二元环,每 个。被_______ 十二元环共有,每个Si-O键被—个十二元环共 有;所以每个十二元环实际拥有的Si原子数为—个,O原子数为—个,Si-0键为个。硅原子的杂化方式是—,氧原子的杂化方式是___________ +等距离且最近的C「有___________ 个, 2 ? 在NaCI晶体中,与每个Na 这些CI -围成的几何构型是;与每个也等距离且最近的+有个。由均摊法可知该晶胞中实际拥有的Na+数为—个Na ? ?数为__ 个,则次晶胞中含有______ 个NaCI结构单元。 2+和__ 个F 3. CaF?型晶胞中,含:—个Go -------------- 2+的配位数: F ?的配位数: Ca 2+周围有_____ 个距离最近且相等的Ca Ca CaH?品 周围有_____ 个距离最近且相等的F

4 .如图为干冰晶胞(面心立方堆积),CO?分子在晶胞中的位置 为_________________ ;每个晶胞含二氧化碳分子的个数为 ;与每个二氧化碳分子等距离且最近的二氧化碳分子有个。 5 ?如图为石墨晶体结构不意图, 每层内C原子以 __________________ 与周围的_____________ 个 C原子结合,层间作用力为_______________ ;层内最小环有___________ -个C 原子组成;每个C原子被 _________ 最小环所共用;每个 最小环含有_____ 个C原子,_______ 个c—C键;所以C 原子数和C?c键数之比是 ________ o C原子的杂化方式 6. 冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有___ 个位于四面体顶角方向的水分子,每个水分子通 过 —条氢键与四面体顶点上的水分子相连。每个氢键被— 个 水分子共有,所以平均每个水分子有_______ 条氢键。 7. ______________________________________________________ 金属的简单立方堆积 是_____________________________________ 层通过 _________ 对 ______ 堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是—,代表物质是_______________________ o &金属的体心立方堆积是__________________ 层通过 ______ 对 ____ 堆积方式形成的,晶胞如图: 每个阳离子的配位数是______________ ?代表物质是

人教版高中数学选修三分子的立体构型练习题

高中化学学习材料 (精心收集**整理制作) 第二节分子的立体结构(第一课时) 【案例练习】 1、下列物质中,分子的立体结构与水分子相似的是() A、CO2 B、H2S C、PCl3 D、SiCl4 2、下列分子的立体结构,其中属于直线型分子的是() A、H2O B、CO2 C、C2H2 D、P4 3、写出你所知道的分子具有以下形状的物质的化学式,并指出它们分子中的键角分别是多少?(1)直线形 (2)平面三角形 (3)三角锥形 (4)正四面体 4、下列分子中,各原子均处于同一平面上的是() A、NH3 B、CCl4 C、H2O D、CH2O 参考答案: 第二节分子的立体结构(第二课时) 【案例练习】 1、下列分子中心原子是sp2杂化的是() A、PBr3 B、CH4 C、BF3 D、H2O 2、氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是因为 A.两种分子的中心原子的杂化轨道类型不同,NH3为sp2型杂化,而CH4是sp3型杂化 B.NH3分子中N原子形成三个杂化轨道,CH4分子中C原子形成4个杂化轨道 C.NH3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强 D.氨气分子是极性分子而甲烷是非极性分子 3、用Pauling的杂化轨道理论解释甲烷分子的四面体结构,下列说法不正确的是() A、C原子的四个杂化轨道的能量一样 B、C原子的sp3杂化轨道之间夹角一样 C、C原子的4个价电子分别占据4个sp3杂化轨道 D、C原子有1个sp3杂化轨道由孤对电子占据 4、用VSEPR 理论判断 物质成键电子对数孤电子对数分子或离子的形状 H2O NH4+ BF3

H3O+ 参考答案: 第二节分子的立体结构(第三课时) 【案例练习】 1、在[Cu(NH3)4]2+配离子中NH3与中心离子Cu2+结合的化学键是 A.离子键 B.非极性键 C.极性键 D.配位键 2、与人体血液中血红蛋白以配位键结合的一种有毒气体是 A.氯气 B.氮气 C.一氧化碳 D.甲烷 3、向盛有硫酸铜水溶液的试管里加入氨水,首先形成难溶物,继续添加氨水,难溶物 溶解得到深蓝色的透明溶液。下列对此现象说法正确的是 A.反应后溶液中不存在任何沉淀,所以反应前后Cu2+的浓度不变。 B.沉淀溶解后,将生成深蓝色的配合离子[Cu(NH3)4] 2+。 C.向反应后的溶液加入乙醇,溶液将会没有发生变化,因为[Cu(NH3)4] 2+不会与乙醇发生反应。 D.在[Cu(NH3)4] 2+离子中,Cu2+给出孤对电子,NH3提供空轨道。 4、下列属于配合物的是() A、NH4Cl B、Na2CO3﹒10H2O C、CuSO4﹒5H2O D、Co(NH3)6Cl3 参考答案:1D 2C 3B 4D 5B

【人教版】高中化学选修3知识点总结

选修3知识点总结 第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 记忆方法有哪些?

能级交错:由构造原理可知,电子先进入4s 轨道,后进入3d 轨道,这种现象叫能级交错。 说明:构造原理并不是说4s 能级比3d 能级能量低(实际上4s 能级比3d 能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3的轨道式为 或,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p 0、d 0、f 0、p3、d 5、f 7、p 6、d 10、f 14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s 22p 0、12Mg 3s 23p 0、20Ca 4s 23d 0;半充满状态的有: 7N 2s 22p 3、15P 3s 23p 3、24Cr 3d 54s 1、25Mn 3d 54s 2、33As 4s 24p 3;全充满状态的有10Ne 2s 22p 6 、18Ar 3s 23p 6、29Cu 3d 104s 1、30Zn 3d 104s 2、36Kr 4s 24p 6 。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s 22s 22p 63s 23p 64s 1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K :[Ar]4s 1。 ③外围电子排布式(价电子排布式) (2)电子排布图(轨道表示式)是指将过渡元素原子的电子排布式中符合上一周期稀有气体的原子的电子排布式的部分(原子实)或主族元素、0族元素的内层电子排布省略后剩下的式子。 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 举例: ↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

高中化学选修3第三章 第三节

第三节金属晶体 [核心素养发展目标] 1.宏观辨识与微观探析:能辨识常见的金属晶体,能从微观角度分析金属晶体中的构成微粒及微粒间的相互作用。2.证据推理与模型认知:能利用金属晶体的通性推导晶体类型,从而理解金属晶体中各微粒之间的作用,并能用均摊法分析其晶胞结构。3.了解混合晶体——石墨的结构与性质。 一、金属键和金属晶体 1.金属键 (1)概念:金属阳离子与自由电子之间的强烈的相互作用。 (2)实质:金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子所共用,从而把所有的金属原子维系在一起,形成一种“巨分子”。 (3)特征:金属键没有方向性和饱和性。 2.金属晶体 (1)金属晶体 通过金属阳离子与自由电子之间的较强作用形成的晶体,叫做金属晶体。 (2)用电子气理论解释金属的性质

(1)金属单质和合金都属于金属晶体。 (2)金属晶体中含有金属阳离子,但没有阴离子。 (3)金属导电的微粒是自由电子,电解质溶液导电的微粒是自由移动的阳离子和阴离子;前者导电过程中不生成新物质,为物理变化,后者导电过程中有新物质生成,为化学变化。因而,二者导电的本质不同。 例

1下列关于金属键的叙述中,不正确的是() A.金属键是金属阳离子和自由电子这两种带异性电荷的微粒间的强烈相互作用,其实质与离子键类似,也是一种电性作用 B.金属键可以看作是许多原子共用许多电子所形成的强烈的相互作用,所以与共价键类似,也有方向性和饱和性 C.金属键是带异性电荷的金属阳离子和自由电子间的相互作用,故金属键无饱和性和方向性 D.构成金属键的自由电子在整个金属内部的三维空间中做自由运动 答案 B 解析从基本构成微粒的性质看,金属键与离子键的实质类似,都属于电性作用,特征都是无方向性和饱和性;自由电子是由金属原子提供的,并且在整个金属内部的三维空间内运动,为整个金属的所有阳离子所共有,从这个角度看,金属键与共价键有类似之处,但两者又有明显的不同,如金属键无方向性和饱和性。

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数10 12 4 6 含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

同步练习 2.2.2 杂化轨道理论(人教版选修3) (2)

2.2 分子的立体构型第2课时杂化轨道理论 练基础落实 知识点1杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.关于原子轨道的说法正确的是() A.凡是中心原子采取sp3杂化方式成键的分子其几何构型都是正四面体 B.CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混合起来而形成的 C.sp3杂化轨道是由同一个原子中能量相近的s轨道和p轨道混合起来形成的一组能量相近的新轨道 D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化方式成键 3.根据价层电子对互斥理论及原子的杂化理论判断NF3分子的空间构型和中心原子的杂化方式为() A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 知识点2利用杂化轨道判断分子的空间构型 4.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2与SO2B.CH4与NH3 C.BeCl2与BF3D.C2H2与C2H4 5.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取sp3杂化的分子,其几何构型可能是四面体形或三角锥形或V形 D.AB3型的分子空间构型必为平面三角形 6.下列分子的空间构型可用sp2杂化轨道来解释的是() ①BF3②CH2===CH2③④CH≡CH ⑤NH3⑥CH4 A.①②③B.①⑤⑥C.②③④D.③⑤⑥ 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s—p σ键 D.CH4分子中的碳原子以4个sp3杂化轨道分别与4个氢原子的1s轨道重叠,形成C—H σ键

高中化学 课时分层作业13 配合物的形成和应用(含解析)苏教版选修3

课时分层作业(十三) (建议用时:40分钟) [基础达标练] 1.下列物质中不含配位键的是( ) A.NH4Cl B.Na[Al(OH)4] C.Na3AlF6D.NaOH D 2.在[Co(NH3)6]3+中,与中心离子形成配位键的是( ) A.N原子B.H原子 C.Co原子D.N、H两种原子同时 A [本题考查配合物的基本组成。[Co(NH3)6]3+中,中心离子是Co3+,配位原子是N原子。] 3.由配位键形成的离子[Pt(NH3)6]2+和[PtCl4]2-中,两个中心离子铂的化合价是( ) A.+8 B.+6 C.+4 D.+2 D [本题考查中心离子的化合价。经简单计算可知:[Pt(NH3)6]2+和[PtCl4]2-中,两个中心离子铂的化合价都是+2。] 4.向盛有硫酸铜水溶液的试管里加入氨水,首先形成难溶物,继续添加氨水,难溶物溶解得到深蓝色的透明溶液。下列对此现象说法正确的是( ) A.反应后溶液中不存在任何沉淀,所以反应前后Cu2+的浓度不变 B.沉淀溶解后,将生成深蓝色的配合物离子[Cu(NH3)4]2+ C.向反应后的溶液中加入乙醇,溶液没有发生变化 D.在[Cu(NH3)4]2+中,Cu2+提供孤电子对,NH3提供空轨道 B [反应后所得溶液呈蓝色是因为其中生成了[Cu(NH3)4]2+,由于形成了配离子,Cu2+失去了原有的性质,Cu2+浓度减小,A不正确,B正确;反应后加极性小的乙醇,会生成深蓝色晶体,C不正确;在[Cu(NH3)4]2+中Cu2+作中心原子提供空轨道,NH3作配位体提供孤电子对,D 不正确。] 5.下列不是配位化合物的是( ) A.[Co(NH3)6]3+B.[Ag(NH3)2]NO3 C.CuSO4·5H2O D.FeCl3 D [C项实为[Cu(H2O)4]SO4·H2O;过渡金属离子(Co3+、Ag+、Cu2+)提供空轨道,H2O、NH3提供孤电子对通过配位键形成配合物;FeCl3不属于配合物。] 6.Co(Ⅲ)的八面体配合物为CoCl m·n NH3,若1 mol该配合物与AgNO3作用生成1 mol AgCl 沉淀,则m、n的值是( ) A.m=1,n=5 B.m=3,n=4

相关主题
文本预览
相关文档 最新文档