当前位置:文档之家› 同步练习 2.2.2 杂化轨道理论(人教版选修3) (2)

同步练习 2.2.2 杂化轨道理论(人教版选修3) (2)

同步练习 2.2.2 杂化轨道理论(人教版选修3) (2)
同步练习 2.2.2 杂化轨道理论(人教版选修3) (2)

2.2 分子的立体构型第2课时杂化轨道理论

练基础落实

知识点1杂化轨道

1.下列有关杂化轨道的说法不正确的是()

A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道

B.轨道数目杂化前后可以相等,也可以不等

C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理

D.杂化轨道可分为等性杂化轨道和不等性杂化轨道

2.关于原子轨道的说法正确的是()

A.凡是中心原子采取sp3杂化方式成键的分子其几何构型都是正四面体

B.CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混合起来而形成的

C.sp3杂化轨道是由同一个原子中能量相近的s轨道和p轨道混合起来形成的一组能量相近的新轨道

D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化方式成键

3.根据价层电子对互斥理论及原子的杂化理论判断NF3分子的空间构型和中心原子的杂化方式为()

A.直线形sp杂化B.三角形sp2杂化

C.三角锥形sp2杂化D.三角锥形sp3杂化

知识点2利用杂化轨道判断分子的空间构型

4.下列分子中的中心原子杂化轨道的类型相同的是()

A.CO2与SO2B.CH4与NH3

C.BeCl2与BF3D.C2H2与C2H4

5.下列说法中正确的是()

A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果

B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道

C.中心原子采取sp3杂化的分子,其几何构型可能是四面体形或三角锥形或V形

D.AB3型的分子空间构型必为平面三角形

6.下列分子的空间构型可用sp2杂化轨道来解释的是()

①BF3②CH2===CH2③④CH≡CH

⑤NH3⑥CH4

A.①②③B.①⑤⑥C.②③④D.③⑤⑥

7.下列推断正确的是()

A.BF3为三角锥形分子

B.NH+4的电子式为,离子呈平面正方形结构

C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s—p σ键

D.CH4分子中的碳原子以4个sp3杂化轨道分别与4个氢原子的1s轨道重叠,形成C—H σ键

8.下列分子中的中心原子的杂化方式为sp杂化,分子的空间结构为直线形且分子中没有形成π键的是()

A.CH≡CH B.CO2C.BeCl2D.BF3

练综合拓展

9.有关乙炔分子中的化学键描述不正确的是()

A.两个碳原子采用sp杂化方式

B.两个碳原子采用sp2杂化方式

C.每个碳原子都有两个未杂化的2p轨道形成π键

D.两个碳原子形成两个π键

10.苯分子(C6H6)为平面正六边形结构,下列有关苯分子的说法错误的是()

①苯分子中的中心原子C的杂化方法为s p2杂化②苯分子内的共价键键角为120°③苯分子中的共价键的键长均相等④苯分子的化学键是单、双键相交替的结构A.①②B.①③C.②③D.③④

11.下列关于苯分子的性质描述错误的是()

A.苯分子呈平面正六边形,六个碳碳键完全相同,键角皆为120°

B.苯分子中的碳原子采取sp2杂化,6个碳原子中未参与杂化的2p轨道以“肩并肩”形式形成一个大π键

C.苯分子中的碳碳键是介于单键和双键之间的一种特殊类型的键

D.苯能使溴水和酸性KMnO4溶液褪色

12.

如图是乙烯分子的模型,对乙烯分子中的化学键分析正确的是()

A.sp2杂化轨道形成σ键、未杂化的2p轨道形成π键

B.sp2杂化轨道形成π键、未杂化的2p轨道形成σ键

C.C—H之间是sp2形成的σ键,C—C之间是未能参加杂化的2p轨道形成的π键D.C—C之间是sp2形成的σ键,C—H之间是未参加杂化的2p轨道形成的π键

13.甲醛分子的结构式为,下列描述正确的是()

A.甲醛分子中有4个σ键

B.甲醛分子中的C原子为sp3杂化

C.甲醛分子中的O原子为sp杂化

D.甲醛分子为平面三角形,有一个π键垂直于三角形平面

14.在BrCH===CHBr分子中,C—Br键采用的成键轨道是()

A.sp—p B.sp2—s C.sp2—p D.sp3—p

15.化合物YX2、ZX2中X、Y、Z都是前三周期元素,X与Y同周期,Y与Z同主族,Y元素的最外层p轨道上的电子数等于前一电子层电子总数;X原子最外层的p轨道中有一个轨道填充了2个电子。则

(1)X元素基态原子的电子排布式是__________________,Y原子的价层电子的电子排

布图是_________________________________________________。

(2)YX2的分子构型是____________。

(3)YX2分子中,Y原子的杂化类型是__________,一个YX2分子中含________个π键。

16.有A、B、C、D、E五种短周期元素,其中A、B、C属于同一周期,A原子最外

层p能级的电子数等于次外层的电子总数;B原子最外层中有两个不成对的电子;D、E原子核内各自的质子数与中子数相等;B元素可分别与A、C、D、E生成RB2型化合物,并知在DB2和EB2中,D与B的质量比为7∶8,E与B的质量比为1∶1。试回答:

(1)写出D元素基态原子的电子排布式:____________________________________。

(2)写出AB2的路易斯结构式:__________________。

(3)B、C两元素的第一电离能大小关系为________>________(填元素符号),原因是

________________________________________________________________________ ________________________________________________________________________。

(4)根据VSEPR模型预测C的氢化物的立体结构为________,中心原子C的轨道杂化

类型为________。

(5)C的单质分子中π键的数目为________,B、D两元素的气态氢化物的稳定性大小关

系为________>________(填化学式)。

参考答案

1.B[原子轨道形成杂化轨道前后,轨道数目不变化,用于形成杂化轨道的原子轨道的能量相近,并满足最大重叠程度。]

2.C

3.D[判断分子的杂化方式要根据中心原子的孤电子对数以及与中心原子相连的原子个数。在NF3分子中,N原子的孤电子对数为1,与其相连的原子数为3,所以根据理论可推知中心原子的杂化方式为sp3杂化,空间构型为三角锥形,类似于NH3。] 4.B[A项中CO2为sp杂化,SO2为sp2杂化,A项错;B项中均为sp3杂化,B项正确;C项中BeCl2为sp杂化,BF3为sp2杂化,C项错;D项中C2H2为sp杂化,C2H4为sp2杂化,D项错。]

5.C[PCl3分子中心磷原子上的价电子对数=σ键电子对数+孤电子对数=3+5-3×1

=4,因此PCl3分子中磷原子以sp3杂化,选项A错误;sp3杂化轨道是原子最外电2

子层上的s轨道和3个p轨道“混合”起来,形成能量相等、成分相同的4个轨道,故选项B错误;一般中心原子采取sp3杂化的分子所得到的空间构型为四面体形,如甲烷分子,但如果有杂化轨道被中心原子上的孤电子对占据,则构型发生变化,如NH3、PCl3分子是三角锥形,H2O分子是V形,故选项D错误,C正确。]

6.A

7.D[BF3为平面三角形,NH+4为正四面体形,CH4分子中碳原子的2s轨道与2p轨道形成4个sp3杂化轨道,然后与氢的1s轨道重叠,形成4个s-sp3σ键。] 8.C9.B

10.D[由于苯分子的结构为平面正六边形,可以说明分子内的键角为120°,所以中心原子的杂化方式均为sp2杂化,所形成的碳碳共价键是完全相同的。其中碳碳键的键长完全相同,而与碳氢键的键长不相等。]

11.D12.A

13.D[从结构式看,甲醛分子为平面三角形,所以中心原子C应为sp2杂化,形成三个杂化轨道,分别与O原子和两个H原子形成σ键,还有一个未参与杂化的p轨道与O原

子形成π键,该π键垂直于杂化轨道的平面,O 原子不是中心原子,不发生轨道杂化。 ]

14.C [分子中的两个碳原子都是采用sp 2杂化,溴原子的价电子排布为4s 24p 5,4p 轨道上有一个单电子,与碳原子的一个sp 2杂化轨道成键。]

15.(1)1s 22s 22p 4

(2)直线形 (3)sp 杂化 2 解析 解此类题,首先从信息中寻找突破口,如:Y 属于短周期元素,Y 元素的最外层p 轨道上的电子数等于前一电子层电子总数,可判断p 轨道上有2个电子,Y 为碳元素;X 原子最外层的p 轨道中有一个轨道填充了2个电子,则p 轨道上有4个电子,根据X 、Y 同周期可知X 为氧元素;s p 杂化得到夹角为180°的直线形杂化轨道,所以CO 2的分子构型为直线形,Y 原子的杂化类型为sp 杂化;双键中一个是σ键,一个是π键,CO 2的结构式为OCO ,故含2个π键。

16.1s 22s 22p 63s 23p 2 (2)

(3)N O N 原子最外层的电子处于半充满状态,比较稳定 (4)三角锥形 sp 3杂化

(5)2 H 2O SiH 4

解析 阅读题干寻找突破口,如A 原子最外层p 能级的电子数等于次外层的电子总数,可知A 原子的核外电子排布为1s 22s 22p 2,A 为碳元素;然后顺藤摸瓜,如A 、B 、C 属于同

一周期,B 原子最外层中有两个不成对的电子,可知B 为氧元素;DB 2中7M (D )∶816

=1∶2,可知M (D)=28,D 中质子数等于中子数,可知D 为硅元素,同理可知E 为硫元素。

杂化轨道详细解说

高中化学7:杂化轨道 1、概念理解 原子在形成分子时,原子轨道不可能只重叠而本身不变,实际上个原子的价电子运动状态必然改变,而使成键能力尽可能增加,体系能量尽可能降低。能量相近的不同原子轨道重新合成相同数目的新原子轨道。通常有sp型、dsp型、spd型等。 杂化并非一个实际过程,而是一个数学概念。为了得到波动方程有关价层电子的解,及波函数而采取的一个步骤。 和原有的s、p轨道相比,杂化轨道分布图具有一个肥大的正瓣,这一区域大大有利于成键轨道之间的重叠。而且杂化轨道空间分布合理,降低了成键电子的排斥。2个方面都有利于体系能量的下降。 2、价层电子对互斥理论(VSEPR理论)对轨道形状的推测2.1、价层电子对互斥理论(VSEPR理论): 对于一个ABm型分子(或离子),围绕中心A原子的价层对子对(包括成键电子对和未成键的孤电子对)的空间分布是受静电相互作用所支配。电子对之间尽可能互相远离,这样斥力小,体系趋于稳定。 2.2、A原子价层电子对数的确定: [A原子价层电子数 + B原子提供的用于形成共价单键的电子数(双剑、三键均按生成一个单键考虑)]/2 若是阴离子,电子数要加阴离子电荷数,阳离子则要减去。 B是H或卤素元素,每个原子提供一个共用电子。 B若是是氧族元素,规定不提供共用电子。

四氯化碲TeCl4分子:Te有6个价层电子,加上4个Cl提供的共用电子,中心Te原子价层电子数等于10,对数为5。 SO42-离子:S有6个价层电子,规定O原子不提供共用电子,加上离子电荷数2,中心S原子价层电子数等于8,对数为4。 2.3、VSEPR理论推测分子形状: 判断非过渡元素化合物的分子(或离子)的几何构型是相当成功的。价层电子对数在4以内,未发现例外;价层电子对数为5、6时,发现个别例外;价层电子对数为7以上时,中心不单一,出入较大;步骤:1、确定中心原子的价层电子对数 2、确定价层电子对对应的最佳分布构型:2直线、3平面三角、4正四面体、5三角双锥体、6正八面体。 3、依据价层电子对相互作用斥力大小选出最稳定布局。依此布局将配位原子排列在中心原子周围。 电子对之间斥力大小:孤-孤>孤-成>成-成 按照力学分析,很好理解。 2个同等力作用1个点,稳定结构是直线,夹角180度。 3个同等力作用1个点,稳定结构是平面,夹角120度。 4个同等力作用1个点,稳定结构是(正四面体、平面正方体等),正四面体夹角109.5度。 5个同等力作用1个点,稳定结构是三角双锥体 6个同等力作用1个点,稳定结构是正八面体

配合物理论简介化学选修三

实验:展示①CuSO4、②CuCl2·2H2O、③NaCl、④K2SO4固体的颜色,将它们溶于水,观察水溶液的颜色。 现象:CuSO4、CuCl2的溶液呈天蓝色,NaCl、K2SO4的溶液为无色。 思考:1)固态时,Cu2+、SO42-、Cl-呈什么颜色? 2)水溶液中,Cu2+、SO42-、Cl-呈什么颜色? 3)为什么Cu2+在固态时和水溶液中的颜色不同? 1、配位键: (1)概念:共用电子对由一个原子单方向提供给另一原子共用所形成的共价键。 (2)表示: A → B 电子对给予体电子对接受体 (3)条件:其中一个原子必须提供孤对电子,另一原子必须有能接受孤对的原子轨道。 举例:H3O+ () NH4+() 2、配位化合物 (1)概念:金属离子或原子与某些分子或离子以配位键结合而形成的化合物称为配位化合物,简称配合物。 作为电子对接受体的金属离子或原子称为中心离子(原子),又称配合物的形成体,作为电子对给予体的分子或离子称为配体。

[Cu(H2O)4]2+的空间结构为平面正方形。 (2)配合物的结构 [Cu(NH3)4]SO4为例说明。 注意:离子型配合物是由内界和外界组成,内界由中心离子和配体组成。 (3)配合物的命名 例如:[Cu(NH3)4]SO4硫酸四氨合铜 练习:对下列配合物进行命名 [Cu(NH3)4]Cl2K3[Fe(SCN)6] Na3[AlF6] 3、几种常见的配合物 实验:硫酸四氨合铜的制备。 现象:向CuSO4溶液中加入氨水,生成蓝色沉淀,继续加入氨水,沉淀溶解,得到深蓝色溶液。再加入乙醇,析出深蓝色的晶体。 有关反应的离子方程式为:

新高中化学 2.2.3配合物理论简介课后作业 新人教版选修3

第3课时配合物理论简介 [目标要求] 1.掌握配位键概念及其形成条件。2.知道配位化合物的形成及应用。3.知道几种常见配离子:[Cu(H2O)4]2+、[Cu(NH3)4]2+、[Fe(SCN)2]+、[Ag(NH3)2]+等的颜色及性质。 一、配位键 1.概念 [Cu(H2O)4]2+读做________________,呈________色。在此离子中铜离子与水分子之间的化学键是由水分子提供____________给铜离子,铜离子接受水分子提供的孤电子对形成的,这类特殊的________键称为配位键。 2.表示 配位键可以用A→B来表示,其中A是________孤电子对的原子,叫做电子给予体;B 是________电子的原子,叫做电子接受体。 3.形成条件 配位键的形成条件是:(1)一方____________,(2)一方____________。 二、配位化合物 1.配位化合物 通常把金属离子(或原子)与某些分子或离子(称为配体)以________结合形成的化合物称为配位化合物。 2.各组成名称 [Cu(H2O)4]2+中Cu2+称为____________,H2O称为________,4称为____________。 三、与配位键有关的几个重要反应 1.完成下列反应 (1)Cu2++2NH3·H2O===________________。 (2)Cu(OH)2+4NH3·H2O===________________________________。 2.向氯化铁溶液中加入一滴硫氰化钾溶液,现象为______________。离子方程式为________________________________________________。 3.氨气与盐酸反应的离子方程式为________________________,铵根离子中的化学键类型是________________________,立体构型是________________。氮原子的杂化方式是________________。 4.AgCl+2NH3·H2O===______________________。 5.AgNO3+NH3·H2O===________________, AgOH+2NH3·H2O===________________________________________。

关于中心原子杂化轨道数的计算方法

第26卷第3期2011年6月 大学化学 UNIVERSITY CHEMISTRY Vol.26No.3 Jun.2011关于中心原子杂化轨道数的计算方法 苏金昌 (大庆教育中心黑龙江大庆163001) 摘要对于H m AB n 型的共价分子(或离子),本文提出用公式G=V/2-3n计算中心原子A的杂化轨道 数,并由此确定对应的杂化轨道类型。该方法简单、直接、有效。 关键词中心原子价层电子总数杂化轨道数杂化轨道类型 杂化轨道理论是大学化学的重要基础理论之一,主要用来讨论共价分子(或离子)的成键情况以及预测其几何构型或阐述其物理化学性质。对于如何判定给定的分子(或离子)的中心原子轨道杂化方式,在杂化轨道理论里并没有系统论述,导致在应用杂化轨道理论教与学时遇到困难。为了有利于应用杂化轨道理论阐述相关问题,本文给出一个有关中心原子杂化轨道数的计算公式,并根据计算得出的杂化轨道数确定对应的杂化轨道类型。 1中心原子杂化轨道数的计算公式 在H m AB n型共价分子(或离子)中,设A为选定的中心原子,H为与A直接相连的氢原子(或氢离子)配位体,B为与A直接相连的非氢原子及其离子(或价电子数不大于8的原子团及其离子,如OH 与OH-)配位体;n、m分别为B、H的数目(即配位数);V为H m AB n型分子(或离子)的价电子总数,即所有原子(m个H、1个A和n个B)的价电子数之代数和。计算价电子总数V时应该注意的是:对于阴离子要再加上所带的电荷数,例如,PO3-4的价电子总数V=5+6?4+3=32;对于阳离子要再减去所带的电荷数,例如,NH4+的价电子总数V=5+1?4-1=8。 根据价键理论,在共价分子(或离子)中,氢原子(H)的价层一般满足2电子的稳定结构,而非氢原子(B)的价层一般满足8电子的稳定结构。当每个H、B都通过一个双电子的σ键与A共享2个电子时,满足2电子稳定结构的每个H的价电子就都参与了双电子σ键的形成,并没有剩余未成键的价电子;而每个B的价层8个电子中除了有2个是与中心原子A共用的σ键电子外,还有6个是未参与双电子σ键的电子,n个B共有6n个电子未参与σ键形成。那么,对于H m AB n的V个价电子中余下的(V-6n)个价电子,如果假定它们都有在A与B、A与H之间形成双电子σ键的倾向,则中心原子A倾向参与形成双电子σ键的最大数为:(V-6n)/2,即V/2-3n。 假定在共价分子(或离子)中,中心原子键合时之所以进行轨道杂化,其主要目的是最大限度地促进中心原子与配位体之间形成更多牢固的σ键,即尽可能地促使σ键的数目倾向于最大。因为“头碰头”式重叠的σ键越多、越牢固,构成的分子(或离子)就越稳定。可见,中心原子倾向参与形成σ键的最大数与其杂化轨道数之间存在着对应关系。若令G表示中心原子A的杂化轨道数,则计算中心原子杂化轨道数的公式可写为: G=V/2-3n(1)由式(1)可知,G的大小与V、n有关。即对于H m AB n型分子(或离子),其中心原子(A)的杂化轨道数(G),由分子(或离子)的价电子总数(V)和非氢配位体数目(n)决定。 (1)计算得出的中心原子的杂化轨道数及其杂化轨道类型、杂化轨道空间取向的对应关系归

高中参考资料化学人教版选修3 第二章 训练4 杂化轨道理论

训练4杂化轨道理论 [基础过关] 一、原子轨道杂化与杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.下列关于杂化轨道的叙述正确的是() A.杂化轨道可用于形成σ键,也可用于形成π键 B.杂化轨道可用来容纳未参与成键的孤电子对 C.NH3中N原子的sp3杂化轨道是由N原子的3个p轨道与H原子的s轨道杂化而成的 D.在乙烯分子中1个碳原子的3个sp2杂化轨道与3个氢原子的s轨道重叠形成3个C—H σ键二、杂化轨道类型及其判断 3.根据价层电子对互斥理论及原子的杂化轨道理论判断NF3分子的立体构型和中心原子的杂化方式为 () A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 4.在BrCH===CHBr分子中,C—Br键采用的成键轨道是() A.sp—p B.sp2—s C.sp2—p D.sp3—p 5.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2和SO2B.CH4和NH3 C.BeCl2和BF3D.C2H2与C2H4 三、杂化轨道类型与分子构型 6.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取s p3杂化的分子,其立体构型可能是四面体形或三角锥形或V形 D.AB3型的分子立体构型必为平面三角形 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为[H··N H , H · · H]+,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s-p σ键D.甲醛分子为平面三角形,有一个π键垂直于三角形平面 8.甲烷分子(CH4)失去一个H+,形成甲基阴离子(CH-3),在这个过程中,下列描述不合理的是

杂化轨道理论(图解)

杂化轨道理论(图解)一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数101246含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特和美国的马利肯两位化学家提出分子轨道理论,简称MO理论。马利肯由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

人教版高中数学选修三分子的立体构型练习题

高中化学学习材料 (精心收集**整理制作) 第二节分子的立体结构(第一课时) 【案例练习】 1、下列物质中,分子的立体结构与水分子相似的是() A、CO2 B、H2S C、PCl3 D、SiCl4 2、下列分子的立体结构,其中属于直线型分子的是() A、H2O B、CO2 C、C2H2 D、P4 3、写出你所知道的分子具有以下形状的物质的化学式,并指出它们分子中的键角分别是多少?(1)直线形 (2)平面三角形 (3)三角锥形 (4)正四面体 4、下列分子中,各原子均处于同一平面上的是() A、NH3 B、CCl4 C、H2O D、CH2O 参考答案: 第二节分子的立体结构(第二课时) 【案例练习】 1、下列分子中心原子是sp2杂化的是() A、PBr3 B、CH4 C、BF3 D、H2O 2、氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是因为 A.两种分子的中心原子的杂化轨道类型不同,NH3为sp2型杂化,而CH4是sp3型杂化 B.NH3分子中N原子形成三个杂化轨道,CH4分子中C原子形成4个杂化轨道 C.NH3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强 D.氨气分子是极性分子而甲烷是非极性分子 3、用Pauling的杂化轨道理论解释甲烷分子的四面体结构,下列说法不正确的是() A、C原子的四个杂化轨道的能量一样 B、C原子的sp3杂化轨道之间夹角一样 C、C原子的4个价电子分别占据4个sp3杂化轨道 D、C原子有1个sp3杂化轨道由孤对电子占据 4、用VSEPR 理论判断 物质成键电子对数孤电子对数分子或离子的形状 H2O NH4+ BF3

H3O+ 参考答案: 第二节分子的立体结构(第三课时) 【案例练习】 1、在[Cu(NH3)4]2+配离子中NH3与中心离子Cu2+结合的化学键是 A.离子键 B.非极性键 C.极性键 D.配位键 2、与人体血液中血红蛋白以配位键结合的一种有毒气体是 A.氯气 B.氮气 C.一氧化碳 D.甲烷 3、向盛有硫酸铜水溶液的试管里加入氨水,首先形成难溶物,继续添加氨水,难溶物 溶解得到深蓝色的透明溶液。下列对此现象说法正确的是 A.反应后溶液中不存在任何沉淀,所以反应前后Cu2+的浓度不变。 B.沉淀溶解后,将生成深蓝色的配合离子[Cu(NH3)4] 2+。 C.向反应后的溶液加入乙醇,溶液将会没有发生变化,因为[Cu(NH3)4] 2+不会与乙醇发生反应。 D.在[Cu(NH3)4] 2+离子中,Cu2+给出孤对电子,NH3提供空轨道。 4、下列属于配合物的是() A、NH4Cl B、Na2CO3﹒10H2O C、CuSO4﹒5H2O D、Co(NH3)6Cl3 参考答案:1D 2C 3B 4D 5B

(完整版)中心原子杂化轨道类型的判断方法

中心原子杂化轨道类型的判断方法 徐长明(湖北省十堰市房县第三中学442100) 摘要:杂化轨道理论能解释大多数分子的几何构型及价键结构。在使用该理论时,首先必须确定中心原子的杂化类型,在未知分子构型的情况下,判断中心原子杂化轨道类型有时比较 困难,成为教学难点。 关键词:杂化轨道理论;价层电子对互斥理论;等电子原理 高中化学选修模块《物质结构与性质》(人教版)中介绍了杂化轨道理论,这一重要理论能解释大多数分子几何构型及价键结构。在使用该理论时,首先必须确定中心原子的杂化形式,在未知分子构型的情况下,判断中心原子杂化轨道类型有时比较困难,成为教学难点。下面总结几种高中阶段判断中心原子杂化轨道类型的方法。 一、根据价层电子对互斥理论判断 教材中介绍了价层电子对互斥理论,根据该理论能够比较容易而准确地判断AB m型共价化合物分子或离子的空间构型和中心原子杂化轨道类型。中心原子的价电子对数与价电子对的几何分布、中心原子杂化 轨道类型的对应关系如下表(价电子对数>4 的,高中阶段不作要求)。 运用该理论的关键是能准确计算出中心原子的价 电子对数,其计算方法是: 1.价电子对数n =σ键的电子对和中心原子上的孤电子对,中心原子上的孤电子对数=1/2(a-xb) 2.σ键的电子对可由分子式确定。例如,H20中0有2对σ键电子对;NH3中N有3对σ键电子对 3.式中a为中心原子的价电子数对于主族元素,中心原子(A)的价电子数=最外层电子数;x为与中心原子结合的原子数;b为与中心原子结合的原子最多能接受的电子数,氢为1 ,其他原子等于“8-该原子的价电子数”。离子在计算价电子对数时,还应加上负离子的电荷数或减去正离子的电荷数(绝对值) 4.杂化轨道由形成σ键的电子对和孤电子对占据,因此分子或离子的空间构型为杂化轨道构型去掉孤电子对后剩余的形状。 例如:指出下列分子或离子的中心原子的杂化轨道类型,并预测它们的空间构型: ⑴BeCl2 ⑵SO3 ⑶NH4+ 解析:⑴是AB2型分子,BeCl2 的价电子对数 n=1/2(2-2×1)+2=2,Be 采用sp 杂化,无孤电子对,故分子呈直线型; ⑵是AB3型分子,SO3的价电子对数n=1/2(6-3×2)+3=3,S 采用sp2杂化,无孤电子对,故分子呈平面三角形 ⑶是AB4 型离子,NH4+的价电子对数n=1/2(5-1-4×1)+4=4,N 采用sp3杂化,无孤电子对,故分子呈正四面体 二、根据分子的空间构型判断

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数10 12 4 6 含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

同步练习 2.2.2 杂化轨道理论(人教版选修3) (2)

2.2 分子的立体构型第2课时杂化轨道理论 练基础落实 知识点1杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.关于原子轨道的说法正确的是() A.凡是中心原子采取sp3杂化方式成键的分子其几何构型都是正四面体 B.CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混合起来而形成的 C.sp3杂化轨道是由同一个原子中能量相近的s轨道和p轨道混合起来形成的一组能量相近的新轨道 D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化方式成键 3.根据价层电子对互斥理论及原子的杂化理论判断NF3分子的空间构型和中心原子的杂化方式为() A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 知识点2利用杂化轨道判断分子的空间构型 4.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2与SO2B.CH4与NH3 C.BeCl2与BF3D.C2H2与C2H4 5.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取sp3杂化的分子,其几何构型可能是四面体形或三角锥形或V形 D.AB3型的分子空间构型必为平面三角形 6.下列分子的空间构型可用sp2杂化轨道来解释的是() ①BF3②CH2===CH2③④CH≡CH ⑤NH3⑥CH4 A.①②③B.①⑤⑥C.②③④D.③⑤⑥ 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s—p σ键 D.CH4分子中的碳原子以4个sp3杂化轨道分别与4个氢原子的1s轨道重叠,形成C—H σ键

2018-2019学年高中化学选修3练习:第二章第二节第2课时杂化轨道理论与配合物理论简介

第二章第二节第2课时杂化轨道理论与配合物理论简介知识点一杂化轨道理论的考查 1.下列关于杂化轨道的说法错误的是() A.并不是所有的原子轨道都参与杂化 B.同一原子中能量相近的原子轨道参与杂化 C.杂化轨道能量集中,有利于牢固成键 D.杂化轨道中一定有电子 2.下列描述正确的是() A.CS2为V形极性分子 B.SiF4与S的中心原子均为sp3杂化 C.C2H2中σ键与π键的数目比为1∶1 D.水加热到很高温度都难分解是因水分子间存在氢键 3.下列分子中画横线的原子采取的杂化方式为sp杂化的是() A.CH4 B.C2H4 C.C2H2 D.NH3 知识点二配合物理论的考查 4.以下微粒含配位键的是() ①N2②CH4③OH-④N⑤Fe(CO)5⑥Fe(SCN)3⑦H3O+⑧[Ag(NH3)2]OH A.①②④⑦⑧ B.③④⑤⑥⑦ C.①④⑤⑥⑦⑧ D.全部

5.化合物NH3与BF3可以通过配位键形成NH3·BF3。 (1)配位键的形成条件是。 (2)在NH3·BF3中,原子提供孤电子对,原子提供空轨道。 (3)写出NH3·BF3的结构式并用“→”标出配位键:。 6.[2019·福建华安一中开学考试]下列说法中正确的是() A.SO2、CO2、SiO2中的S、C、Si均为sp3杂化 B.H3O+、N、[Cu(NH3)4]2+均含有配位键 C.S、C、Si均为平面三角形 D.NH3、CH4中的N、C分别为sp2、sp3杂化,因此分子空间构型不同 7.下列描述中正确的是() A.Cl的空间构型为平面三角形 B.SiF4和S的中心原子均为sp3杂化 C.在所有的元素中,氟的第一电离能最大 D.C2H5OH分子中共含有8个极性键,1个π键 8.分析原子的杂化方式,并根据等电子体原理判断下列各组分子中的所有原子处于同一平面,或者在一条直线上的是() A.C2H2、HClO、C2H6 B.CO2、N2O、HC≡C—NH2 C.C6H5CH3、C3H4、CH4 D.C6H6、C2H4、HCN 9.甲醛分子的结构式为,下列描述正确的是() A.甲醛分子中有4个σ键 B.甲醛分子中的C原子为sp3杂化

[高中化学]同步练习 2.2.3 配合物理论简介 (人教版选修3)

2.2 分子的立体构型第3课时配合物理论简介 练基础落实 知识点1配位键 1.下列各种说法中错误的是() A.形成配位键的条件是一方有空轨道,一方有孤电子对 B.配位键是一种特殊的共价键 C.配位化合物中的配体可以是分子也可以是阴离子 D.共价键的形成条件是成键原子必须有未成对电子 2.下列分子或离子中都存在着配位键的是() A.NH3、H2O B.NH+4、H3O+ C.N2、HClO D.[Cu(NH3)4]2+、PCl3 3.既有离子键又有共价键和配位键的化合物是() A.NH4NO3B.NaOH C.H2SO4D.H2O 知识点2配合物 4.下列过程与配合物的形成无关的是() A.除去Fe粉中的SiO2可用强碱溶液 B.向一定量的AgNO3溶液中加入氨水至沉淀消失 C.向FeCl3溶液中加入KSCN溶液 D.向一定量的CuSO4溶液中加入氨水至沉淀消失 5.下列不属于配合物的是() A.[Cu(H2O)4]SO4·H2O B.[Ag(NH3)2]OH C.KAl(SO4)2·12H2O D.Na3[AlF6] 6.下列化合物中哪些是配合物() ①CuSO4·5H2O②K2PtCl6③KCl·CuCl2 ④Cu(NH2CH2COO)2⑤KCl·MgCl2·6H2O ⑥Cu(CH3COO)2 A.①③④⑥B.②③⑤ C.①②D.①③⑤ 知识点3配合物的结构 7.已知Zn2+的4s轨道和4p轨道可以形成sp3杂化轨道,那么[ZnCl4]2-的空间构型为() A.直线形B.平面正方形 C.正四面体形D.正八面体形 知识点4配合物的性质 8.向下列配合物的水溶液中加入AgNO3溶液不能生成AgCl沉淀的是() A.[Co(NH3)4Cl2]Cl B.[Co(NH3)3Cl3] C.[Co(NH3)6]Cl3D.[Co(NH3)5Cl]Cl2 9.某物质的实验式为PtCl4·2NH3,其水溶液不导电,加入AgNO3溶液反应也不产生沉淀,以强碱处理并没有NH3放出,则关于此化合物的说法中正确的是() A.配合物中中心原子的电荷数和配位数均为6 B.该配合物可能是平面正方形结构 C.Cl-和NH3分子均与Pt4+配位 D.配合物中Cl-与Pt4+配位,而NH3分子不配位 练综合拓展 10.对盐类物质可有下列分类:如氯化硝酸钙[Ca(NO3)Cl]是一种混盐,硫酸铝钾KAl(SO4)2是一种复盐,冰晶石(六氟合铝酸钠)Na3AlF6是一种络盐.对于组成为CaOCl2的盐可

杂化轨道计算解读

二种计算杂化轨道数的方法 方法一: 公式:杂化轨道数=[中心原子价电子数+ 配原子数-π键数-电荷数]/2 例1:SO2(6+2-2)/2=3 sp2杂化。 说明:S的价电子数6;配原子为2个氧原子,氧为二价,所以硫与氧间为双键,其一为π键,共二个π键。 例2:SO3(6+3-3)/2=3 sp2杂化。(解析同上,下同)。 例3:SO32-(6+3-3+2)/2=4 sp3杂化。(SO32-带二个单位负电荷)。 例4:SO42-(6+4-4+2)/2=4 sp3杂化。 例5:CN-(4+1-2+1)/2=2 sp1杂化。(氮元素为三价,所以碳氮间为叁键,其中有二个π键) 例6:NH4+(5+4-1)/2=4 sp3杂化。 例7:ClO3-(7+3-3+1)/2=4 sp3杂化。 例8:PO33-(5+3-3+3)/2=4 sp3杂化。 例9:PO43-(5+4-4+3)/2=4 sp3杂化。 例10:H-N=N-H (5+2-1)/2=3 sp2杂化。 练习:sp1杂化:BeCl2、CO2;sp2杂化:BF3、HCHO(中心原子为C:(4+3-1)/2=3; sp3杂化CH4、NH3、H2O。 方法二:因为杂化轨道只能用于形成σ键或用来容纳孤电子对,故有:公式:杂化轨道数=中心原子价层电子对数(成键电子对数+孤电子对数) 价层电子对数中心原 子杂化 类型 电子对 的空间 构型 成键电 子对数 孤电 子 对数 分子的 空间构 型 实例 2 sp 直线 2 0 直线BeCl2、CO2 3 sp2三角形3 0 三角形BF3、SO3 2 1 V形SnBr2、PbCl2 4 sp3四面体4 0 四面体CH4、CCl4 3 1 三角锥NH3、PCl3 2 2 V形H2O

高中化学配合物教学案选修3

配合物的形成 复习: 1. 孤电子对:分子或离子中, 就是孤电子对. 2. 配位键的概念:在共价键中,若电子对是由而跟另一个原子共用,这样的共价键叫做配位键。 成键条件:一方有另一方有。 3.写出下列微粒的结构式 NH4+ H3O+ H2SO4HNO3 [Cu(H2O) 4]2+的结构简式为: 在四水合铜离子中,铜离子与水分子之间的化学键是由水分子中的O原 子提供孤对电子对给予铜离子(铜离子提供空轨道),铜离子接受水分子的孤 对电子形成的,这类“电子对给予—接受的键”被称为配位键。 [Cu(NH3) 4]2+中Cu 2+和NH3 ?H2O是怎样结合的? 一、配合物: 1、定义 由提供孤电子对的配体与接受孤电子对的中心原子以配位键结合形成的化合物称为配位化合物简称配合物。 2、形成条件 (1) 中心原子(或离子)必须存在空轨道。 (2)配位体具有提供孤电子对的原子。 3、配合物的组成 从溶液中析出配合物时,配离子经常与带有相反电荷的其他离子结合成盐, 这类盐称为配盐。 配盐的组成可以划分为内界和外界。配离子属于内界,配离子以外的其他 离子属于外界。内、外界之间以离子键结合。 A、内界:一般加[ ]表示。 (1)中心原子(或离子)——提供空轨道,接受孤电子对的 原子(或离子),也称形成体。 常见的有: ①过渡元素阳离子或原子,如Fe3+、Fe2+、Cu2+、 Zn2+、Ag+、Ni、 ②少数主族元素阳离子,如Al3+ ③一些非金属元素,如Si、I (2)配位体——指配合物中与中心原子结合的离子或分子。 (配位原子——指配合物中直接与中心原子相联结的配位体中的原子,它含有孤电子对) 常见的有:阴离子,如X-(卤素离子)、OH-、SCN-、CN- 中性分子,如H2O、NH3、CO、 (3)配位数——直接与中心原子相连的配位原子个数。 一般为2、4、6、8,最常见为4、6

杂化轨道

1.总述 1931年,Linus Carl Pauling提出轨道杂化理论。实验事实基础是许多分子的键角不等于原子轨道间夹角。如氧原子与氢原子组成的水分子H-O-H的键角是104.5o,不等于氧的2py与2pz轨道间的夹角90o。类似的,NH3分子中H-N-H的键角也不等于90o,实际测得107.3o。实验测得甲烷分子CH4是四面体结构,H-C-H键角为109.5o。 一个原子中的几个原子轨道经过再分配而组成的互相等同的轨道。原子在化合成分子的过程中,根据原子的成键要求,在周围原子影响下,将原有的原子轨道进一步线性组合成新的原子轨道。这种在一个原子中不同原子轨道的线性组合,称为原子轨道的杂化。杂化后的原子轨道称为杂化轨道。杂化时,轨道的数目不变,轨道在空间的分布方向和分布情况发生改变。组合所得的杂化轨道一般均和其他原子形成较强的σ键或安排孤对电子,而不会以空的杂化轨道的形式存在。在某个原子的几个杂化轨道中,参与杂化的s、p、d等成分相等,称为等性杂化轨道;若不相等,称为不等性杂化轨道。 杂化轨道具有和s,p等原子轨道相同的性质,必须满足正交,归一性。 2. sp3杂化与碳氢、碳碳单键 碳原子的电子构型为1s22s22px12py12pz,其中1s轨道中的两个电子不参与成键。由能量较低的2s轨道与能量较高的3个2p轨道进行杂化,形成4个简并(即能量相同的)的sp3杂化轨道(sp3-hybrid orbital)。每个sp3杂化轨道含有1/4的s轨道成分,3/4的p轨道成分,其能量高于2s轨道,低于2p轨道。 sp3杂化轨道的形状如图所示,四个简并的sp3杂化轨道采取相互尽可能远离的方式在空间排布,从而减少电子间的相互排斥作用,即形成四面体结构,sp3杂化轨道间的夹角为109.5°。每个sp3杂化轨道上各排布一个自旋平行的电子。 甲烷分子中,碳原子以sp3杂化轨道与氢原子的1s轨道成键。所形成的键是沿轨道的轴向方向叠加的,形成的键轴向对称,称为σ键(σ bonds)。4个C—H键的键角等于碳的sp3杂化轨道的键角,即109.5°。整个甲烷分子的形状为四面体,甲烷分子的轨道成键图以及球棍模型、比例模型如下图所示。

新课标高中化学选修3第二节杂化轨道理论配合物理论

第2课时 杂化轨道理论配合物理论 学业要求素养对接 1.能运用杂化轨道理论解释和预测简单分子的立体构型。 2.知道配位键的特点,认识简单的配位化合物的成键特征,了解配位化合物的存在与应用。微观探析:运用杂化轨道理论、配合物理论。 模型认知:根据杂化轨道理论确定简单分子的立体构型、根据配合物理论模型解释配合物的某些典型性质。 [知识梳理] 一、杂化轨道理论简介 1.用杂化轨道理论解释甲烷分子的形成 在形成CH4分子时,碳原子的一个2s轨道和三个2p轨道发生混杂,形成四个能量相等的sp3杂化轨道。四个sp3杂化轨道分别与四个H原子的1s轨道重叠成键形成CH4分子,所以四个C—H键是等同的。可表示为 C原子的杂化轨道 2.杂化轨道的类型与分子立体构型的关系 杂化类型sp sp2sp3 参与杂化的原子轨道及数目n s 1 1 1 n p 1 2 3 杂化轨道数目 2 3 4 杂化轨道 间的夹角 180°120°109°28′

杂化轨道示意图 立体构型直线形 平面 三角形 正四面 体形 实例BeCl2、 CO2、 CS2 BCl3、 BF3、 BBr3 CF4、 SiCl4、 SiH4 【自主思考】 1.用杂化轨道理论分析CH4的杂化类型和呈正四面体形的原因? 提示在形成CH4分子时,碳原子的一个2s轨道与三个2p轨道混杂,形成4个能量相等的sp3杂化轨道,分别与四个氢原子的1s轨道重叠成键形成CH4分子,4个σ键之间作用力相等,键角相等形成正四面体形。 二、配合物理论简介 1.配位键 (1)概念:共用电子对由一个原子单方面提供而跟另一个原子共用的共价键,即“电子对给予-接受键”,是一类特殊的共价键。 (2)实例:在四水合铜离子中,铜离子与水分子之间的化学键是由水分子提供孤电子对给予铜离子,铜离子接受水分子的孤电子对形成的。 (3)表示:配位键可以用A→B来表示,其中A是提供孤电子对的原子,叫做配体;B是接受电子对的原子。例如: ①NH+4中的配位键表示为。 ②[Cu(NH3)4]2+中的配位键表示为。

高中化学 2.2.3 配合物理论简介课时作业 新人教版选修3

【步步高学案导学设计】2014-2015学年高中化学 2.2.3 配合物理 论简介课时作业新人教版选修3 [目标要求] 1.掌握配位键概念及其形成条件。2.知道配位化合物的形成及应用。3.知道几种常见配离子:[Cu(H2O)4]2+、[Cu(NH3)4]2+、[Fe(SCN)2]+、[Ag(NH3)2]+等的颜色及性质。 一、配位键 1.概念 [Cu(H2O)4]2+读做________________,呈________色。在此离子中铜离子与水分子之间的化学键是由水分子提供____________给铜离子,铜离子接受水分子提供的孤电子对形成的,这类特殊的________键称为配位键。 2.表示 配位键可以用A→B来表示,其中A是________孤电子对的原子,叫做电子给予体;B 是________电子的原子,叫做电子接受体。 3.形成条件 配位键的形成条件是:(1)一方____________,(2)一方____________。 二、配位化合物 1.配位化合物 通常把金属离子(或原子)与某些分子或离子(称为配体)以________结合形成的化合物称为配位化合物。 2.各组成名称 [Cu(H2O)4]2+中Cu2+称为____________,H2O称为________,4称为____________。 三、与配位键有关的几个重要反应

1.完成下列反应 (1)Cu2++2NH3·H2O===________________。 (2)Cu(OH)2+4NH3·H2O===________________________________。 2.向氯化铁溶液中加入一滴硫氰化钾溶液,现象为______________。离子方程式为________________________________________________。 3.氨气与盐酸反应的离子方程式为________________________,铵根离子中的化学键类型是________________________,立体构型是________________。氮原子的杂化方式是________________。 4.AgCl+2NH3·H2O===______________________。 5.AgNO3+NH3·H2O===________________, AgOH+2NH3·H2O===________________________________________。 1.下列物质:①H3O+②[B(OH)4]-③CH3COO- ④NH3⑤CH4中存在配位键的是( ) A.①② B.①③ C.④⑤ D.②④ 2.与人体血液中血红蛋白以配位键结合的一种有毒气体是( ) A.氯气 B.氮气 C.一氧化碳 D.甲烷 3.下列各组离子中因有配合离子生成而不能大量共存的是( ) A.K+、Na+、Cl-、NO-3 B.Mg2+、Ca2+、SO2-4、OH- C.Fe2+、Fe3+、H+、NO-3 D.Ba2+、Fe3+、Cl-、SCN- 4.Co(NH3)5BrSO4可形成两种钴的配合物。已知两种配合物的分子式分别为 [Co(NH3)5Br]SO4和[Co(SO4)(NH3)5]Br,若在第一种配合物的溶液中加入BaCl2溶液,现象是__________________;若在第二种配合物的溶液中加入BaCl2溶液,现象是____________,若加入AgNO3溶液时,现象是______________。

高三化学复习 杂化轨道理论之轨道类型和轨道数(教师版)

高三化学复习第一轮 第9讲 杂化轨道理论 之判断杂化轨道类型和计算杂化轨道数 一、AB m 型杂化类型的判断 方法一: 公式: 电子对数n =1 2 (中心原子的价电子数+配位原子的成键电子数±电荷数) 根据n 值判断杂化类型一般有如下规律: 当n =2,sp 杂化;n =3,sp 2杂化;n =4,sp 3杂化; 当n =5, sp3d 杂化;n =6,sp3d2杂化;n =7,sp3d3杂化…… SO 2:n =12(6+0)=3 sp 2杂化 NO -3:n =12(5+1)=3 sp 2杂化 NH 3:n =12(5+3)=4 sp 3 杂化 注意:①当上述公式中电荷数为正值时取“-”,电荷数为负值时取“+”。 ②当配位原子为氧原子或硫原子时,成键电子数为零。 方法二: 公式:杂化轨道数=1/2(中心原子价电子数+ 配原子数-π键数±电荷数) 例1:SO 2 (6+2-2)/2=3 sp 2杂化(S 的价电子数6;配原子为2个氧原子,氧为二价,所以硫与氧间为双键,其一为π键,共二个π键) 例2:SO 3 (6+3-3)/2=3 sp 2 杂化(解析同上,下同) 例3:SO 32- (6+3-3+2)/2=4 sp 3杂化(SO 32-带二个单位负电荷) 例4:SO 42- (6+4-4+2)/2=4 sp 3杂化 例5:CN - (4+1-2+1)/2=2 sp 杂化(氮元素为三价,碳氮间为叁键,其中有二个π键) 例6:NH 4+ (5+4-1)/2=4 sp 3 杂化 例7:ClO 3- (7+3-3+1)/2=4 sp 3杂化 例8:PO 33- (5+3-3+3)/2=4 sp 3杂化 例9:PO 43- (5+4-4+3)/2=4 sp 3杂化 例10:H -N =N -H (5+2-1)/2=3 sp 2杂化。 注意:当上述公式中电荷数为正值时取“-”,电荷数为负值时取“+”。 练习: (1)sp 杂化:BeCl 2、CO 2; (2) sp 2杂化:BF 3 、HCHO(中心原子为C :(4+3-1)/2=3; (3)sp 3杂化:CH 4、NH 3、H 2O 。

人教版选修3第2章 第2节 第2课时 杂化轨道理论、配合物理论作业

课时分层作业(七) 杂化轨道理论、配合物理论 (建议用时:40分钟) [基础达标练] 1.下列说法正确的是( ) A.PCl3分子呈三角锥形,这是磷原子采取sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混杂形成的4个新轨道 C.中心原子采取sp3杂化的分子,其立体构型可能是四面体形或三角锥形或V形 D.AB3型分子的立体构型必为平面三角形 C[PCl3分子的中心原子磷的价层电子对数=σ键电子对数+孤电子对数=3+5-3×1 =4,因此PCl3分子中磷原子采取sp3杂化,A项错误。sp3杂化轨道是原子2 最外电子层上的s轨道和3个p轨道混杂形成的4个新轨道,B项错误。一般采取sp3杂化的分子,其立体构型呈四面体形,但如果有杂化轨道被中心原子上的孤电子对占据,则分子的立体构型会发生变化,如NH3、PCl3分子呈三角锥形,H2O分子呈V形,C 项正确,D项错误。] 2.在BrCH===CHBr分子中,C—Br键采用的成键轨道是( ) A.sp-p B.sp2-s C.sp2-p D.sp3-p C[分子中的两个碳原子都是采用sp2杂化,溴原子的价电子排布式为4s24p5,4p 轨道上有一个单电子,与碳原子的一个sp2杂化轨道成键。] 3.下列说法正确的是( ) A.CHCl3是正四面体形结构,中心原子为sp3杂化 B.H2O分子中氧原子为sp2杂化,其分子立体构型为V形 C.二氧化碳中碳原子为sp杂化,为直线形分子结构 D.NH+4中N原子为sp3杂化,是四边形结构 [答案] C 4.下列关于[Cr(H2O)4Br2]Br·2H2O的说法正确的是( )

相关主题
文本预览
相关文档 最新文档