当前位置:文档之家› 齿轮箱结构原理[参考文档]

齿轮箱结构原理[参考文档]

齿轮箱结构原理[参考文档]
齿轮箱结构原理[参考文档]

齿轮箱结构原理及特点

齿轮箱是风机中的重要部件,其主要作用是将转子轴的旋转加速后带动发电机发电。

齿轮箱除传动部件外还包括检测系统、润滑系统、控制系统、加热系统、冷却系统等。

1.5MW风机使用的齿轮箱为两级行星齿轮传动一级平行轴齿轮传动。

一、行星轮齿轮传动

1.行星轮传动齿轮箱的优点:

1)体积小、质量小,结构紧凑,承载能力大

一般在承受相同的载荷条件下,行星齿轮传动的外廓尺寸和质量约为普通齿轮传动的1/2~1/5。

2)传动效率高

由于行星齿轮传动结构的对称性,使得作用于中心轮和转臂轴承中的反作用力能互相平衡,从而有利于达到提高传动效率的作用。一般其效率值可达

0.97~0.99。

3)传动比较大,

在仅作为传递运动的行星齿轮传动中,其传动比可达到几千。而且行星齿轮传动在其传动比很大时,仍然可保持结构紧凑、质量小、体积小等许多优点。

4)运动平稳、抗冲击和振动的能力较强

由于采用了数个结构相同的行星轮,均匀地分布于中心轮的周围,从而可使行星轮与转臂的受力平衡。同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抵抗冲击和振动的能力较强,工作较可靠。

2.行星齿轮传动的缺点是:

1)材料优质;

2)结构复杂;

3)制造和安装较困难。

3.行星齿轮工作原理

齿圈固定,行星架主动,太阳轮被动。

二、平行轴齿轮传动

为了方便线缆通过低速轴传递到轮毂内,必须将高速轴与低速轴分开,所以齿轮箱的第三级采用平行轴齿轮传动。

三、齿轮箱与转子轴联结

锁紧套结构及原理:

转子轴传入轴套后锁紧螺栓,外环移动对内环产生压力,内环和轴套变形从而使轴套与转子轴间产生预紧压力,安全可靠的传递动力

锁紧套连接的特点:

1. 定心精度高。

2. 安装简单,无需加热、冷却或加压设备。

3. 可传动重载,适合动载荷。连接件没有键槽削弱,靠摩擦力传动,

没有相对运动。

4. 有安全保护作用。 过载后转子轴与轴套相对滑动,从而保护齿轮

箱、发电机等免受损坏。

传感器实验参考资料解析

光电传感器测转速实验 实 验 指 导 书

简 介 一、本实验装置的设计宗旨: 本实验装置具有设计性、趣味性、开放性和拓展性,实验中大量重复的接线、调试和后续数据处理、分析、可以加深学生对实验仪器构造和原理的理解,有利于培养学生耐心仔细的实验习惯和严谨的实验态度。非常适合大中专院校开设开放性实验。本实验装置采用了性能比较稳定,品质较高的敏感器件,同时采用布局较为合理且十分成熟的电路设计。 二、光电传感器测转速实验实验装置 1.传感器实验台部分 2.九孔实验板接口平台部分:九孔实验板作为开放式和设计性实验的一个桥梁(平台); 3.JK-19型直流恒压电源部分:提供实验时所必须的电源; 4.处理电路模块部分:差动放大器、电压放大器、调零、增益、移相等模块组成。 三、主要技术参数、性能及说明: (1)光电传感器:由一只红外发射管与接收管组成。 (2)差动放大器:通频带kHz 10~0可接成同相、反相、差动结构,增益为100~1倍的直流放大器。 (3)电压放大器:增益约为5位,同相输入,通频带kHz 10~0。 (4)19JK -型直流恒压电源部分:直流V 15±,主要提供给各芯片电源: V 6 ,V 4 ,V 2±±±分三档输出,提供给实验时的直流激励源;V 12~0:A 1ax Im =作 为电机电源或作其它电源。 光电传感器测转速实验 【实验原理】 如图所示:光电传感器由红外发射二极管、红外接收管、达林顿出管及波形整形组成。

发射管发射红外光经电机转动叶片间隙,接收管接收到反射信号,经放大,波形整形输出方波,再经转换测出其频率,。 图1 【实验目的】 了解光电传感器测转速的基本原理及运用。 【实验仪器】 如图所示,光电式传感器、JK-19型直流恒压电源、示波器、差动放大器、电压放大器、频率计和九孔实验板接口平台。 图2 图3 【实验步骤】 1.先将差动放大器调零,按图1接线;

齿轮箱试验台

齿轮箱试验台 摘要:随着科学技术的不断进步,机械设备向着高性能、高效率、高自动化和高可靠性的方向发展。齿轮箱由于具有传动比固定、传动转矩大、结构紧凑等优点,被用于改变转速和传递动力的传动部件中, 它是机械设备的一个重要组成部分,本论文采用锥度轮轴连接和注油压装技术设计制造的机电相结合的齿轮箱试验台,具有结构简单、性能可靠、使用安全、迁移方便等优点,对机械制造行业具有重要的使用价值。 主要词:齿轮传动装置试验台结构分析原理设计 1 用途 本试验台适用于各种机型齿轮箱、轴承箱运行空运转试验。在不使用变速箱和皮带轮及中心距不变的条件,能实现三级变速,完成其运转状态、机油压力、噪音及温升上网测试工作,根据测试数据,可对轴承、齿轮紧固件的装配质量作出判断,并确定齿轮箱和轴承箱的运转可靠性。 2 结构 齿轮箱试验台的构建见图1,又由电气控柜(件1)、塔式皮带轮组(件2)、传动轴承箱(件3)、电机座(件4)、安全栏(件5)、电机(件6)万向节传动轴(件7)、连接法兰(件8)、T 形槽平台(件9)、齿轮箱(件10)、螺旋千斤顶(件11)、齿轮箱固定座(件12) 组成

齿轮箱固定座是根据所实验的齿轮箱的待定几何形状而设计的,不同类型的齿轮箱,要有各自的专用固定座。也能住实验室,固定座通过螺栓和螺母固定在T 形槽平台上,齿轮箱通过螺栓固定在固定座上。 3 工作原理 齿轮箱试验台的电源为380V、50Hz,电动机的启动方式为Y-△ 降压启动,控制路中采用时间继电器,用延时方法实现Y- △转换,动作时间可按公式计算,其中tq 代表电动机正常启 动时间(S), PN代表电动机额定功率(KM)。tq也可根据实验调整确定,一般按15s—20s 控制。 电动机运转后,其动力传递方向为:电动机T塔式皮带轮组T传动轴承箱 T万向节传动轴T连接法兰T齿轮箱。 螺旋千斤顶的作用是:抵挡齿轮箱运转时作用在万向节传动轴上的反 扭矩,使齿轮箱平稳运转。在试运转过程中,若遇到齿轮箱颤动, 只要将千斤顶调整到适合高度,颤动即可消失。

参考文献实验报告格式

参考文献实验报告格式 在这个阶段中,学生根据已有知识的经验,通过演绎、归纳、推理而提出的假设,不少带有猜测的性质。此时教师要引导学生积极作出假设,不应压抑学生的思维,不管是对是错,都不要忙于作出评价。下面是精心收集的参考文献实验报告格式,希望能对你有所帮助。 一、实验目的 1.干涉的实验目的 1)组装调节迈克尔逊干涉仪,观察点光源产生的非定域等厚、等倾干涉条纹记录。 2)观察干涉条纹反衬度随光程差变化。了解光源干涉长度的意义,检查防震台稳定性。 3)比较平面波和球面波产生干涉条纹的区别。 2.衍射的实验目的 1)验证夫琅禾费衍射图样的若干规律。 2)掌握测量利用光电元件测量光强的方法。 3)用Matlab模拟夫琅禾费衍射现象。 二、实验仪器 1.干涉实验仪器 He-Ne激光器,反射吧镜,衰减器,分光光楔,扩束器,显微物镜镜头,光阑,CCD,配备相关软件的计算机,白板。 2.衍射实验仪器

He-Ne激光器,反射镜,双凸透镜,狭缝,圆孔,一维光栅,衰减器,CCD,计算机。 三、基本原理 1.迈克尔逊干涉仪的非定域干涉条纹 本仪器是用分裂振幅的方法产生双光束干涉以实现光的干涉。从激光器岀射的光束经过准直扩束器系统,形成一束宽度合适的平行光束。这束平行光射入分光棱镜之后分为两束。一束由分光棱镜反射后到达发射镜,经反射后透过分光棱镜,形成岀射光束,这是第一光束;另一束透过分光棱镜,到达反射镜,经过反射后再次到达分光棱镜,形成反射光束,这是第二束光。在分光棱镜前方两束光的重叠区域放上CCD。 干涉原理,如有图所示,其中S为单色点源,M1、M2为互相垂直放置的平面反射镜。BS为分束镜,放在M1M2法线的交点上,并分别与M1、M2成45°角。电光源S发出球面波经BS的镀膜层分为两束光。这两束光分别经M1、M2反射又回到BS,在BS上透过和反射的这两束光在BS的右侧空间形成一非定域的干涉场。屏幕放在干涉场中垂直于光束方向,在屏幕 上可以看到干涉条纹。M2’与M1平行时(及M2与M1相互垂直),产生圆形干涉条纹,当M2’与M1之间有一定小的倾角时,屏幕上的干涉条纹不再是圆形的封闭曲线,而变成弯线或是接近直线(实际上是双曲线或椭圆的一部分)。 圆心条纹中心处的光强取决于M1M2相对的距离d,即:

齿轮箱结构原理

齿轮箱结构原理及特点 齿轮箱是风机中的重要部件,其主要作用是将转子轴的旋转加速后带动发电机发电。 齿轮箱除传动部件外还包括检测系统、润滑系统、控制系统、加热系统、冷却系统等。 1.5MW风机使用的齿轮箱为两级行星齿轮传动一级平行轴齿轮传动。 一、行星轮齿轮传动 1.行星轮传动齿轮箱的优点: 1)体积小、质量小,结构紧凑,承载能力大 一般在承受相同的载荷条件下,行星齿轮传动的外廓尺寸和质量约为普通齿轮传动的1/2~1/5。 2)传动效率高 由于行星齿轮传动结构的对称性,使得作用于中心轮和转臂轴承中的反作用力能互相平衡,从而有利于达到提高传动效率的作用。一般其效率值可达 0.97~0.99。 3)传动比较大, 在仅作为传递运动的行星齿轮传动中,其传动比可达到几千。而且行星齿轮传动在其传动比很大时,仍然可保持结构紧凑、质量小、体积小等许多优点。 4)运动平稳、抗冲击和振动的能力较强 由于采用了数个结构相同的行星轮,均匀地分布于中心轮的周围,从而可使行星轮与转臂的受力平衡。同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抵抗冲击和振动的能力较强,工作较可靠。 2.行星齿轮传动的缺点是: 1)材料优质; 2)结构复杂;

3)制造和安装较困难。 3.行星齿轮工作原理 齿圈固定,行星架主动,太阳轮被动。 二、平行轴齿轮传动 为了方便线缆通过低速轴传递到轮毂内,必须将高速轴与低速轴分开,所以齿轮箱的第三级采用平行轴齿轮传动。 三、齿轮箱与转子轴联结 锁紧套结构及原理:

转子轴传入轴套后锁紧螺栓,外环移动对内环产生压力,内环和轴套变形从而使轴套与转子轴间产生预紧压力,安全可靠的传递动力 锁紧套连接的特点: 1. 定心精度高。 2. 安装简单,无需加热、冷却或加压设备。 3. 可传动重载,适合动载荷。连接件没有键槽削弱,靠摩擦力传动, 没有相对运动。 4. 有安全保护作用。 过载后转子轴与轴套相对滑动,从而保护齿轮 箱、发电机等免受损坏。

齿轮箱监控作业指导书.doc

ICS Q/JF 新疆金风科技股份有限公司企业标准 Q/JF 2JY750.101-2006 金风750kW系列风力发电机组 齿轮箱监造作业指导书 版本:A0 编制: 校对: 审核: 标准化: 批准: 新疆金风科技股份有限公司发布

目次 前言 (Ⅲ) 1 范围 (1) 2 规范性引用文件 (1) 3 齿轮箱产品简介 (1) 4 750kW齿轮箱主要零部件基本情况一览表(FL800/FD825) (1) 5 通用检验规则 (2) 5.1 检验依据 (2) 5.2 设计审查 (2) 5.3 工艺审查 (2) 5.4 分供方的质量控制 (2) 5.5 毛坯验收 (2) 5.6 机加工验收 (2) 5.7 装配前应完成的检验 (3) 6 主要零部件关键项目检验方法 (3) 6.1 箱体(前、中、后) (3) 6.2 行星架 (4) 6.3 内齿圈 (4) 6.4 齿轮类零件(含齿轮轴) (5) 6.5 轴类零件 (6) 6.6 刹车盘 (7) 6.7 轴承 (7) 6.8 高压油管 (7) 6.9 润滑管路 (8) 7 齿轮箱装配检验 (8) 7.1 装配检验规则 (8) 7.2 装配检验项目 (8) 8 齿轮箱试车检验 (9) 8.1 试车检验原则 (9) 8.2 试验项目及检验要求 (9) 9 包装、运输检查 (10) 10 随机文件检查 (11) 11 常见质量问题及处理方法 (11) 11.1零部件常见质量问题及解决办法见表10 (11) 11.2 齿轮箱试车常见问题及解决办法见表11 (12) 12 过程检查、最终检验记录表格见附录A (12) 表A.1 750kW齿轮箱装配检验单 (14) 表A.2 750kW齿轮箱附件出厂验收清单 (16)

材料力学实验参考

实验一、测定金属材料拉伸时的力学性能 一、实验目的 1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。 2、测定铸铁的强度极限b σ。 3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ?-曲线)。 二、仪器设备 1、液压式万能试验机。 2、游标卡尺。 三、实验原理简要 材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。试件在达到最大载荷前,伸长变形在标距范围内均匀分布。从最大载荷开始,产生局部伸长和颈缩。颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。 铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。 四、实验过程和步骤 1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。取三处中最小值作为计算试件横截面积的直径。 2、 按要求装夹试样(先选其中一根),并保持上下对中。 3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操 作要求见万能试验机使用说明。 4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ?-曲线显示在微机显示屏 上。从低碳钢的l F ?-曲线上读取s F 、b F 值,从铸铁的l F ?-曲线上读取b F 值。 5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。 6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。 7、 比较低碳钢和铸铁的断口特征。

齿轮箱结构原理

齿轮箱结构原理 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

齿轮箱结构原理及特点 齿轮箱是风机中的重要部件,其主要作用是将转子轴的旋转加速后带动发电机发电。 齿轮箱除传动部件外还包括检测系统、润滑系统、控制系统、加热系统、冷却系统等。风机使用的齿轮箱为两级行星齿轮传动一级平行轴齿轮传动。 一、行星轮齿轮传动 1.行星轮传动齿轮箱的优点: 1)体积小、质量小,结构紧凑,承载能力大 一般在承受相同的载荷条件下,行星齿轮传动的外廓尺寸和质量约为普通齿轮传动的1/2~1/5。 2)传动效率高 由于行星齿轮传动结构的对称性,使得作用于中心轮和转臂轴承中的反作用力能互相平衡,从而有利于达到提高传动效率的作用。一般其效率值可达~。 3)传动比较大, 在仅作为传递运动的行星齿轮传动中,其传动比可达到几千。而且行星齿轮传动在其传动比很大时,仍然可保持结构紧凑、质量小、体积小等许多优点。 4)运动平稳、抗冲击和振动的能力较强 由于采用了数个结构相同的行星轮,均匀地分布于中心轮的周围,从而可使行星轮与转臂的受力平衡。同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抵抗冲击和振动的能力较强,工作较可靠。 2.行星齿轮传动的缺点是: 1)材料优质; 2)结构复杂; 3)制造和安装较困难。 3.行星齿轮工作原理 齿圈固定,行星架主动,太阳轮被动。

二、平行轴齿轮传动 为了方便线缆通过低速轴传递到轮毂内,必须将高速轴与低速轴分开,所以齿轮箱的第三级采用平行轴齿轮传动。 三、齿轮箱与转子轴联结 锁紧套结构及原理:

转 子轴传入轴套后锁紧螺栓,外环移动对内环产生压力,内环和轴套变形从而使轴套与转子轴间产生预紧压力,安全可靠的传递动力 锁紧套连接的特点: 1. 定心精度高。 2. 安装简单,无需加热、冷却或加压设备。 3. 可传动重载,适合动载荷。连接件没有键槽削弱,靠摩擦力传动,没有相对 运动。 4. 有安全保护作用。 过载后转子轴与轴套相对滑动,从而保护齿轮箱、发电 机等免受损坏。

齿轮箱验收标准

总则: 1、FAT试验大纲在验收前应为船检签字扫描版,发于船东、船厂、打包方审核; 2、需要满足船级社规范(注意齿轮箱为批量生产或单台非标机); 3、满足技术规格书要求; 4、满足会议纪要要求; 5、齿轮箱需符合图纸要求; 验收仪器 1、试验用各种仪器、量具、设备应由有关部门定期检验,并附有检验合格证或校 正记录; 2、试验用各种仪器、量具、设备需得到验收人员的认可; 验收试验项次 1、齿轮箱验收资料检查(包含但不限于下列项次): 离合器传递扭矩计算书; 齿轮箱装配记录; 齿轮箱零部件质量检验报告(检验记录); 齿轮箱零部件船检证书; 齿轮箱关键零部件采购清单; 齿轮承载能力计算书; 齿轮轴强度计算书; 离合器强度计算书; 齿轮箱滑动轴承动态合力及其作用方向计算书; 齿轮箱热处理工艺资料(包含工艺文件、热处理报告和机械性能检验报告); 箱体、齿轮、轴等主要零部件材料技术资料; 箱体焊接工艺资料(包含工艺文件、无损探伤报告等); 滑油、冷却、控制系统液压原理图及安全报警装置电气原理图; 主要性能规格表; FAT试验大纲(验收项次需标明参照标准,且此标准可以符合船检规范要求),FAT试验大纲在验收前需要经过船东、船厂、打包方审核、批准;2、齿轮箱外观检验:外观整洁、零部件布置合理、维护方便、管路布置合理、液 压管路少焊缝或无焊缝、液压管路所有焊缝均可以检验焊接质量; 3、安全报警试验:符合试验大纲要求; 4、转速比检验:符合设计要求; 5、输出轴、PTO轴、配有器轴跳动检验:符合设计要求; 6、机械接口尺寸检验;备用泵的自动起停功能测试; 7、空载运行试验;空车带排试验; 8、离合器脱合排试验;手动机械应急装置试验; 9、换向试验(若有此功能); 10、负荷试验(满载);噪声及振动试验;拆减(拆减项次由船东、船厂和打 包方三方决定),推力轴承、滑动轴承、滑油滤器、离合器磨损情况、齿轮啮合面等; 11、复试。

FISH实验文献参考

Video Article Fluorescent in situ Hybridization on Mitotic Chromosomes of Mosquitoes Vladimir A. Timoshevskiy1, Atashi Sharma1, Igor V. Sharakhov1, Maria V. Sharakhova1 1Department of Entomology, Virginia Tech Correspondence to: Maria V. Sharakhova at msharakh@https://www.doczj.com/doc/1c587139.html, URL: https://www.doczj.com/doc/1c587139.html,/video/4215 DOI: doi:10.3791/4215 Keywords: Immunology, Issue 67, Genetics, Molecular Biology, Entomology, Infectious Disease, imaginal discs, mitotic chromosomes, genome mapping, FISH, fluorescent in situ hybridization, mosquitoes, Anopheles, Aedes, Culex Date Published: 9/17/2012 Citation: Timoshevskiy, V.A., Sharma, A., Sharakhov, I.V., Sharakhova, M.V. Fluorescent in situ Hybridization on Mitotic Chromosomes of Mosquitoes. J. Vis. Exp. (67), e4215, doi:10.3791/4215 (2012). Abstract Fluorescent in situ hybridization (FISH) is a technique routinely used by many laboratories to determine the chromosomal position of DNA and RNA probes. One important application of this method is the development of high-quality physical maps useful for improving the genome assemblies for various organisms. The natural banding pattern of polytene and mitotic chromosomes provides guidance for the precise ordering and orientation of the genomic supercontigs. Among the three mosquito genera, namely Anopheles, Aedes, and Culex, a well-established chromosome-based mapping technique has been developed only for Anopheles, whose members possess readable polytene chromosomes 1. As a result of genome mapping efforts, 88% of the An. gambiae genome has been placed to precise chromosome positions 2,3 . Two other mosquito genera, Aedes and Culex, have poorly polytenized chromosomes because of significant overrepresentation of transposable elements in their genomes 4, 5, 6. Only 31 and 9% of the genomic supercontings have been assigned without order or orientation to chromosomes of Ae. aegypti 7 and Cx.quinquefasciatus 8, respectively. Mitotic chromosome preparation for these two species had previously been limited to brain ganglia and cell lines. However, chromosome slides prepared from the brain ganglia of mosquitoes usually contain low numbers of metaphase plates 9. Also, although a FISH technique has been developed for mitotic chromosomes from a cell line of Ae. aegypti 10, the accumulation of multiple chromosomal rearrangements in cell line chromosomes 11 makes them useless for genome mapping. Here we describe a simple, robust technique for obtaining high-quality mitotic chromosome preparations from imaginal discs (IDs) of 4th instar larvae which can be used for all three genera of mosquitoes. A standard FISH protocol 12 is optimized for using BAC clones of genomic DNA as a probe on mitotic chromosomes of Ae. aegypti and Cx.quinquefasciatus, and for utilizing an intergenic spacer (IGS) region of ribosomal DNA (rDNA) as a probe on An. gambiae chromosomes. In addition to physical mapping, the developed technique can be applied to population cytogenetics and chromosome taxonomy/systematics of mosquitoes and other insect groups. Video Link The video component of this article can be found at https://www.doczj.com/doc/1c587139.html,/video/4215/ Protocol 1. Chromosome Preparation Mosquito larvae were reared using a standard protocol described in Methods in Anopheles Research available at the website of the Malaria Research and Reference Reagent Resource Center(MR4) 13. The temperatures of mosquito rearing were modified to provide the highest number of chromosomes in imaginal discs and lowest mortality of the larvae. The stages of mosquito larvae development were determined based on the sizes of their head capsules 13. 1.Hatch mosquito eggs at 28 °C, and after 2-3 days, transfer 2nd or 3rd instar larvae to 16 °C for Ae. aegypti and Cx. quinquefasciatus and to 22 °C for An. gambiae. 2.Place 4th instar larvae on ice for several minutes for immobilization. 3.Transfer larva to a slide with a drop of cold hypotonic solution (0.5% sodium citrate or 0.075 M potassium chloride), and place it under the stereo microscope. 4.Select larva with oval IDs (Figure 1B) for further dissection. 5.Decapitate larva, and cut the cuticle from the ventral side of the larval thorax using dissecting scissors (Figure 2A). Make additional cut in second or third abdominal segment to dissect the gut from the larva. The directions of the cuts are shown by arrows. 6.Open the cuticle, and remove the gut and fat body from the larva. Remove the hypotonic solution from the slide using filter paper, and add a fresh drop of hypotonic solution directly to the IDs (Figure 2B). Keep larva in hypotonic solution for 10 min at RT. 7.Remove hypotonic solution using filter paper, and apply Carnoy's solution (ethanol/acetic acid in 3:1 ratio). After adding fixative solution, IDs immediately turn white and become easily visible under the microscope (Figure 2C). https://www.doczj.com/doc/1c587139.html,ing dissecting needles, remove IDs from the larva (Figure 2D), and transfer them to a drop of 50% propionic acid. Remove any other tissues, such as the gut and fat body, from the slide. Cover IDs with an unsiliconized 22x22 cover slip, and keep for 10 min at RT. 9.Cover the slide with filter paper, and squash the tissue by tapping the eraser of a pencil on the perimeter of the cover slip. 10.Briefly analyze the quality of the slide using the phase-contrast microscope at 100x or 200x magnification (Figure 3). Preparations with >50 chromosome spreads can be considered suitable for FISH.

行星齿轮结构及工作原理

行星齿轮机构和工作原理 一、 简单的行星齿轮机构的特点 行星齿轮机构的组成: 简单(单排)的行星齿轮机构是变速机构 的基础,通常自动变速器的变速机构都由两排 或三排以上行星齿轮机构组成。简单行星齿轮 机构包括一个太阳轮、若干个行星齿轮和一个 齿轮圈,其中行星齿轮由行星架的固定轴支 承,允许行星轮在支承轴上转动。行星齿轮和 相邻的太阳轮、齿圈总是处于常啮合状态,通 常都采用斜齿轮以提高工作的平稳性(如图l 所示)。 如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的自转和绕着太阳的公转一样,当出现这种 情况时,就称为行星齿轮机构作用的传动 方式。在整个行星齿轮机构中,如行星轮 的自转存在,而行星架则固定不动,这种 方式类似平行轴式的传动称为定轴传动。 齿圈是内齿轮,它和行星轮常啮合,是内 齿和外齿轮啮合,两者间旋转方向相同。 行星齿轮的个数取决于变速器的设计负 荷,通常有三个或四个,个数愈多承担负 荷愈大。 简单的行星齿轮机构通常称为三构件机构,三个构件分别指太阳轮、行星架和齿圈。这三构件如果要确定相互间的运动关系,一般情况下首先需要固定

其中的一个构件,然后确定谁是主动件,并确定主动件的转速和旋转方向,结 果被动件的转速、旋转方向就确定了。 二、 单排行星齿轮机构的工作原理 根据能量守恒定律,三个元件上输入和输出的功率的代数和应等于零,从而得到单排行星齿轮机构一般运动规律的特性方程。 特性方程:n1+an2-(1+a)n3=0 n1——太阳轮转速,n2——齿圈转速,n3——行星架转速,a——齿圈与太阳轮齿数比。 由特性方程可以看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、环形内齿圈和行星架三个机构中,任选两个分别作为主动件和从动件,而使另一个元件固定不动,或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论三种情况。 1、齿圈固定,太阳轮为主动件且顺时针转动,而行星架则为被动件。太阳轮顺时针转动时,太阳轮轮齿必给行星轮齿A一个推力F 1 ,则行星轮应为逆时针 转动,但由于齿圈固定,所以齿圈轮齿必给行星轮齿B一个反作用力F 2 ,行星轮 在F 1和 F 2 合力作用下必绕太阳轮顺时针旋转,结果行星轮不仅存在逆时针自 转,并且在行星架的带动下,绕太阳轮中心轴线顺时针公转。在这种状态下,就出现了行星齿轮机构作用的传动方式,而且被动件行星架的旋转方向与主动件同方向。在这里,太阳轮是主动件而且是小齿轮,被动件行星架没有具体齿数的传动关系,因此定义行星架的当量齿数等于太阳轮和齿圈齿数之和。这样,太阳轮带动行星架转动仍属于小齿轮带动最大的齿轮,是一种减速运动且有最大的传动比。因为此时n2=0,故传动比 i13=n1?n3=1+a。(如图3)

风力发电机组齿轮箱试验要求

摘要:以下主要论述了风力发电齿轮箱试验的要求、空载试验、负载试验、批量生产试验等几个方面的有关要求。主要适用于大功率风电齿轮箱。 一、前言: 风力发电齿轮箱是风力发电机组的关键部件之一。此齿轮箱设计要求严格,制造精度高,要求运行可靠性好,所以,齿轮箱的出厂试验显得尤为重要。 二、试验要求: 1.试验所用仪器: ①动力源:按齿轮箱的功率选用适当电机 ②试验台:按要求搭建 ③测量仪表: a.温度计、Pt100仪表:用于测量被试齿轮箱润滑油温度,轴承温度。 b.测振仪:测量振动。要求测量高速轴,内齿圈外部等处振动量。 c.声级仪:测量试车噪音。 d.转速表:测量齿轮箱轴及电机轴转速。 e.必要时应配有一台1/3倍频程频率分析仪,并进行FFT分析。 2.试验润滑要求: 试验用油必须采用与齿轮箱工作时完全一致的油品,润滑油路必须是齿轮箱正常工作时的油路,试验后应更换过滤器。涂装时,为保证齿轮箱油路的完好性,不应拆卸各元件。 3.试验标准: ①温度:齿轮箱最高温度不应超过80℃,高速轴轴承温度不能超过90℃。 ②齿轮箱的空载噪音应不大于85dB(A),用GB3785中规定的Ⅰ型和Ⅰ型以上声级计,在额定转速下,在距齿轮箱中分面1米处测量,当环境噪声小于减速器噪声3dB(A)的情况下,应符合要求。 ③振动:要求测量高速轴轴伸,内齿圈外部等处振动,应符合GB/T8543规定的C级。 ④效率;齿轮箱效率视结构型式而定,一般应在96.5~97.5之间。 ⑤清洁度:齿轮箱的清洁度应符合JB/T7929的有关规定。 三、空载试验 由于风电齿轮箱在现场工作时均有约4o的倾角,所以空载试验时要求模拟这一工况,以检查齿轮箱油润滑系统的工作情况。 图一:典型空载试车装置 1、试车前先手动,确认无卡死现象后再正式启动。 2、按额定转速的30%、50%、80%各运行10分钟,观察无异常情况后再启动至额定转速。 3、在额定转速下运行2小时,试车过程中,每隔20分钟测量下列数据并作记录:油温、轴承温度、振动、噪音。 4、在110%额定转速下运行5分钟。 5、在额定转速下,反方向运行30分钟。 6、要求达到: a、各联接件、紧固件不松动。 b、各密封处、结合处不渗油。 c、运行平稳,无异常冲击声和杂音,噪声声压级符合要求。 d、润滑充分,温升正常。

减速机的工作原理

减速机的工作原理: 减速机的工作原理概述:就是利用各级齿轮传动来达到降速的目的.减速器就是由各级齿轮副组成的.比如用小齿轮带动大齿轮就能达到一定的减速的目的,再采用多级这样的结构,就可以大大降低转速了. 减速机一般用于低转速大扭矩的传动设备,把电动机.内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。减速机是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。减速机的作用:在目前用于传递动力与运动的机构中,减速机的应用范围相当广泛,几乎在各式机械的传动系统中都可以见到它的踪迹,从 交通工具的船舶,汽车,机车,建筑用的重型机具,机械工业所用的加工机具及自动化生产设备,到日常生活中常见的家电,钟表等等.其应用从大动力的传输工作,到小负荷,精确的角度传输都可以见到减速机的应用,且在工业应用上,减速机具有减速及增加转矩功能,因此广泛应用 在速度与扭矩的转换设备. 减速机是一种动力传达的机构,在应用上于需要较高扭矩以及不需要太高转速的地方都用的到它.例如:输送带,搅拌机,卷扬机,拍板机,自动化专用机…,而且随着工业的发展和工厂的自 动化,其利用减速机的需求量日益成长.通常减速的方法有很多,但最常用的方法是以齿轮来 减速,可以缩小占用空间及降低成本,所以也有人称减速机为齿轮箱(GearBox).通常齿轮箱是一些齿轮的组合,因齿轮箱本身并无动力,所以需要驱动组件来传动它,其中驱动组件可以是 马达,引擎或蒸汽机…等.而使用减速机最大的目的有下列几种:1.动力传递2.获得某一速度3.获得较大扭矩.但除了齿轮减速机外,由加茂精工所开发的球体减速机,提供了另一项价值,就是高精度的传动,且传动效率高,为划时代的新传动构造。 液力耦合器的模型与工作原理 液力耦合器是一种利用液体介质传递转速的机械设备,其主动输入轴端与原传动机相联结,从动输出轴端与负载轴端联结,通过调节液体介质的压力,使输出轴的转速得以改变。理想状态下,当压力趋于无穷大时,输出转速与输入转速相等,相当于钢性联轴器。当压力减小时,输出转速相应降低,连续改变介质压力,输出转速可以得到低于输入转速的无级调节。 液力耦合器的功控调速原理与效率 根据液力耦合器的上述特点,可以等效为图1所示的模型

高电压技术实验参考资料全

高电压技术实验参考资料 一、高电压实验课的目的和任务 1.熟悉和掌握高电压试验的基本技术。 2.通过实验,培养同学分析问题和解决问题的能力,使同学们初步掌握进行实验研究的一些基本方法。 3.树立安全第一的观点,保证人身和设备的安全是进行高压试验特别强调的问题,思想上必须自始至终保持高度的重视。 4.培养同学重视实际、遵守制度、爱护国家财产和严谨踏实的工作作风。 二、高电压试验的基本技术 1.掌握高电压试验的基本安全技术。 通过实验,同学们不仅在思想上要树立安全第一的观点,而且在实际工作中要养成严格的安全习惯。所以,要求同学们正确而熟练的掌握以下的基本安全技术。 a、掌握高压实验中必须的安全措施(防护栏、联锁、接地和安全距离)以及试验前的安全检查容。 b、按照实验规则的要求,呼叫口令,并按实验程序进行操作。 c、掌握基本安全工具——接地杆的使用和检查。 2.学会安排试验条件和掌握工频试验变压器的正确使用。 3.掌握高电压试验的基本方法和典型仪器的使用。 a、掌握主要电力设备(套管、避雷器、电力变压器、线路绝缘子、电缆、电容器等)绝缘的基本检查和试验方法,包括绝缘电阻、泄漏电流、介质损耗因数、局部放电等的测量。以及击穿试验、耐压试验等。 b、掌握测量球隙、静电电压表、多种分压器、兆欧表、以及数字量的测量和使用方法。

三、对同学们的要求 1.预习:要求掌握实验容、方法及基本原理,并选择试验所需设备、元件、仪器、仪表(包括使用方法)及试验点。画出试验线路图和原始记录表格。 2.实验:必须认真操作,观察实验中发生的现象,记录每次数据,注意安全,严格遵守实验规则,听从教师指导,实验后清理现场。 3.写出实验报告: 格式如下: a、实验目的 b、实验线路图,线路图要整齐、清楚(不得徒手画),并对图中设备的符号列表说明 c、实验容及数据整理:数据应列表,对所用符号的含义和单位应加以说明,需计算部分应列出引用的公式和说明计算方法。必要时,应绘曲线。 d、现象描述:主要是放电现象,或在实验中遇到的其它现象(如故障现象),若无此容,可省略。 e、分析讨论:对整个实验的数据、波形、实验现象用所学的知识进行分析讨论,并加以总结。 f、.严格遵守课堂纪律,不得迟到、早退。按时交报告。 四、高压实验室学生实验规则: (一) 实验前: 1.预习与组织: a、同学必须认真预习实验容,教师要提问检查,不预习者不得参加实验,实验前应交前次实验报告。 b、每实验组推选组长一人,组可轮流担任,并兼安全监护人。 2.实验前的检查: a、检查设备、仪表有元损坏。如有损坏.应立即向教师报告。 b、检查接线是否正确。

齿轮泵工作原理和结构

齿轮泵工作原理以及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿 轮泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿

进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对

齿轮箱实验

实验报告:齿轮箱故障检测班级:机自07 姓名:林海成 学号:10011166 日期:2013、5

一、实验目的 1、了解齿轮箱的整体结构以及故障类型 2、了解一种齿轮箱信号采集系统以及软件的操作 3、学习分析齿轮箱的故障特征 二、实验内容 1、分别在齿轮箱齿轮以及轴承正常的状态下在20HZ、30HZ对齿轮箱信号数据进行采集。 2、控制单一变量,在齿轮断齿、缺齿以及轴承滚动体、内圈、外圈故障的情况下进行数据采集。 三、实验步骤 1、打开计算机,启动软件,进行参数设置。 2、在齿轮箱齿轮正常的状态下在20HZ、30HZ对齿轮箱信号数据进行采集。 3、依次换上断齿、缺齿的故障齿轮,分别对其在两频率下的信号进行采集。 4、拆除齿轮部分,在齿轮箱轴承正常的状态下在20HZ、30HZ对齿轮箱信号数据进行采集。 5、依次换上滚动体、内圈、外圈故障的轴承,分别对其在两频率下的信号进行采集。 6、重新将正常的齿轮以及轴承安装回原来位置,清理工作台,结束实验。 四、实验分析 分析程序如下: clear; clc; load('f:\a.txt'); x=a(1:length(a),1);

y=a(1:length(a),2); fs=length(x)/(max(x)-min(x)); n=length(x)-1; t=n/fs; N=2^nextpow2(n); z=fft(y,N); mag=2*abs(z)/N; f=(0:length(z)-1)'*fs/length(z); figure(1); plot(f(1:N/2),mag(1:N/2)); grid on axis([0600000.15]) xlabel('频率/Hz') ylabel('幅值/V') title('幅频谱') figure(2); z2=rceps(y); plot(x,z2) grid on axis([00.1-0.20.2]) xlabel('时间/s') ylabel('幅值/V') title('倒频谱') figure(3); plot(x,y); grid on; xlabel('时间/s') ylabel('幅值/V') title('时间曲线') 理论数据如下: 轴承参数: 滚动体个数8,滚动体半径0.3125英寸,运动节径1.318英寸,压力角0度皮带轮传动比2.48 齿轮参数: 大齿轮齿数18,传动比1.5000000

相关主题
文本预览
相关文档 最新文档