当前位置:文档之家› 齿轮箱结构原理

齿轮箱结构原理

齿轮箱结构原理
齿轮箱结构原理

齿轮箱结构原理及特点

齿轮箱是风机中的重要部件,其主要作用是将转子轴的旋转加速后带动发电机发电。

齿轮箱除传动部件外还包括检测系统、润滑系统、控制系统、加热系统、冷却系统等。

1.5MW风机使用的齿轮箱为两级行星齿轮传动一级平行轴齿轮传动。

一、行星轮齿轮传动

1.行星轮传动齿轮箱的优点:

1)体积小、质量小,结构紧凑,承载能力大

一般在承受相同的载荷条件下,行星齿轮传动的外廓尺寸和质量约为普通齿轮传动的1/2~1/5。

2)传动效率高

由于行星齿轮传动结构的对称性,使得作用于中心轮和转臂轴承中的反作用力能互相平衡,从而有利于达到提高传动效率的作用。一般其效率值可达

0.97~0.99。

3)传动比较大,

在仅作为传递运动的行星齿轮传动中,其传动比可达到几千。而且行星齿轮传动在其传动比很大时,仍然可保持结构紧凑、质量小、体积小等许多优点。

4)运动平稳、抗冲击和振动的能力较强

由于采用了数个结构相同的行星轮,均匀地分布于中心轮的周围,从而可使行星轮与转臂的受力平衡。同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抵抗冲击和振动的能力较强,工作较可靠。

2.行星齿轮传动的缺点是:

1)材料优质;

2)结构复杂;

3)制造和安装较困难。

3.行星齿轮工作原理

齿圈固定,行星架主动,太阳轮被动。

二、平行轴齿轮传动

为了方便线缆通过低速轴传递到轮毂内,必须将高速轴与低速轴分开,所以齿轮箱的第三级采用平行轴齿轮传动。

三、齿轮箱与转子轴联结

锁紧套结构及原理:

转子轴传入轴套后锁紧螺栓,外环移动对内环产生压力,内环和轴套变形从而使轴套与转子轴间产生预紧压力,安全可靠的传递动力

锁紧套连接的特点:

1. 定心精度高。

2. 安装简单,无需加热、冷却或加压设备。

3. 可传动重载,适合动载荷。连接件没有键槽削弱,靠摩擦力传动,没有相对运动。

4. 有安全保护作用。 过载后转子轴与轴套相对滑动,从而保护齿轮箱、发电机等免受损坏。

南高齿齿轮箱高速轴系安全施工技术方案

齿轮箱高速轴安全施工技术方案 编制:施李华 审核:邓国平 批准:陈振兴 南京高速齿轮制造有限公司 售后服务部 2012年10月24日

1 总则 此维修工艺描述了更换风力发电1.5MW齿轮箱中间轴的基本步骤。本文档中将涉及到以下部件和工作: ●齿轮箱 ●其重要工作 本文中解释了所有必需的指示信息和条件。务必按照所述过程进行操作,以防出现任何损伤并确保准确安装,且无事故发生。 该维修工艺是我公司成熟工艺。尽管如此,在以下情况下,用户或第三方人员仍可能遇到危险,齿轮箱的性能可能受到影响,甚至导致物理损坏: ●齿轮箱维修由未经过培训或指导的人员维修 ●未正确使用它们。 现场维修的气候条件:环境温度不低于-20度,地面风速小于15米/秒。 2 安全 在进行维修之前,工作人员必须阅读“安全作业规定”,以便确保在维修过程中安全操作,并防止出现事故或人身伤害。 安全作业规定 2.1 安全作业规定 安全是一切工作的前提,特别是在风电发电现场的高空野外作业,安全工作更至关重要,不可小视。因此,售后服务人员在风场工作过程中要严格遵守一切高空作业安全条例,并要求相互督促提醒规范安全作业。 1)距地面二公尺以上,工作斜面坡度大于45°,工作地面没有平稳的立脚地方或有震动的地方,应视为高空作业。 2)售后服务人员必须经过专业技术培训和严格的岗前安全培训,才有资格参加风电产品的售后服务工作。 熟悉掌握本工种专业技术及规程。 3)现场服务人员要熟读牢记、严格遵守风场的各项规章制度,工作之前一定要得到现场工作人员的同意、支持和配合。 4)登高前,施工负责人应对全体人员进行现场安全教育。 5)工作之前,要对所携带的安全保护用品进行严格认真的检查,确认安全可靠无质量问题,方可佩戴使用。 6)工作过程,必须按照风场规定戴好安全帽、安全带、安全鞋,不准穿光滑的硬底鞋。要有足够强度的安全带,在机舱口吊东西时必须要做好安全措施,在吊东西时机舱口下方严禁站人。并携带必要的通讯工具,以防突发事件联络受阻。 7)工作搭档之间,要做到相互关照、相互配合、相互督促,上塔时应一人在前一人在后,两人之间的距离不能超过塔体的分隔休息平台,通过休息平台时要随手关闭平台盖板,避免工具落下伤人。 8)在风场工作期间应严格执行规定的作息时间,作业期间不得吃酒。 9)服务人员相互作业时应用对讲机进行联系,切记不可单独作业,明火作业时应做好防护措施配备灭火器材,当风速大于15m/s时严禁作业,恶劣天气时工作一定要有应对措施。 10)高空作业所用的工具、零件、材料等必须装入工具袋。上下时手中不得拿物件;并必须从指定的路线上下,不得在高空投掷材料或工具等物;易滚易滑的工具、材料堆应妥善摆放;不准打闹。工作完毕应及时将工具、另星材料、零部件等一切易坠落物件清理干净,以防落下伤人,上下大型另件时,应采用可靠的起吊机具。上下吊东西或放钩子是必须要用拦风绳,及时是空钩子也必须要使用。 11)脚手板斜道板、跳板和交通运输道,应随时清扫。如有泥、水、冰、雪,要采取有效防滑措施,并经安全员检查同意后方可开工。当结冻积雪严重,无法清除时,停止高空作业。 12)严禁坐在高空无遮栏处休息,防止坠落。 13)要处处注意危险标志和危险地方。夜间作业,必须设置足够的照明设施,否则禁止施工。 14)机舱的吊机口应远离高压线。 突遇大风、雷电应急预案

高速齿轮箱产品介绍

高速齿轮箱产品介绍 高速齿轮箱产品介绍 中国威高传动公司生产的NGSS、NGGS、NGSD 型系列齿轮箱,采用国际先进标准,应用公司十几年产品试制经验进行设计,选用一流设备,按ISO9001:2000质量控制体系程序,设计制造的高精度硬齿面高速齿轮箱。可适用于汽轮机、燃气发电机、离心以及轴流风机、鼓风机、压缩机、高低压泵、裂化催化能量回收、制氧机、平衡机、军用与民用试验台等机组配套增(减)高速齿轮箱。 产品具有以下技术特点: 1.高转速:产品最高转速30000r/min。 2.多规格:标准产品中心距192-545,并可根据用户要求进行非标设计。 3.高精度:齿轮精度达到ISO4-6级,动平衡精度达到ISO0.4-1.6。 4.高标准:齿轮精度标准为ISO1328-1:1995和ISO1328-2:1997,齿轮强度标准AGMA420.04-1975和AGMA421.06-1969。齿轮箱设计检验标准API613-2003,齿轮材料热处理标准ISO6336-5:1996,振动检验标准API670-2000,润滑系统标准API614-1999。 5.高技术:产品采用三维CAD 设计,采用有限元分析,齿形热弹性变形的修形,齿根喷丸强化工艺及轴系动态分析等公司最新研究成果。 6.高可靠度:齿轮箱设计寿命10年 中心距规格:192、215、240、272、305、340、385、430、480、545 功率范围:11kW~1558kW 最高转速:30000r/min 速比:6.3-18 大功率燃透平机专用高速齿轮箱主要用于透平机带动发电机、风机。一般为单级减速传动,该种高速齿轮箱拥有承载能力大,节圆线速度高,防爆等特点。 齿轮箱设计检验按API613标准;齿轮强度按AGMA420.04,AGMA421.06;振动检验按API1670。齿轮材料:17Cr2Ni2Mo、25Cr2Niv 或20CrNi2Mo,渗碳、淬火、

南高齿高速箱介绍

1.NGSS系列往复式压缩机用齿轮箱为NGGS型及NGSD型齿轮箱延伸型,采用国际先进标准,应用公司 十几年产品试制经验进行设计,选用一流设备,按ISO9001:2000质量控制体系程序,设计制造的高精度硬齿面高速齿轮箱。可适用于汽轮机、燃气发电机、离心以及轴流风机、鼓风机、压缩机、高低压泵、裂化催化能量回收、制氧机、平衡机、军用与民用试验台等机组配套增(减)高速齿轮箱。 产品具有以下技术特点: 1.高转速:产品最高转速30000r/min。 2.多规格:标准产品中心距192-545,并可根据用户要求进行非标设计。? 3. 高精度:齿轮精度达到ISO4-6级,动平衡精度达到ISO0.4-1.6。 4.高标准:齿轮精度标准为ISO1328-1:1995和ISO1328-2:1997,齿轮强度标准AGMA420.04-1975和AGMA421.06-1969。齿轮箱设计检验标准API613-2003,齿轮材料热处理标准ISO6336-5:1996,振动检验标准API670-2000,润滑系统标准API614-1999。 5. 高技术:产品采用三维CAD设计,采用有限元分析,齿形热弹性变形的修形,齿根喷丸强化工艺及轴 系动态分析等公司最新研究成果。?6.高可靠度:齿轮箱设计寿命10年 中心距规格:192、215、240、272、305、340、385、430、480、545 功率范围:11kW~1558kW 最高转速:30000r/min 速比:6.3-18 2.大功率燃透平机专用高速齿轮箱主要用于透平机带动发电机、风机。一般为单级减速传动,该种高速齿轮 箱拥有承载能力大,节圆线速度高,防爆等特点。 齿轮箱设计检验按API613标准;齿轮强度按AGMA420.04, AGMA421.06;振动检验按API1670。齿轮材料:17Cr2Ni2Mo、25Cr2Niv或20CrNi2Mo,渗碳、淬火、磨齿; 圆柱齿轮精度:IS O1328-1:2001的3、4、5级,齿轮进行齿廓和螺旋线修整;齿轮材料和热处理质量按ISO6336-5:1996中的最高质量等级ME级控制;齿轮均进行齿根喷丸强化;齿面采用特殊处理;转子残余不平衡量按(ISO标准)G1.0级进行;盘车装置安装于齿轮箱上采用电动盘车,或手动。输出转速低于3400RPM时可在低速轴带螺杆泵。采用费城修形程序计算轮齿修形量,润滑油采用ISO VG32、ISO VG46,供油压力(表压)为0.12~0.2MPa,滤油精度要求10μm。 功率范围:7000kW~55000kW。 最大节圆线速度:176m/s?齿轮精度:圆柱齿轮精度:ISO1328-1:2001的3、4、5级。 3.高速行星齿轮箱主要用于航空、船舶、发电设备和压缩机等领域。齿轮箱符合GB8542-87透平齿轮传动 装置技术条件。其具有以下技术特点:? 1. 采用一级行星齿轮传动,齿轮箱低速轴为双键圆柱轴伸与外设备相联,太阳轮通过浮动齿式联轴器与外设备相联。太阳轮、行星轮和内齿圈均为双斜人字齿,内齿圈通过三联齿圈、二联齿圈、固定齿圈与箱体联接。均载机构设计为采用太阳轮和内齿圈同时浮动, 2.齿轮、轴、箱体为均衡设计。减速器箱体设计采用均载效果更好,使运转平稳,降低噪声。? 高强度低合金结构钢进行焊接,并进行坚固加强,其加工精度极高,刚度分布均匀。其主要件进行了有限元分析。?3. 所有齿轮均采用优质高级合金钢制造并经渗碳淬火磨齿加工,太阳轮和行星轮采用修形技术和齿根强化喷丸处理。 4. 全部齿轮在坯料阶段和精加工后均进行探伤检查。对箱体的主要焊缝均进行超声波探伤。运 用先进的焊接设备和焊接工艺,确保箱体的高强度及高刚性。 5.所有轴承采用滑动轴承,寿命更长,稳定性高。 7.采用非接触机 6. 采用动压润滑系统,润滑管路采用特殊设计使润滑安全可靠。? 械密封,不渗油,无须更换。?8. 对滑动轴承进行温度监测,对齿轮箱进行振动监测。 ? 9.本高速行星齿轮箱具有体积小、重量轻、效率高、噪声低、振动小、运行平稳、寿命长等特点。其主要技术指标均达到当代国际同类产品先进水平。 功率范围:600kW~17500kW 高速轴转速可达:11400rpm?齿轮精度:圆柱齿轮精度不低于GB/T 10095中5级精度的要求,?动平衡精度:旋转件动平衡精度等级ISOG0.4~G1.6。 4.H型压缩机齿轮箱主要用于化工行业压缩空气分离出氧气,氮气,二氧化碳,齿轮箱设计检验按API613-2 1. 齿轮箱采用平行轴结构,单个轴伸输入,多个轴伸同 003标准执行,其具有以下技术特点:?

齿轮箱结构原理

齿轮箱结构原理及特点 齿轮箱是风机中的重要部件,其主要作用是将转子轴的旋转加速后带动发电机发电。 齿轮箱除传动部件外还包括检测系统、润滑系统、控制系统、加热系统、冷却系统等。 1.5MW风机使用的齿轮箱为两级行星齿轮传动一级平行轴齿轮传动。 一、行星轮齿轮传动 1.行星轮传动齿轮箱的优点: 1)体积小、质量小,结构紧凑,承载能力大 一般在承受相同的载荷条件下,行星齿轮传动的外廓尺寸和质量约为普通齿轮传动的1/2~1/5。 2)传动效率高 由于行星齿轮传动结构的对称性,使得作用于中心轮和转臂轴承中的反作用力能互相平衡,从而有利于达到提高传动效率的作用。一般其效率值可达 0.97~0.99。 3)传动比较大, 在仅作为传递运动的行星齿轮传动中,其传动比可达到几千。而且行星齿轮传动在其传动比很大时,仍然可保持结构紧凑、质量小、体积小等许多优点。 4)运动平稳、抗冲击和振动的能力较强 由于采用了数个结构相同的行星轮,均匀地分布于中心轮的周围,从而可使行星轮与转臂的受力平衡。同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抵抗冲击和振动的能力较强,工作较可靠。 2.行星齿轮传动的缺点是: 1)材料优质; 2)结构复杂;

3)制造和安装较困难。 3.行星齿轮工作原理 齿圈固定,行星架主动,太阳轮被动。 二、平行轴齿轮传动 为了方便线缆通过低速轴传递到轮毂内,必须将高速轴与低速轴分开,所以齿轮箱的第三级采用平行轴齿轮传动。 三、齿轮箱与转子轴联结 锁紧套结构及原理:

转子轴传入轴套后锁紧螺栓,外环移动对内环产生压力,内环和轴套变形从而使轴套与转子轴间产生预紧压力,安全可靠的传递动力 锁紧套连接的特点: 1. 定心精度高。 2. 安装简单,无需加热、冷却或加压设备。 3. 可传动重载,适合动载荷。连接件没有键槽削弱,靠摩擦力传动, 没有相对运动。 4. 有安全保护作用。 过载后转子轴与轴套相对滑动,从而保护齿轮 箱、发电机等免受损坏。

齿轮箱结构原理

齿轮箱结构原理 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

齿轮箱结构原理及特点 齿轮箱是风机中的重要部件,其主要作用是将转子轴的旋转加速后带动发电机发电。 齿轮箱除传动部件外还包括检测系统、润滑系统、控制系统、加热系统、冷却系统等。风机使用的齿轮箱为两级行星齿轮传动一级平行轴齿轮传动。 一、行星轮齿轮传动 1.行星轮传动齿轮箱的优点: 1)体积小、质量小,结构紧凑,承载能力大 一般在承受相同的载荷条件下,行星齿轮传动的外廓尺寸和质量约为普通齿轮传动的1/2~1/5。 2)传动效率高 由于行星齿轮传动结构的对称性,使得作用于中心轮和转臂轴承中的反作用力能互相平衡,从而有利于达到提高传动效率的作用。一般其效率值可达~。 3)传动比较大, 在仅作为传递运动的行星齿轮传动中,其传动比可达到几千。而且行星齿轮传动在其传动比很大时,仍然可保持结构紧凑、质量小、体积小等许多优点。 4)运动平稳、抗冲击和振动的能力较强 由于采用了数个结构相同的行星轮,均匀地分布于中心轮的周围,从而可使行星轮与转臂的受力平衡。同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抵抗冲击和振动的能力较强,工作较可靠。 2.行星齿轮传动的缺点是: 1)材料优质; 2)结构复杂; 3)制造和安装较困难。 3.行星齿轮工作原理 齿圈固定,行星架主动,太阳轮被动。

二、平行轴齿轮传动 为了方便线缆通过低速轴传递到轮毂内,必须将高速轴与低速轴分开,所以齿轮箱的第三级采用平行轴齿轮传动。 三、齿轮箱与转子轴联结 锁紧套结构及原理:

转 子轴传入轴套后锁紧螺栓,外环移动对内环产生压力,内环和轴套变形从而使轴套与转子轴间产生预紧压力,安全可靠的传递动力 锁紧套连接的特点: 1. 定心精度高。 2. 安装简单,无需加热、冷却或加压设备。 3. 可传动重载,适合动载荷。连接件没有键槽削弱,靠摩擦力传动,没有相对 运动。 4. 有安全保护作用。 过载后转子轴与轴套相对滑动,从而保护齿轮箱、发电 机等免受损坏。

行星齿轮结构及工作原理

行星齿轮机构和工作原理 一、 简单的行星齿轮机构的特点 行星齿轮机构的组成: 简单(单排)的行星齿轮机构是变速机构 的基础,通常自动变速器的变速机构都由两排 或三排以上行星齿轮机构组成。简单行星齿轮 机构包括一个太阳轮、若干个行星齿轮和一个 齿轮圈,其中行星齿轮由行星架的固定轴支 承,允许行星轮在支承轴上转动。行星齿轮和 相邻的太阳轮、齿圈总是处于常啮合状态,通 常都采用斜齿轮以提高工作的平稳性(如图l 所示)。 如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的自转和绕着太阳的公转一样,当出现这种 情况时,就称为行星齿轮机构作用的传动 方式。在整个行星齿轮机构中,如行星轮 的自转存在,而行星架则固定不动,这种 方式类似平行轴式的传动称为定轴传动。 齿圈是内齿轮,它和行星轮常啮合,是内 齿和外齿轮啮合,两者间旋转方向相同。 行星齿轮的个数取决于变速器的设计负 荷,通常有三个或四个,个数愈多承担负 荷愈大。 简单的行星齿轮机构通常称为三构件机构,三个构件分别指太阳轮、行星架和齿圈。这三构件如果要确定相互间的运动关系,一般情况下首先需要固定

其中的一个构件,然后确定谁是主动件,并确定主动件的转速和旋转方向,结 果被动件的转速、旋转方向就确定了。 二、 单排行星齿轮机构的工作原理 根据能量守恒定律,三个元件上输入和输出的功率的代数和应等于零,从而得到单排行星齿轮机构一般运动规律的特性方程。 特性方程:n1+an2-(1+a)n3=0 n1——太阳轮转速,n2——齿圈转速,n3——行星架转速,a——齿圈与太阳轮齿数比。 由特性方程可以看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、环形内齿圈和行星架三个机构中,任选两个分别作为主动件和从动件,而使另一个元件固定不动,或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论三种情况。 1、齿圈固定,太阳轮为主动件且顺时针转动,而行星架则为被动件。太阳轮顺时针转动时,太阳轮轮齿必给行星轮齿A一个推力F 1 ,则行星轮应为逆时针 转动,但由于齿圈固定,所以齿圈轮齿必给行星轮齿B一个反作用力F 2 ,行星轮 在F 1和 F 2 合力作用下必绕太阳轮顺时针旋转,结果行星轮不仅存在逆时针自 转,并且在行星架的带动下,绕太阳轮中心轴线顺时针公转。在这种状态下,就出现了行星齿轮机构作用的传动方式,而且被动件行星架的旋转方向与主动件同方向。在这里,太阳轮是主动件而且是小齿轮,被动件行星架没有具体齿数的传动关系,因此定义行星架的当量齿数等于太阳轮和齿圈齿数之和。这样,太阳轮带动行星架转动仍属于小齿轮带动最大的齿轮,是一种减速运动且有最大的传动比。因为此时n2=0,故传动比 i13=n1?n3=1+a。(如图3)

案例分析-齿轮箱高速轴

风力发电机振动异常的案例分析 北京海诚信丰科技有限公司 吴剑 服务&振动分析工程师

1.案例 据现场工程师解说,此风机在并网发电时,噪音异常,振动异常,整个风机包括塔筒和地基都随着风机振动。 振动测试开始,现场条件:温度23oC,风速4到7 米/秒。风机空载1000转运行测量,总共测试10测点,分别为:主轴承,齿轮箱低速轴发电机端轴承座竖直方向和水平方向,中间轴和高速轴轴向,高速输出轴竖直和水平方向,发电机前端轴承,后端轴承,以及高速轴发电机端轴承座的加速度轴心轨迹。 由于之前轴承压盖和高速轴的已经存在磨损,刹车盘以及刹车片都已重新更换,但是振动依然很强烈。 根据所测的频谱图可以看出,振动源主要是齿轮箱高速轴传出的,通过高速输出轴加速度轴心轨迹的测量更加确定问题就是高速轴的问题。在提供振动分析报告后,现场工作人员,将高速轴拆开,发现轴已经出现裂纹,在更换高速轴后,振动正常。

2.风机状态 这台风机正处于调试阶段,调试时出现振动异常现象,据现场工程师叙述,此前风机高速输出端出现问题:刹车盘磨损,刹车片磨损,高速输出轴轴承压盖磨损异常。此后在现场工程师的共同协助下,对风机进行了一系列的处理,包括:刹车盘和刹车片更换,并重新对中(发电机端与齿轮箱高速轴),轴承压盖内侧用车床车掉几丝,以保证输出轴与压盖不摩擦。 图1 磨损的轴承压盖 图2 磨损的高速输出轴

准备阶段 测量准备阶段 3.测量 3.1 数据库 本数据库是由我公司工程师经过多年的经验积累,已经成功的应用到多个案例当中。 图3 数据库 数据库解析:本数据库把各个要测量的点都罗列出来,并根据每个测量的不同要求设立了不同的测量任务。例如高速轴竖直方向,我们设定了1015振动总振值,1016速度频谱,1018时域波形,1021轴承包络图,1019加速度频谱以及临时测量的加速度轴心轨迹。 3.2 现场 此次测量是在不并网发电低转速的情况下进行的,原因: 1.业主不允许这样做,因为上次并网测试,振动极大,整个塔架和塔架地基都在剧烈振动,担心会造成事故。 2.业主担心设备的运行会造成2次伤害,由于此风机即将要交付业主,他们担心剧烈振动会造成其他部件的损坏,例如发电机,塌架,基础。 3.我公司本着安全第一的原则,在不并网低转速的情况下进行测量,其结果是可行的。因为并不并网发电和高低速运行,只是在故障信号的大小上有区别,我们所要做的就是,只要能发现故障的根源在哪里。 根据以上几点,我们做出决定:测量在1000转空载的情况下进行。

减速机的工作原理

减速机的工作原理: 减速机的工作原理概述:就是利用各级齿轮传动来达到降速的目的.减速器就是由各级齿轮副组成的.比如用小齿轮带动大齿轮就能达到一定的减速的目的,再采用多级这样的结构,就可以大大降低转速了. 减速机一般用于低转速大扭矩的传动设备,把电动机.内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。减速机是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。减速机的作用:在目前用于传递动力与运动的机构中,减速机的应用范围相当广泛,几乎在各式机械的传动系统中都可以见到它的踪迹,从 交通工具的船舶,汽车,机车,建筑用的重型机具,机械工业所用的加工机具及自动化生产设备,到日常生活中常见的家电,钟表等等.其应用从大动力的传输工作,到小负荷,精确的角度传输都可以见到减速机的应用,且在工业应用上,减速机具有减速及增加转矩功能,因此广泛应用 在速度与扭矩的转换设备. 减速机是一种动力传达的机构,在应用上于需要较高扭矩以及不需要太高转速的地方都用的到它.例如:输送带,搅拌机,卷扬机,拍板机,自动化专用机…,而且随着工业的发展和工厂的自 动化,其利用减速机的需求量日益成长.通常减速的方法有很多,但最常用的方法是以齿轮来 减速,可以缩小占用空间及降低成本,所以也有人称减速机为齿轮箱(GearBox).通常齿轮箱是一些齿轮的组合,因齿轮箱本身并无动力,所以需要驱动组件来传动它,其中驱动组件可以是 马达,引擎或蒸汽机…等.而使用减速机最大的目的有下列几种:1.动力传递2.获得某一速度3.获得较大扭矩.但除了齿轮减速机外,由加茂精工所开发的球体减速机,提供了另一项价值,就是高精度的传动,且传动效率高,为划时代的新传动构造。 液力耦合器的模型与工作原理 液力耦合器是一种利用液体介质传递转速的机械设备,其主动输入轴端与原传动机相联结,从动输出轴端与负载轴端联结,通过调节液体介质的压力,使输出轴的转速得以改变。理想状态下,当压力趋于无穷大时,输出转速与输入转速相等,相当于钢性联轴器。当压力减小时,输出转速相应降低,连续改变介质压力,输出转速可以得到低于输入转速的无级调节。 液力耦合器的功控调速原理与效率 根据液力耦合器的上述特点,可以等效为图1所示的模型

齿轮泵工作原理和结构

齿轮泵工作原理以及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿 轮泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿

进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对

高速齿轮增速箱设计

本科毕业设计(论文) 题目:高速齿轮增速箱设计 院(系):工业中心 专业:机械设计制造及其自动化 班级:106001班 学生:姚月 学号:100210130 指导教师:马保吉 2014年06月

本科毕业设计(论文) 题目:高速齿轮增速箱设计 院(系):工业中心 专业:机械设计制造及其自动化 班级:106001班 学生:姚月 学号:100210130 指导教师:马保吉 2014年06月

西安工业大学毕业设计(论文)任务书 院(系) 工业中心 专业 机械设计制造及其自动化 班 106001 姓名 姚月 学号 100210130 1.毕业设计(论文)题目: 高速齿轮增速箱设计 2.题目背景和意义: 高速齿轮增速箱用于光纤地面模拟放线试验台,是该试验台的核心部件,用于将交流变频电机的输出额定同步转速3000r/min 增加到工作台主轴所需的18000r/min ,并且有较为严格的转动惯量限制,其可靠性和稳定性直接决定了试验台的可靠性。由于高速运动,一旦发生故障将会产生及其严重的后果,因此该增速箱的设计在试验台 中具有重要意义,同时高速齿轮箱作为通用传动机构,在工程中有着广泛的应用范围。 3.设计(论文)的主要内容(理工科含技术指标):(1)对使用工况分析,依据原始数据确定增速箱的传动比、级数、润滑方式、结构形式等总体参数;(2)设计主要零件如齿轮、轴、轴承、箱体等;(3)润滑系统设计。主要技术指标:输入转速:3000r/min ,输出速度:18000r/min ,输出功率:55KW ,过载倍数,2.0,高速轴转动惯量≤0.0005Kg.m 2 ;低速轴的转动惯量(含齿轮)≤0.0096Kg.m 2 。 4.设计的基本要求及进度安排(含起始时间、设计地点): 基本要求:完成增速箱的设计、全套图纸的绘制、润滑系统设计及图纸。从2013年12月25日开始毕业设计,在校内完成本设计 。 5.毕业设计(论文)的工作量要求 设计说明书数字不少于1.0万字。 ① 实验(时数)* 或实习(天数): ② 图纸(幅面和张数)* : 折合A0工程图3张。 ③ 其他要求: 指导教师签名: 年 月 日 学生签名: 年 月 日 系(教研室)主任审批: 年 月 日 说明:1本表一式二份,一份由学生装订入论文,一份教师自留。 2 带*项可根据学科特点选填。

高速轻载齿轮箱功率损失分析

高速轻载齿轮箱功率损失分析 发表时间:2018-08-14T11:02:29.377Z 来源:《基层建设》2018年第17期作者:赵谦 [导读] 摘要:本文主要针对高速轻载齿轮箱功率损失展开探讨,明确了高速轻载齿轮箱的功率损失的原因,明确了其中的一些原理,以及关键点,希望能够为今后的研究和应用带来参考。 身份证号码:32012419861117xxxx 江苏南京 210012 摘要:本文主要针对高速轻载齿轮箱功率损失展开探讨,明确了高速轻载齿轮箱的功率损失的原因,明确了其中的一些原理,以及关键点,希望能够为今后的研究和应用带来参考。 关键词:高速轻载齿轮箱,功率,损失 前言 高速轻载齿轮箱功率损失的原因有很多,造成功率损失的原因一定要明确,同时寻找其中的关键的原理,为我们今后更好的使用机械设备奠定基础,也是为了我们更好的设计。 1、齿轮箱的用途 齿轮箱的主要用途如下:首先,它可以通过齿轮组来改变传递的速度,在工业上常常把它叫做“变速齿轮箱”。其次,齿轮箱能变换转动力矩,也就是说,在功率一样的前提下,转速越大的齿轮,齿轮轴所受到的力矩反而越小,反过来则越大;再次,齿轮箱用于动力的分配,在工业上,工作人员可用一台发动机,经由齿轮箱的主轴牵动若干个从轴,进而只要一台发动机就会牵引好几个负载;第四,齿轮箱有离合功能,刹车离合器就是利用的齿轮箱离合功能,人们能自由地将两个相互啮合的齿轮分隔开来,进而把负载和发动机分裂开;第五,变换传动方向,不妨采用两个扇形形态的齿轮把其中的力以垂直的方向有序地传导至另一侧的转动轴。 2、高速轻载齿轮箱功率损失分析 齿轮的传动效率直接关系到功率损耗,进而影响到企业经济效益和社会环境效益,日益得到设计制造和应用单位的重视。尤其在当前环保压力的形势下,如何进一步降低功耗、提高传递效率更具现实意义。高速轻载齿轮传动装置具有转速高、载荷小的特点,功率损耗对传动效率的影响非常显著。为了提高高速轻载齿轮传动装置的工作效率,有必要对其功率损耗途径、损耗大小进行详细分析研究。 高速轻载齿轮箱的功率通常从几十千瓦到一千多千瓦。电动机一般选用二级电机,转速为2985r/min,高速轴转速通常为10000~40000r/min。润滑油站集中供油,齿轮箱配备主油泵,供油压力为0.1~0.2MPa,供油温度为35~45℃。齿轮结构通常为平行轴、单斜齿、渐开线、中硬齿面。低速滑动轴承为普通圆瓦轴承,高速滑动轴承通常都采用多油楔可倾瓦轴承。 高速轻载齿轮箱通常是应用于压缩机组中,原动机为电动机,经过齿轮箱增速后拖动压缩机。高速轻载齿轮传动功率损失主要包括齿轮啮合损失、风阻损失、搅油损失、轴承损失和油泵功耗等。 2.1风阻损失 风阻损失为小齿轮与大齿轮在齿轮箱油气空间中旋转的能量损失。影响风阻损失大小的因素包括齿轮的旋转速度、齿轮箱内油雾的浓度和齿轮的几何尺寸等。 Anderson根据透平转子风阻损失的研究结果,给出了一种预测齿轮风阻损失的计算方法。该方法考虑了齿轮箱油气空间的密度和黏度、齿轮的转速与直径。 2.2搅油损失 高速齿轮箱的润滑方式是喷油润滑,搅油损失是指轮齿搅动喷油管喷到齿面上的冷却润滑油,以及齿面、齿轮端面和高低速轴颈高速甩出的润滑油消耗的能量。 英国标准BSISO/TR14179给出了光轴、齿端面、齿面搅油损失的详细计算式,更多是应用于低速齿轮传动装置。 2.3轴承损失 高速轻载齿轮箱低速轴承采用圆瓦轴承,低速推力轴承采用斜平面、多油楔组合式推力轴承。高速轴瓦为多油楔可倾瓦轴承,高速推力轴承采用多油楔可倾瓦推力轴承。 通常,高速齿轮箱的传递效率不低于98%。由于高速轻载齿轮箱工况参数和结构所限,高速轻载齿轮箱的功率损失比较大,齿轮箱的传递效率较低。本算例中,高速轻载齿轮箱总功率损失为63.04kW,传递效率为81.99%,这与实际实验测得的数值基本一致。齿轮箱功耗主要发生在齿轮风阻、搅油和高速可倾瓦轴承上。风阻和搅油功耗为13.9kW,占总功率损失的22.05%,高速可倾瓦支撑轴承和可倾瓦推力轴承功耗为41.89kW,占总功率损失的66.45%。 3、提高齿轮箱的功率 提高齿轮的接触疲劳极限应力和弯曲疲劳极限应力是提高齿轮传动功率密度和可靠性的重要手段。随着热处理工艺及其装备技术、制造精度控制技术、齿面强化技术等发展,齿轮疲劳强度极限应力必将得到较大幅度的提高。 3.1通过齿面改性(材料和热处理方式等)提高齿轮的极限应力 目前,风电齿轮箱不论是增速箱还是偏航、变桨减速器中的齿轮均采用合金钢锻件+渗碳淬火+磨齿工艺(部分内齿圈采用感应淬火热处理工艺),材料热处理质量应按ISO 6336-5(GB/T3480-5)中渗碳齿轮最高级别的ME要求来控制。由于风电齿轮箱服役条件恶劣,载荷交变、冲击频繁,齿轮轮齿常常产生微点蚀而发生早期失效,这种失效与接触精度和硬化表层物理冶金因素等有关,因此,齿轮热处理质量及其稳定性和一致性控制往往成为制约产品可靠性的关键。在美国ANSI/AGMA/AWEA6006-A03《风力发电机齿轮箱设计规范》的52项质量控制项目中,材料热处理就占20项;中国国家标准GB/T3480-5“齿轮强度和材料质量”中ME级质量检测项目也有14大项;国家标准GB/T 3480-1997“渐开线圆柱齿轮承载能力计算方法”中,极限应力σHlim和σFlim、使用系数KA、寿命系数ZNT和YNT等直接与齿轮材料和热处理方式有关。 3.2通过齿面改性(喷丸强化等方式)提高齿轮的承载能力 齿轮喷丸强化是一种通过无数个丸粒连续击打轮齿表面、无数凹陷重叠形成均匀残余压应力层的冷处理方法。影响喷丸强化效果的主要因素有喷丸强度、覆盖率、丸料控制及喷丸设备控制等。除增加残余压应力的数值外,喷丸强化还具有增加齿面硬度,改善轮齿次表层残余应力分布、材料组织及微观组织等功效。未经喷丸强化的渗碳淬火齿轮最大压应力一般位于表层下0.02mm附近,最大压应力一般不超过200MPa,经喷丸强化后,最大压应力可下移到0.05mm处或更深,最大压应力可达600~800MPa甚至更高[8]。

齿轮泵工作原理及结构

齿轮泵工作原理及结构标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

齿轮泵工作原理及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿轮泵 工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封

容积减小则不断地排油,这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为~,大流量泵为~。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取~。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积中 〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时〔见图3-5(b)〕,封闭容积为最小,齿轮再继续转动时,封闭容积 又逐渐增大,直到图3-5(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。当封闭容积增大时,由于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。

南高齿高速箱介绍

1.NGSS系列往复式压缩机用齿轮箱为NGGS型及NGSD型齿轮箱延伸型,采用国际先进标准,应用公司十 几年产品试制经验进行设计,选用一流设备,按ISO9001:2000质量控制体系程序,设计制造的高精度硬齿面高速齿轮箱。可适用于汽轮机、燃气发电机、离心以及轴流风机、鼓风机、压缩机、高低压泵、裂化催化能量回收、制氧机、平衡机、军用与民用试验台等机组配套增(减)高速齿轮箱。 产品具有以下技术特点: 1.高转速:产品最高转速30000r/min。 2.多规格:标准产品中心距192-545,并可根据用户要求进行非标设计。 3.高精度:齿轮精度达到ISO4-6级,动平衡精度达到ISO0.4-1.6。 4.高标准:齿轮精度标准为ISO1328-1:1995和ISO1328-2:1997,齿轮强度标准AGMA420.04-1975和AGMA421.06-1969。齿轮箱设计检验标准API613-2003,齿轮材料热处理标准ISO6336-5:1996,振动检验标准API670-2000,润滑系统标准API614-1999。 5.高技术:产品采用三维CAD设计,采用有限元分析,齿形热弹性变形的修形,齿根喷丸强化工艺及轴系动态分析等公司最新研究成果。 6.高可靠度:齿轮箱设计寿命10年 中心距规格:192、215、240、272、305、340、385、430、480、545 功率范围:11kW~1558kW 最高转速:30000r/min 速比:6.3-18 2.大功率燃透平机专用高速齿轮箱主要用于透平机带动发电机、风机。一般为单级减速传动,该种高速齿轮 箱拥有承载能力大,节圆线速度高,防爆等特点。 齿轮箱设计检验按API613标准;齿轮强度按AGMA420.04,AGMA421.06;振动检验按API1670。齿轮材料:17Cr2Ni2Mo、25Cr2Niv或20CrNi2Mo,渗碳、淬火、磨齿;圆柱齿轮精度:ISO1328-1:2001的3、 4、5级,齿轮进行齿廓和螺旋线修整;齿轮材料和热处理质量按ISO6336-5:1996中的最高质量等级ME 级控制;齿轮均进行齿根喷丸强化;齿面采用特殊处理;转子残余不平衡量按(ISO标准)G1.0 级进行; 盘车装置安装于齿轮箱上采用电动盘车,或手动。输出转速低于3400RPM时可在低速轴带螺杆泵。采用费城修形程序计算轮齿修形量,润滑油采用ISO VG32、ISO VG46,供油压力(表压)为0.12~0.2MPa,滤油精度要求10μm。 功率范围:7000kW~55000kW。 最大节圆线速度:176m/s 齿轮精度:圆柱齿轮精度:ISO1328-1:2001的3、4、5级。 3.高速行星齿轮箱主要用于航空、船舶、发电设备和压缩机等领域。齿轮箱符合GB8542-87透平齿轮传动装 置技术条件。其具有以下技术特点: 1.采用一级行星齿轮传动,齿轮箱低速轴为双键圆柱轴伸与外设备相联,太阳轮通过浮动齿式联轴器与外设备相联。太阳轮、行星轮和内齿圈均为双斜人字齿,内齿圈通过三联齿圈、二联齿圈、固定齿圈与箱体联接。均载机构设计为采用太阳轮和内齿圈同时浮动,均载效果更好,使运转平稳,降低噪声。 2.齿轮、轴、箱体为均衡设计。减速器箱体设计采用高强度低合金结构钢进行焊接,并进行坚固加强,其加工精度极高,刚度分布均匀。其主要件进行了有限元分析。 3.所有齿轮均采用优质高级合金钢制造并经渗碳淬火磨齿加工,太阳轮和行星轮采用修形技术和齿根强化喷丸处理。 4.全部齿轮在坯料阶段和精加工后均进行探伤检查。对箱体的主要焊缝均进行超声波探伤。运用先进的焊接设备和焊接工艺,确保箱体的高强度及高刚性。 5.所有轴承采用滑动轴承,寿命更长,稳定性高。 6.采用动压润滑系统,润滑管路采用特殊设计使润滑安全可靠。 7.采用非接触机械密封,不渗油,无须更换。 8.对滑动轴承进行温度监测,对齿轮箱进行振动监测。 9.本高速行星齿轮箱具有体积小、重量轻、效率高、噪声低、振动小、运行平稳、寿命长等特点。其主要技术指标均达到当代国际同类产品先进水平。 功率范围:600kW~17500kW

风机齿轮箱的结构.

企业生产实际教学案例: 风力发电机组主齿轮箱 案例说明 一相关岗位名称●风电机组装配工人 ●风力风电机组安装工艺工程师●风力发电机组运行检修工程师 二相关职业技能●掌握齿轮箱的基本结构和变速原理●掌握行星级和平行级的特点 三案例背景介绍 本案例采取图文并茂的形式介绍了风力发电机组主 齿轮箱的内部结构,着重介绍了行星级的结构,并辅以动 画的形式,轻松攻克讲解中的难点,让学员愉快轻松的掌 握单纯用语言难以描述的实际工业结构。 案例陈述 齿轮箱是风力发电机的重要组成部分,在风力发电机中应用着多个齿轮箱,主要有风力机增速齿轮箱,偏航驱动电机齿轮箱,变桨驱动电机齿轮箱三种。 由于风力机风轮转速较低,小型风力机转速每分钟最多几百转,大中型风力机转速约每分钟几十转甚至十几转。而普通发电机转速高,二极三相交流发电机转速约每分钟3000转,四极三相交流发电机转速约每分钟1500转,六极三相交流发电机转速约每分钟1000转,这么大的转速差别,风轮只有通过齿轮箱增速才能使发电机以额定转速旋转,增速比一般为几十倍至一百多倍。目前大多数风力机采用齿轮箱增速,齿轮箱是风力发电机主轴传动中的主要部件,通常在风力发电机中指的齿轮箱就是主轴增速齿轮箱。 齿轮变速主要有两种形式,一种是圆柱齿轮变速,一种是行星齿轮变速。行星齿轮变速具有增速比大、承载能力高、体积小,重量轻、输入输出轴在同

一轴线上,非常适合风力发电机增速使用,本课件介绍行星齿轮变速的原理与结构。 图1--行星齿轮系 图1是一个行星齿轮机构示意图,机构由行星轮、齿圈、太阳轮、行星架组成,太阳轮与齿圈共一轴线,3个行星轮的轴固定在行星架上,行星架的轴线与太阳轴线轮重合。行星齿轮可绕自己的轴线转,又可随着行星架一起绕行星架轴线旋转,行星齿轮即既有自转又有公转。通过固定行星架、齿圈、太阳轮之中的任一个,就可得到不同的传动变比,本课件介绍最常用的一种,即固定齿圈的结构。 下面通过5张图片介绍一个单级行星齿轮箱模型的结构与组成,每张图片有两张图从两个角度分别显示部件的结构与组成。 图2是行星架的结构图,行星架呈盘状,盘上固定3个轴,按120度分布,相互平行。行星架的转轴安装在轴承内,转轴另一端是低速轴法兰,连接风轮主轴。

相关主题
文本预览
相关文档 最新文档