当前位置:文档之家› 实验二 采样定理

实验二 采样定理

实验二 采样定理
实验二 采样定理

实验二采样定理

1.实验目的

熟悉信号采样过程,并通过本实验观察欠采样时信号频谱的混迭现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定方法。

2.实验内容和原理

模拟信号经过 (A/D) 变换转换为数字信号的过程称之为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成份的两倍,这称之为采样定理。

实验内容为设计一模拟信号:

采样频率为5120Hz,取信号频率f=150Hz(正常采样)和f=3000Hz(欠采样)两种情况进行采样分析。

3.仿真实验

此实验是以MatLab中的simulink摸块为基础开发的,

* 以下是仿真课件的主界面:

* 运行仿真后各器件的波形如下:

信号源的波形抽样脉冲的波形

抽样后信号的波形恢复以后信号的波形4.思考题

若信号频率为5000Hz,请问本实验中的模拟信号采样后的混迭频率是多少Hz ?

分析一200Hz的方波信号,采样频率=500Hz,用谱分析功能观察其频谱中的混迭现象。为什么会产生混迭?

5.实验报告要求

简述实验目的及原理,按实验步骤附上相应的信号波形和频谱曲线,说明采样频率变化对信号时域和频域特性的影响,总结实验得出的主要结论。参考比较实例演示的相应JAVA小程序,你可以得出哪些结论?

等效电源定理

实验二等效电源定理 一、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效内阻R0的测量 Uoc R0=── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。 三、实验设备

四、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。

实验六频率混叠与采样定理

实验六频率混叠与采样定理 一.实验目的: 熟悉信号采样过程,并通过本实验观察欠采样时信号频谱的混迭现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定方法。二.实验内容和原理: 模拟信号经过(A/D) 变换转换为数字信号的过程称之为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率fs,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成份的两倍,这称之为采样定理。 a) 正常采样b) 欠采样 x(t)=3sin(2π·f·t) 采样频率=5120Hz,取信号频率f=150Hz(正常采样)和f=3000Hz(欠采样)两种情况进行采样分析。 三.实验仿真 1.Matlab源代码: x=-10:0.1:10; m=0:0.05:10; y1=sin(2*pi*x); y2=sin(4*pi*x); y3=sin(6*pi*x); y4=sin(8*pi*x); y5=sin(9*pi*x); y6=sin(12*pi*x); transf1=abs(fft(y1))/100; transf2=abs(fft(y2))/100; transf3=abs(fft(y3))/100; transf4=abs(fft(y4))/100; transf5=abs(fft(y5))/100; transf6=abs(fft(y6))/100; subplot(6,2,1); plot(x,y1); subplot(6,2,2); plot(m(1:100),transf1(1:100)); subplot(6,2,3); plot(x,y2);

电路实验报告1--叠加原理

电路实验报告1-叠加原理的验证 所属栏目:电路实验- 实验报告示例发布时间:2010-3-11 实验三叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路, 按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。

等效电源定理

等效电源定理 戴维南定理和诺顿定理分别能把含源二端网络等效成为一个实际电压源支路和实际电流源支路,故统称等效电源定理。 1、戴维南定理 任一线性含源二端网络,对外电路讲,可以等效为一个电压源和电阻串联的组合,电压源的电压为该网络的开路电压u oc,串联电阻等于该网络中所有独立源为零时的入端等效电阻R o。 2、诺顿定理 任一线性含源二端网络,对外电路讲,可以等效为一个电流源和电阻并联的组合,电流源的电流为该网络的短路电流isc,并联电阻等于该网络中所有独立源为零值时的入端等效电阻R o。 图(a)所示为一接有外电路的含源二端网络,根据替代定律,把R L 支路分别用流过它的电流i和两端电压u作为电压源等效替代,然后运用叠加定理分别得到 u=u oc-R o i=i sc-u/R o 等效电源电路如图(b)所示。 这两条定律所得到的电压源支路和电流源支路可以互相等效,所以人们多应用戴维南等效电压源定律,然后变化为诺顿等效电流源电路,如图(b)上、下图所示。戴维南定律对求解电路中某一支路的电压、电流和功率,特别是负载吸收的最大功率最为方便。求解时含源二端网络必须是线性的,待求支是线性的或非线性、有源或无源均可。

应用这两条定律,一般分三个步骤: (1)断开待求支路或将待求支路短路,分别求得开路电压u oc和短路电流i sc; (2)让全部独立源为零,求入端等效电阻R o。 (3)画出等效电源电路,接上待求支路,求解待求量。 3、用戴维南定律分析含受控源电路 根据受控源的性质和等效电源定律的要求,当用戴维南定律和诺顿定律分析受控源电路时,必须掌握: (1)当控制量在端口上时,它要随端口开路或短路变化,必须用变化了的控制量来表示受控源的电压或电流。 (2)当控制量在网络内,则在短路或开路时,必须保证受控源及其控制量同在含源二端网络内。 (3)受控源不能充当激励,具有电阻性。 在求戴维南等效电阻时,独立源为零,受控源和电阻一样要保留,故

信号与系统 抽样定理实验

信号与系统 实验报告 实验六抽样定理 实验六抽样定理 一、实验内容:(60分) 1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。 2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。 (1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形;

程序如下: dt=0.1; f0=0.2; T0=1/f0; fm=5*f0; Tm=1/fm; t=-10:dt:10; f=sinc(t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('?-á?D?D?o?oí3é?ùD?o?'); for i=1:3; fs=i*fm;Ts=1/fs; n=-10:Ts:10; f=sinc(n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 运行结果如下:

(2)求解原连续信号和抽样信号的幅度谱; 程序: dt=0.1;fm=1; t=-8:dt:8;N=length(t); f=sinc(t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-6:Ts:6; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1;

通信原理实验四 实验报告 抽样定理与PAM系统实训

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训 一、实验目的 1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点; 3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。 二、实验原理 1.取样(抽样、采样) (1)取样 取样是把时间连续的模拟信号变换为时间离散信号的过程。 (2)抽样定理 一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽 样值完全确定。 (3)取样分类 ①理想取样、自然取样、平顶取样; ②低通取样和带通取样。 2.脉冲振幅调制电路原理(PAM) (1)脉冲幅度调制系统 系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。 图 1 脉冲振幅调制电路原理框图 (2)取样电路 取样电路是用4066模拟门电路实现。当取样脉冲为高电位时,

取出信号样值;当取样脉冲为低电位,输出电压为0。 图 2 抽样电路 图 3 低通滤波电路 三、实验步骤 1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs; 2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc; 3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形; 4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声 器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入 时钟信号频率,听辨音乐信号的质量. 四、实验内容及现象 1.测量点波形 图 4 TP301 模拟信号输入 图 5 TP302 抽样时钟波形(555稍有失真) fc=38.8kHz ①fc>>2fs,使fs=5KHz: 图 6 TP303 抽样信号输出1 图7 TP304 模拟信号还原输出1 ②fc=2fs,使fs=20KHz: 图8 TP303 抽样信号输出2 图9 TP304 模拟信号还原输出2 ③fc<2fs,使fs=25KHz: 图10 TP303 抽样信号输出3 图11 TP304 模拟信号还原输出3 2.电路Multisim仿真 图12 PAM调制解调仿真电路 图13 模拟信号输入 图14 抽样脉冲波形 图15 PAM信号 图16 低通滤波器特性 图17 还原波形 更多学习资料请见我的个人主页:

matlab验证时域采样定理实验报告

通信原理实验报告实验名称:采样定理 实验时间: 201211日年12月 指导老师:应娜 学院:计算机学院 级:班 学号: 姓名:

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t); 2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 四、数据分析 (1)部分程序分析: f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组 axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱 f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组 fz=eval(fy); %获取采样序列 FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换 TMN=ones(length(n),1)*t-n'*T*ones(1,length(t)); 由采样信号恢复原信号fh=fz*sinc(fs*TMN); %. (2)原信号的波形与幅度频谱:

叠加原理 实验报告范文(含数据处理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时, I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。

实验六抽样定理的MATLAB仿真

综合性、设计性实验报告 姓名贺鹤学号2 专业通信工程班级2013级1班 实验课程名称抽样定理的MATLAB仿真 指导教师及职称李玲香讲师 开课学期2014 至2015 学年第二学期 上课时间2015年6 月17、27日 湖南科技学院教务处编印

(2) 编程步骤(仿真实验) ①确定f(t)的最高频率fm。对于无限带宽信号,确定最高频率fm的方法:设其频谱的模降到10-5左右时的频率为fm。 ②确定Nyquist抽样间隔T N。选定两个抽样时间:T ST N。 ③滤波器的截止频率确定:ωm <ωC <ωS -ωm 。 ④采样信号f(nTs )根据MATLAB计算表达式的向量表示。 ⑤重建信号f(t) 的MATLAB中的计算机公式向量表示。 根据原理和公式,MATLAB计算为: ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); (3)电路连接原理(硬件实验) 5.实验数据处理方法 ①自定义输入信号:f1=cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3) ②改变抽样频率,实现欠抽样、临界抽样和过抽样,调试结果分析: (1)频率sf

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM 调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM 脉冲调幅模块,位号:H (实物图片如下) 2.时钟与基带数据发生模块,位号:G (实物图片见第3页) 3.20M 双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时, 模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开, 无信号输出 图1-2 PAM 信道仿真电路示意图 32W01 C1 C2 32P03 R2 32TP0

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

叠加定理实验报告

实验报告 一、实验名称 叠加定理与置换定理 二、实验原理 1、根据叠加定理,实验数据应满足当电路中只有U s1单独作用时流过一条支路的电流值加上电路只有Us2单独作用时流过该支路的电流值等于电路中Us1与Us2共同作用时流过该支路的电流值。 2、置换定理:若电路中某一支路的电压和电流分别为U和I,用Us=U的电压源或Is=I的电流源来置换该支路,如置换后电路有唯一解,则置换前后电路中全部支路电压与支路电流保持不变。 三、实验内容 1、测量并记录电阻的实际值(数据见实验数据表1) 2、根据下面电路图,在实验板上连接此电路实物图。将一万用表串联接入R3的那条支路中,并将万用表打在电流档上;将另一万用表并联在R33两端并打在电压档上。 3、选择一支路,记录两个电源同时作用时的两万用表的读数;单个电源作用,分别短路另一个电源(不是不接电源也不是将电源的值降为0,而是直接短路),记录两万用表的读数。(数据见实验数据表2) 四、实验数据 表1 器件R1 R2 R3 R11 R22 R33

阻值(Ω) 1.799k 219.5 267.8 2.173k 267.5 327.6 表2 电源电压/V 支路电压/V 支路电流/mA Multisim 实验板Multisim 实验板 Us1=10 Us2=15 8.250 8.35 31.0 31.70 Us1=10 Us2=0 0.632 0.636 2.337 2.35 Us1=0 Us2=15 7.728 7.72 29.0 29.33 两电源共同作用时仿真图: Us1单独作用时的仿真图: Us2单独作用时的仿真图:

将直流电源换成交流电源时的分别三张波形图: U1=10 U2=15交流波形图 U1=10 U2=0 交流波形图

实验4 等效电源定理与叠加定理doc

实验四 等效电源定理与叠加定理 一、 实验目的 1. 加深对等效电源定理(戴维南定理和诺顿定理)与叠加定理的理解。 2. 学习线性含独立源一端口网络等效电路参数的测量方法。 二、 实验仪器 直流电压表 直流电流表 万用表 直流稳压电源 直流稳流电源 相关电阻元件 三、 预习要求 1. 复习等效电源定理和叠加定理。 2. 确定等效电源电阻的几种方法及其优缺点。 3. 含独立源二端网络及其戴维南等效电路的等效条件。 四、 实验原理 1. 叠加定理 具有唯一解的线性电路,由几个独立源共同作用所产生的各支路电流或电压,是各个独立电源分别单独作用时产生的各支路电流或电压的代数叠加。 2. 等效电源定理 (1) 戴维南定理:任一线性含独立源一端口网络,其对外作用可以用一个电压源串 电阻的等效电源代替,该电压源的电压等于此一端口网络的开路电压,该电阻等于此一端口网络内部各独立源置零后的等效电阻。 (2) 诺顿定理:任一线性含独立源一端口网络,其对外作用可以用一个电流源并电 导的等效电源代替,该电流源的电流等于此一端口网络的短路电流,该电导等于此一端口网络内部各独立源置零后的等效电导。 线性含源一端口网络的等效电路如图1-19所示。 图1-19 等效电源定理 3. 等效电源电路参数的测定 (1) 测定开路电压。如果电压表的内阻相对于被测一端口网络的内阻大很多,电压 表几乎不取网络电流,可以直接用电压表或万用表的电压档测定。 (2) 测定短路电流。如果电流表的内阻相对于被测一端口网络的内阻小很多,其上 电压降可忽略不计,可以直接用电流表测定。 线性含源一端口a b Ro Uoc +-a b a b 或

PAM实验报告

信息工程学院实验报告 实验课名称通信原理实验实验内容 PAM编译码器系统成绩 班级、专业 09级通信工程一班姓名兰慧敏学号 0938033 组别 实验日期 2011 年11月 23日实验时间 18:30—21:30 指导教师雷老师合作者吴迪

的低通滤波器;当K702设置在NF 位置时(右端),信号不经过抗混迭滤波器直接送到抽样电路,其目的是为了观测混迭现象。 设置在交换模块内的跳线开关KQ02为抽样脉冲选择开关:设置在H 位置为平顶抽样(左端),平顶抽样是通过采样保持电容来实现的,且τ=Ts ;设置在NH 为自然抽样(右端),为便于恢复出的信号观测,此抽样脉冲略宽,只是近似自然抽样。平顶抽样有利于解调后提高输出信号的电平,但却会引入信号频谱失真 2 /) 2/(ωτωτSin , τ为抽样脉冲宽度。通常在实际设备里,收端必须采用频率响应为) 2/(2 /ωτωτSin 的滤波器来进行频谱校准,抵消 失真。这种频谱失真称为孔径失真。 该电路模块各测试点安排如下: 1、 TP701:输入模拟信号 2、 TP702:经滤波器输出的模拟信号 3、 TP703:抽样序列 TP704:恢复模拟信号 四、实验内容 准备工作:将交换模块内的抽样时钟模式开关KQ02设置在NH 位置(右端),将测试信号选择开关KQ01设置在外部测试信号输入2_3位置(右端)。 1. 近似自然抽样脉冲序列测量 (1) 首先将输入信号选择开关K701设置在T (测试状态)位置,将低通滤波器选择开关K702设置在F (滤波位置),为便于观测,调整函数信号发生器正弦波输出频率为200~1000Hz 、输出电平为2Vp-p 的测试信号送入信号测试端口J005和J006(地)。 (2) 用示波器同时观测正弦波输入信号(J005)和抽样脉冲序列信号(TP703),观测时以TP703做同步。 调整示波器同步电平和微调调整函数信号发生器输出频率,使抽样序列与输入测试信号基本同步。测量抽样脉冲序列信号与正弦波输入信号的对应关系。 2. 重建信号观测 TP704为重建信号输出测试点。保持测试信号不变,用示波器同时观测重建信号输出测试点和正弦波输入信

叠加原理实验报告

一、实验目的 1、通过实验来验证线性电路中的叠加原理以及其适用范围。 2、学习直流仪器仪表的测试方法。 二、实验器材 序号名称数量备注 1稳压、稳流源1DG04 2直流电路实验1DG05 3 1D31-2 直流电压、电流表 三、实验原理 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 四、实验内容及步骤 实验线路如图3-4-1所示。 图3-4—1 1、按图3-4-1,取U1=+12V,U2调至+6V。 2、U1电源单独作用时(将开关S1拨至U1侧,开关S2拨至短路侧),用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表格中。 3、U2电源单独作用时(将开关S1拨至短路侧,开关S2拨至U2侧),重复实验步骤2的测量和记录。 4、令U1和U2共同作用时(将开关S1和S2分别拨至U1和U2侧),重复上述的测量和记录。 五、实验数据处理及分析 线性叠加定理数据记录表 实验内容I?I?I?Uab Ucd Uad Ude Ufa U?单独作用8.360 -2.274 6.313 2.378 0.845 3.26 4.351 4.379

U?单独作用-1.06 3.586 2.422 -3.46 -1.24 1.245 -0.59 -0.537 U?,U?共同作 7.423 1.231 8.761 -1.248 -0.411 4.413 3.797 3.783 用 非线性叠加定理数据记录表 实验内容I?I?I?Uab Ucd Uad Ude Ufa U?单独作用8.556 -2.23 6.296 0.38 0.663 3.161 4.395 4.397 U?单独作用0.041 0.041 0.045 -0.002 5.872 0 0 0 U?,U?共同作 7.82 0 7.836 -0.002 -2.089 3.957 3.974 3.953 用 电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。电阻改为二极管后,叠加原理不成立。 六、实验总结 测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。

实验六maab采样定理的建模和验证

实验六 题目:采样定理的建模和验证 实验目的:通过建模与仿真验证采样定理,理解采样定理的物理实质实验要求:学习和回顾采样定理内容,对采样定理作建模和仿真实验内容: 1、采样定理原理的回顾 Fh 卷 乘 Ts fs= 1/Ts fs=1/Ts

2、建模参数要求: 设计模型,验证采样定理. 设基带波形频谱在 0Hz~200Hz 内. Fh=200Hz(信号最高频率),采样率就应该大于 400Hz 。用窄脉冲采样,要求窄脉冲宽度是采样周期的 1/10。从而得到系统仿真步长: 小于等于 1/4000,仿真系统的仿真步长取 1/4000。 采样器用乘法器实现. 而恢复时用低通滤波器实现. 低通滤波器的带宽等于信号最高频率 Fh,即等于 200Hz. 3、仿真模型和结果 信号最高频率为100Hz,采样率为 400 次/秒情况下的波形结果:采样之前,采样后以及恢复的波形(scope 中)

4、修改基带信号最高频率,如最高频率为200Hz、250Hz 等等,观察采样前后 以及恢复的波形和频谱。请用实验方法得到频谱混叠后的频谱图和相应的波形。 5. 将被采样信号修改为正弦波、三角波和方波,观察采样前后和恢复非波形和频谱。 实验报告内容和要求:(!!注意每部分得分情况!!) 1.建立采样和恢复模型,说明关键模块的参数设置(30 分) 仿真模型建立: 参数设置: 信源与滤波器参数:

2.修改采样率,如采样率为 150Hz,200Hz、300Hz 等等,观察采样前后以及恢复的波形和频谱。请用实验方法得到频谱混叠后的频谱图和相应的波形。(40 分) 150Hz: 200Hz: 300Hz: 3.将被采样信号修改为正弦波、三角波和方波,观察采样前后和恢复非波形和频谱。(30分) 三角波: 方波: 正弦波:

频谱分析与采样定理

数字信号处理实验报告实验一:频谱分析与采样定理 班级:10051041 姓名: 学号:

一实验目的 1.观察模拟信号经理想采样后的频谱变化关系。 2.验证采样定理,观察欠采样时产生的频谱混叠现象 3.加深对DFT算法原理和基本性质的理解 4.熟悉FFT算法原理和FFT的应用 二、实验原理 根据采样定理,对给定信号确定采样频率,观察信号的频谱 奈奎斯特抽样定律:为了避免发生混叠现象,能从抽样信号无失真的恢复出原信号,抽样频率必须大于或等于信号频谱最高频率的2倍。 三、实验内容 在给定信号为: 1.x(t)=cos(100*π*at) 2.x(t)=exp(-at) 3.x(t)=exp(-at)cos(100*π*at) 其中a为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。 四、实验步骤 1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。 2.复习FFT算法原理和基本思想。 3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验设备 计算机、Matlab软件 六、实验程序和结果 1、学号为57,原信号频率为2850Hz,根据抽样定理,取采样频率大于2倍的原最大频率,即大于5700Hz,采样间隔小于0.00018s,取T=0.0002s进行抽样,程序为: %实验一:频谱分析与采样定理 %褚耀欣 T=0.00001; %采样间隔T=0.00001 F=1/T; %采样频率为F=1/T L=0.001 %记录长度L=0.001 N=L/T; t=0:T:L; a=57; f1=0:F/N:F; f2=-F/2:F/N:F/2; %%%%%%%%%%%%%%%%%%%%%%%%%

叠加原理 实验报告范文(含数据处理)

叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1 3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。

表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。 七、实验小结 测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。

system_view抽样定理、PCM实验报告

信息学院 现代交换实验报告 姓名:王磊 学号: 2012080331140 专业:通信工程 2015年6月30日

实验一:抽样定理仿真 一、实验目的 1、掌握Systemview 软件的使用 2、熟练使用软件的图符库,能够构建简单系统 二、实验内容 1、熟悉软件的工作界面; 2、用Systemview 软件建立仿真电路 3、进行参数设置 4、观测过程中各关键点波形 5、对仿真结果进行分析 三、实验原理 所谓抽样。就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。 在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h 时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。根据这一特性,可以完成信号的模-数转换和数-模转换过程。 四、实验结果

结果没有还原。

结果还原。 参数: 1.幅度 2.频率 3.相位 功能: 产生一个正弦波:y(t)=Asin(2PIfct+*) 参数: 1.幅度 2.频率(HZ) 3.脉冲宽度(秒) 4.偏置 5.相位 功能: 产生具有设定幅度和频率的周期性脉冲串,脉宽由设置决定。 y(t)=+-A*PT(t)+Bias 有方波选项。 实时显示 Real Time 功能: 能在系统仿真运行同时,实时地在系统窗口显示接收到的波形。 加法器 Adder 参数: 1.寄存器大小N 2.分数大小F 3.指数大小K 4.输出类型T 5.整型数转换选择 功能: 将输入的一个或多个值求和,并给出适当的标志。 结论:由此证明了证明了抽样定理的正确性,抽样信号在fs>=2fh时可以还原,抽样频率越 高效果越好。

2基尔霍夫定律和叠加原理的验证实验报告答案含数据处理

实验二基尔霍夫定律和叠加原理的验证 一、实验目的 1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。 3.进一步掌握仪器仪表的使用方法。 二、实验原理 1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 (1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。 (2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。 基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。 基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。 2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。某独立源单独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。) 线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流数字电压表 1 块 3.直流数字毫安表1块 4.万用表 1 块 5.实验电路板 1 块 四、实验内容 1.基尔霍夫定律实验 按图2-1接线。

电路分析 等效电源定理 实验报告

电路分析等效电源定理实验报告 一、实验名称 等效电源定理 二、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 三、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效内阻R0的测量 Uoc R0=── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。

五、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 表2 实验数据表二 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。 表3 实验数据表三 4. 验证诺顿定理 在图5-1(a)中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A、B两点的等效电阻值即为诺顿定理中R0,然后令

(三)采样定理实验

实验三采样定理实验 一、实验目的 (4) 通过数据采集加深对采样定理的理解; (5) 熟悉DSP 对AD 采样频率的控制方法; (6) 熟悉数字信号到模拟信号的转换方法; 二、实验内容 本试验要求使用AD 将模拟信号变换成数字信号,使用DSP 对转换后的数字信号读取保存,并利用CCS 对这些采集到的数据进行分析,然后从DA 将采集到的数据送出。根据分析的结果确定适合信号频率的AD 的采样频率,对同一信号设置不同的采样频率来验证香农采样定理。 三、实验原理 香农采样定理指出:如果AD 转换器的输入信号具有有限带宽,并且有直到ωk 的频率分量,则只需要AD 转换器的采样周期T 满足如下条件:T ≤π/ωK,信号就可以完全从采样信号中恢复出来。反之,如果采样频率低于信号频率的 2 倍,基本上不能恢复原始信号。根据采样定理,对于一个单正弦的模拟信号,假设其频率为f0 ,当采样率fs≥2 f0 时就可保证采样后的信号无失真地保持原模拟信号的信息,即可重现原模拟信号;如果采样率低于2 f0 就会发生频域的混叠失真。在实际的情况中,一般的情况下首先要使模拟信号通过一个截止频率不高于0.5 f0 的低通滤波器,使其成为一个限带信号。然后,对其采样就可以保证信号无混叠失真。该低通滤波器又叫抗混叠滤波器。 实验中,我们选择对一个确定的信号进行采样,然后将采样后的数据从DA 输出,从DA 的输出使用示波器查看输出后的波形。如果满足采样定理,可以从示波器看到和原始信号一样的波形;反之,如果不满足采样定理,就不能从示波器看到和原始信号一样的波形。实验中,我们调整AD 转换器的采样频率,将以上两种情况分别进行,以验证采样定理。 四、实验方法 本实验的主要内容是设置AD 的采样频率,对于不同的AD 有不同的设置方法。DSP 提供一个采样时钟发生电路,通过设置DSP 内部的寄存器来设置不同的时钟信号以供AD 选择。图3.1 是DSP 时钟发生器,对于使用DSP 的缓冲串口的AD 都可以使用该时钟发生电路设置AD 的采样频率。 图3.1 DSP 时钟发生器 从图3.1 可以看出,基本的时钟信号可以来自CPU 时钟,也可以来自晶振的时钟,这是在DSP 寄存器SRGR2 中的第13 位设置。基本时钟输入后,经过CLKGDV(寄存器SRGR1 的第0 位到第7 位)所设置的值进行第一次分频,得到位时钟信号。注意的是,位时钟信

相关主题
文本预览
相关文档 最新文档