当前位置:文档之家› 零中频射频接收机技术

零中频射频接收机技术

零中频射频接收机技术
零中频射频接收机技术

零中频射频接收机技术

摘要:零中频(Zero IF)或直接变换(Direct-Conversion)接收机具有体积小、成本低和易于单片集成的特点,正成为射频接收机中极具竞争力的一种

结构。本文在介绍超外差(Super Heterodyne)结构与零中频结构性能和

特点的基础上,重点分析零中频结构存在的本振泄漏(LO Leakage)、

偶次失真(Even-Order Distortion)、直流偏差(DC Offset)、闪烁噪声(Fl

icker Noise)等问题,并给出零中频接收机的设计方法和相关技术。

关键词:零中频;超外差;本振泄漏;自混频

引言

近年来随着无线通信技术的飞速发展,无线通信系统产品越来越普及,成为当今人类信息社会发展的重要组成部分。射频接收机位于无线通信系统的最前端,其结构和性能直接影响着整个通信系统。优化设计结构和选择合适的制造工艺,以提高系统的性能价格比,是射频工程师追求的方向。由于零中频接收机具有体积小、成本低和易于单片集成的特点,已成为射频接收机中极具竞争力的一种结构,在无线通信领域中受到广泛的关注。本文在介绍超外差结构和零中频结构性能和特点的基础上,分析零中频结构可能存在的问题,并给出零中频接收机的设计方法和相关技术。

超外差接收机

超外差(Super Heterodyne)体系结构自1917年由Armstrong发明以来,已被广泛采用。图1为超外差接收机结构框图。在此结构中,由天线接收的射频信号先经过射频带通滤波器(RF BPF)、低噪声放大器(LNA)和镜像干扰抑制滤波器(I

R Filter)后,进行第一次下变频,产生固定频率的中频(IF)信号。然后,中频信

号经过中频带通滤波器(IF BPF)将邻近的频道信号去除,再进行第二次下变频得到所需的基带信号。低噪声放大器(LNA)前的射频带通滤波器衰减了带外信号和镜像干扰。第一次下变频之前的镜像干扰抑制滤波器用来抑制镜像干扰,将其衰减到可接受的水平。使用可调的本地振荡器(LO1),全部频谱被下变频到一个固定的中频。下变频后的中频带通滤波器用来选择信道,称为信道选择滤波器。此滤波器在确定接收机的选择性和灵敏度方面起着非常重要的作用。第二下变频是正交的,以产生同相(I)和正交(Q)两路基带信号。

超外差体系结构被认为是最可靠的接收机拓扑结构,因为通过适当地选择中频和滤波器可以获得极佳的选择性和灵敏度。由于有多个变频级,直流偏差和本振泄漏问题不会影响接收机的性能。但镜像干扰抑制滤波器和信道选择滤波器均为高Q值带通滤波器,它们只能在片外实现,从而增大了接收机的成本和尺寸。目前,要利用集成电路制造工艺将这两个滤波器与其它射频电路一起集成在一块芯片上存在很大的困难。因此,超外差接收机的单片集成因受到工艺技术方面的限制而难以实现。

零中频接收机

由于零中频接收机不需要片外高Q值带通滤波器,可以实现单片集成,而

受到广泛的重视。图2为零中频接收机结构框图。其结构较超外差接收机简单许

多。接收到的射频信号经滤波器和低噪声放大器放大后,与互为正交的两路本振信号混频,分别产生同相和正交两路基带信号。由于本振信号频率与射频信号频率相同,因此混频后直接产生基带信号,而信道选择和增益调整在基带上进行,由芯片上的低通滤波器和可变增益放大器完成。

零中频接收机最吸引人之处在于下变频过程中不需经过中频,且镜像频率即是射频信号本身,不存在镜像频率干扰,原超外差结构中的镜像抑制滤波器及中频滤波器均可省略。这样一方面取消了外部元件,有利于系统的单片集成,降低成本。另一方面系统所需的电路模块及外部节点数减少,降低了接收机所需的功耗并减少射频信号受外部干扰的机会。

不过零中频结构存在着直流偏差、本振泄漏和闪烁噪声等问题。因此有效地解决这些问题是保证零中频结构正确实现的前提。

本振泄漏(LO Leakage)

零中频结构的本振频率与信号频率相同,如果混频器的本振口与射频口之间的隔离性能不好,本振信号就很容易从混频器的射频口输出,再通过低噪声放大器泄漏到天线,辐射到空间,形成对邻道的干扰,图3给出了本振泄漏示意图。本振泄漏在超外差式接收机中不容易发生,因为本振频率和信号频率相差很大,一般本振频率都落在前级滤波器的频带以外。

偶次失真(Even-Order Distortion)

典型的射频接收机仅对奇次互调的影响较为敏感。在零中频结构中,偶次互调失真同样会给接收机带来问题。如图4所示,假设在所需信道的附近存在两个很强的干扰信号,LNA存在偶次失真,其特性为y(t)=a1x(t)+a2x2(t)。若x(t)=A1 cosw1t+A2cosw2t,则y(t)中包含a2A1A2cos(w1-w2)t项,这表明两个高频干扰经过含有偶次失真的LNA将产生一个低频干扰信号。若混频器是理想的,此信号与本振信号coswLOt混频后,将被搬移到高频,对接收机没有影响。然而实际

的混频器并非理想,RF口与IF口的隔离有限,干扰信号将由混频器的RF口直通进入IF口,对基带信号造成干扰。

偶次失真的另一种表现形式是,射频信号的二次谐波与本振输出的二次谐波混频后,被下变频到基带上,与基带信号重叠,造成干扰,变换过程如图5所示。这里我们仅考虑了LNA的偶次失真。在实际中,混频器RF端口会遇到同样问题,应引起足够的重视。因为加在混频器RF端口上的信号是经LNA放大后的

射频信号,该端口是射频通路中信号幅度最强的地方,所以混频器的偶次非线性会在输出端产生严重的失真。

偶次失真的解决方法是在低噪放和混频器中使用全差分结构以抵消偶次失真。

直流偏差(DC Offset)

直流偏差是零中频方案特有的一种干扰,它是由自混频(Self-Mixing)引起的。泄漏的本振信号可以分别从低噪放的输出端、滤波器的输出端及天线端反射回来,或泄漏的信号由天线接收下来,进入混频器的射频口。它和本振口进入的本振信号相混频,差拍频率为零,即为直流,如图6(a)所示。同样,进入低噪放的强干扰信号也会由于混频器的各端口隔离性能不好而漏入本振口,反过来和射频口来的强干扰相混频,差频为直流,如图6(b)所示。

这些直流信号将叠加在基带信号上,并对基带信号构成干扰,被称为直流偏差。直流偏差往往比射频前端的噪声还要大,使信噪比变差,同时大的直流偏差可能使混频器后的各级放大器饱和,无法放大有用信号。

经过上述分析,我们可以来估算自混频引起的直流偏差。假设在图6(a)中,由天线至X点的总增益约为100 dB,本振信号的峰峰值为0.63 V(在50 Ω中为0 dBm),在耦合到A点时信号被衰减了60 dB。如果低噪放和混频器的总增益

为30 dB,则混频器输出端将产生大约7 mV的直流偏差。而在这一点上的有用信号电平可以小到30 μVrms。因此,如果直流偏差被剩余的70 dB增益直接放大,放大器将进入饱和状态,失去对有用信号的放大功能。

当自混频随时间发生变化时,直流偏差问题将变得十分复杂。这种情况可在下面的条件下发生:当泄漏到天线的本振信号经天线发射出去后又从运动的物体反射回来被天线接收,通过低噪放进入混频器,经混频产生的直流偏差将是时变的。

由上述讨论可知,如何消除直流偏差是设计零中频接收机时要重点考虑的内容。

交流耦合(AC Coupling)

将下变频后的基带信号用电容隔直流的方法耦合到基带放大器,以此消除直流偏差的干扰。对于直流附近集中了比较大能量的基带信号,这种方法会增加误码率,不宜采用。因此减少直流偏差干扰的有效方法是将欲发射的基带信号进行适当的编码并选择合适的调制方式,以减少基带信号在直流附近的能量。此时可以用交流耦合的方法来消除直流偏差而不损失直流能量。缺点是要用到大电容,增大了芯片的面积。

谐波混频(Harmonic Mixing)

谐波混频器的工作原理如图7所示。本振信号频率选为射频信号频率的一半,混频器使用本振信号的二次谐波与输入射频信号进行混频。由本振泄漏引起的自混频将产生一个与本振信号同频率的交流信号,但不产生直流分量,从而有效地抑制了直流偏差。

图8给出一个CMOS谐波混频器,本振信号的二次谐波可通过CMOS晶体管固有的平方律特性得到。晶体管M3和M4组成的电路将差分本振电压Vlo+

和Vlo-转换为具有二次谐波的时变电流,本振信号的基频和奇次谐波在漏极连接处被抵消,产生谐波混频器所需的本振信号的二次谐波电流,实现谐波混频。

闪烁噪声(Flicker Noise)

有源器件内的闪烁噪声又称为噪声,其大小随着频率的降低而增加,主要集中在低频段。与双极性晶体管相比,场效应晶体管的噪声要大得多。闪烁噪声对搬移到零中频的基带信号产生干扰,降低信噪比。通常零中频接收机的大部分增益放在基带级,射频前端部分的低噪放与混频器的典型增益大约为30 dB。因此有用信号经下变频后的幅度仅为几十微伏,噪声的影响十分严重。因此,零中频结构中的混频器不仅设计成有一定的增益,而且设计时应尽量减小混频器的噪声。图8所示的谐波混频器中晶体管M1和M2由射频差分信号Vrf+和Vrf-驱动,M 1和M2是噪声的主要来源,注入电流Io的作用是减少晶体管M1和M2中的电流,从而减小噪声。

I/Q失配(I/Q Mismatch)

采用零中频方案进行数字通信时,如果同相和正交两支路不一致,例如混频器的增益不同,两个本振信号相位差不是严格的90o,会引起基带I/Q信号的变化,即产生I/Q失配问题。以前I/Q失配问题是数字设计时的主要障碍,随着集成度的提高,I/Q失配虽已得到相应改善,但设计时仍应引起足够的重视。

结语

本文讨论了超外差和零中频两种结构的特点,分析了零中频结构存在的本振泄漏、偶次失真、直流偏差、闪烁噪声等问题产生的原因,并给出了零中频接收机的设计方法和相关技术。■

参考文献:

1.Behzad Razavi,“Design Considerations for Direct-Conversion Receivers’, IE EE Transactions on Circuits and Systems-II: Analog and Digital Signal Processi ng, Vol. 44, No. 6, June 1997.

2.Asad A. Abidi,‘Direct-Conversion Radio Transceivers for Digital Communic ations’, IEEE Journal of Solid-State Circuits, Vol. 30, No. 12, Dec. 1995. 3.Zhaofeng Zhang, Zhiheng Chen, Jack Lau, ‘A 900MHz CMOS Balanced H armonic Mixer for Direct Conversion Receivers’, IEEE 2000.

图1 超外差接收机结构框图

图2 零中频接收机结构框图

图3 零中频本振泄漏示意图

图4 强干扰信号在偶次失真下产生的干扰

图5 射频信号在偶次失真下产生的干扰

图6 (a)本振泄漏自混频(b)干扰自混频

图7 谐波混频路工作原理

外加LNA 对零中频接收机性能之影响

Introduction
在手机射频中, 最常额外添加 LNA 的 RF 应用, 应该莫过于讯号极为微弱的 GPS, 如下图[18] :
然而随着手机射频越来越复杂, 其他 RF 应用, 也开始出现额外添加 LNA 的需求, 如下图[9]。故本文件将探讨外加 LNA,对于接收机性能的影响。
1

Noise Figure
所谓灵敏度, 指的是在 SNR 能接受的情况下, 其接收机能接收到的最小讯号[17], 其公式如下 :
然而对于手机射频工程师而言,能着手改善灵敏度的,只有 Noise Figure 一项。 Noise Figure 的定义如下[17] :
理想上 SNR 当然是越大越好, 最好是无限大(表示都没有噪声), 但实际上不可能 没有噪声,因此所谓 Noise Figure,衡量的是当一个讯号进入一个系统时,其输 出讯号的 SNR 下降多寡,亦即其噪声对系统的危害程度,示意图如下[17] :
假设信号经过一组件, 其 SNR 下降 1 dB, 那么我们可以说, 该组件的 Noise Figure 为 1 dB。
2

而由下图可知,Noise Figure 最小为零,亦即输出信号的 SNR 完全不变。同时也 由下图可知,信号经过任何组件,不管是有源还是无源,其 SNR 都只会变小, 再怎样都不会变大,所以 Noise Factor 最小是 1[14]。
因此,若信号经过越多组件,则 SNR 会下降越多[3]。
而不论是有源还是无源组件,其 Noise Figure 主要是来自其 Insertion Loss。
3

零中频收发机的发展现状

零中频趋势 小型化大势所趋,零中频崭露头角 二十世纪七、八十年代,微电子和通信技术出现了革命性的发展,集成电路和个人数字 通信系统开始改变人们的生活方式。1974年Motorola推出了第一个现代意义上的寻呼机(Pager),此后寻呼系统的发展一度风靡全球。寻呼机、手机这类个人通信装置由于随身携带,所以必须做到体积小、重量轻,并且非常省电。为了达到这些目的,设计者们绞尽了脑汁。大家的共识是尽量利用集成电路技术,将电路元件做在芯片内部,也就是提高电路的集 成度。 但是对于超外差接收机来说,至少有两个元件是到目前为止无法集成到芯片上去的,这就是它的镜频抑制滤波器和信道选择滤波器。不仅如此,为了提高选择性,信道选择还可能 用到一些较为昂贵的器件如声表面波(SAW)滤波器。这时,又有人想到了零中频接收机。我们已经知道,零中频接收机⑴不存在镜频问题;⑵只要用低通滤波器来选择信道,而低通 滤波器的集成技术已经很成熟,即使集成有困难,也可以用廉价的电容和电感来实现。凭这两点,可以只用极少的片外元件而达到极高的集成度。 1980年,第一个实用的零中频寻呼机终于诞生,这也是第一个小型化的个人数字通信接收机。其工作原理如图2所示。接收到的高频信号经过一对正交混频器(Quadrature Mixer) 变频后产生两个正交的零中频信号I和Q,这两个信号随后被低通滤波和限幅放大。由于使用简单的二进制FSK调制,最后的解调过程甚至可以用一个D触发器来完成。在大量改进 的基础上,Philips在其UAA2080系列寻呼机中成功地应用了零中频结构。32引脚的芯片 中包含了低噪声放大器、正交混频器、信道选择滤波器、限幅放大器、FSK解调器以及本 振及带隙参考源等电路模块,接收机灵敏度等指标与超外差式相比并不逊色,而片外元件总 数不到40个,其中绝大多数是电容电阻。要知道,即便是数字电路芯片也需要一定数量的外围元件。 理想与现实之间,要直接不太容易 不知不觉,寻呼业的热潮开始消退,但零中频结构却魅力凸显,面对个人移动通信的汹 涌浪潮,人们开始尝试将它用到手机中,但是这次奇迹并没有再现。大量的研究和实践为我 们揭示了症结所在。 直流漂移(DC Offset) 零中频结构最根本的问题在于信号一开始就被搬移到直流频段,这虽然是设计者所希望 的,因为可以节省很多价格不菲的元件,但不幸的是这一频段很不干净”因此信号还没来 得及获得足够的增益就被很强的低频干扰和噪声污染”了。一个最广为人知的问题是本振信 号的泄漏所引起的直流漂移。由于在电路中总是存在一些寄生的元件,信号与信号之间不可 能做到完全隔离,总有一部分信号会发生泄漏。在一个实际的无线接收机中,本振信号可以 漏到混频器的射频信号输入端,进而通过隔离度有限的低噪声放大器到达接收天线。在这条通路上,一部分泄漏的信号会被反射回来而与接收的有用信号混杂在一起,并重新回到混频 器的输入端,再经过频谱搬移出现在直流频段。这种泄漏后的本振信号与本振信号自身相混 频的现象被称为自混频”我们看到,由于零中频接收机的输入信号频率与本振信号频率相

射频接收系统的设计与仿真

1 前言 (2) 2 工程概况 (2) 3 正文 (2) 3.1零中频接收系统结构性能和特点 (3) 3.2基于ADS2009对零中频接收系统设计与仿真 (3) 3.3超外差接收系统结构性能和特点 (12) 3.4基于ADS2009对超外差接收系统设计与仿真 (13) 4 有关说明 (16) 5 心得体会 (18) 6 致谢 (18) 7 参考文献 (19)

射频是一种频谱介于75kHz-3000GHz之间的电波,当频谱范围介于20Hz-20kHz之间时,这种低频信号难以直接用天线发射,而是要利用无线电技术先经过转换,调制达到一定的高频范围,才可以借助无线电电波传播。射频技术实质是一种借助电磁波来传播信号的无线电技术。 无线电技术应用最早从18世纪下半段开始,随着应用领域的扩大,世界已经对频谱进行了多次分段波传播。当前,被广泛采用的频谱分段方式是由电气和电子工程师学会所规定的。随着科学技术的不断发展,射频所含频率也不断提高。到目前为止,经过两个多世纪的发展,射频技术也已经在众多领域的到应用。特别是高频电路的应用。其中在通信领域,射频识别是进步最快的重要方面。 工程概况 近年来随着无线通信技术的飞速发展,无线通信系统产品越来越普及,成为当今人类信息社会发展的重要组成部分。射频接收机位于无线通信系统的最前端,其结构和性能直接影响着整个通信系统。优化设计结构和选择合适的制造工艺,以提高系统的性能价格比,是射频工程师追求的方向。由于零中频接收机具有体积小、成本低和易于单片集成的特点,已成为射频接收机中极具竞争力的一种结构,在无线通信领域中受到广泛的关注。本文在介绍超外差结构和零中频结构性能和特点的基础上,对超外差结构和零中频结构进行设计与仿真。 正文 下面设计一个接收机系统,使用行为级的功能模块实现收信机的系统级仿真。

侦察雷达数字中频接收机的设计与实现

文章编号:1001-893X(2009)02-0038-05 侦察雷达数字中频接收机的设计与实现? 杨春 (中国西南电子技术研究所,成都610036) 摘 要:针对传统模拟接收机在实现方式上的不足,提出了侦察雷达数字化接收机的性能改进方案。并对数字中频中多项关键技术进行原理分析,给出了雷达中频数字化具体实现方案,同时给出了一个比较全面的数字中频测试方法。 关键词:侦察雷达;数字化接收机;中频采样;数字本振;镜频抑制度 中图分类号:TN959.1 文献标识码:A Design and Implementation of the Digital Intermediate Frequency Receiver for a Reconnaissance Radar YANG Chun (Southwest China Institute of Electronic Technology,Chengdu 610036,China) Abstract:In allusion to the defect of analog receiver,performace improvement scheme of digital intermediate frequency(IF)receiver for a surveillance radar is proposed,and theory of several key technologies is analysed.The implementation scheme of IF digitization for reconnaissance radar is given. A comprehensive digital IF test method is provided. Key words:reconnaissance radar;digital receiver;intermediate frequency sample;digital local oscillator;image suppression 1 引言 传统雷达接收机正交解调在模拟域进行,I/Q 通道混频器要求同频率相位相差90°,两个通道通过滤波器后,信号增益也要求完全一致。如果在信号带宽上所有频点不能满足这个要求,则后端信号处理会因为I/Q通道的幅度不一致在脉压后产生距离旁瓣和相位正交性不好引入虚假目标,同时传统模拟接收机每个通道都需要一个A/D,两个A/D的差异会进一步降低系统性能。 随着集成电路的高速发展,尤其是高速A/D变换器的发展,使得直接中频采样成为可能,即直接将模拟中频信号通过A/D变换为数字信号,同时在数字域实现正交解调,生成数字I、Q基带信号。与传统模拟方法相比,直接中频采样具有更高的精度与稳定性。尤其是数字本振不受环境变化影响,没有温度漂移,同时数字本振的幅度一致和相位正交性比模拟本振高一个数量级。本文探讨了侦察雷达数字中频的实现方案,给出了一种基于多相滤波器结构的数字接收机实现方法,实现了对60 MHz 调制的中频信号(带宽5 MHz)数字下变频设计,并给出了最后试验结果。 ?收稿日期:2008-12-03;修回日期:2009-01-21

零中频接收机设计

零中频接收机设计 2013年09月24日13:09eechina 分享 关键词:零中频,接收机 作者在:冷爱国,TI公司China Telecom system 摘要 相较传统的超外差接收机,零中频接收机具有体积小,功耗和成本低,以及易于集成化的特点,正受到越来越广泛关注,本文结合德州仪器(TI)的零中频接收方案(TRF3711),详细分析介绍了零中频接收机的技术挑战以及解决方案。 概述 零中频接收机在几十年前被提出来,工程中经历多次的应用实践,但是多以失败告终,近年来,随着通信系统要求成本更低,功耗更低,面积更小,集成度更高,带宽更大,零中方案能够很好的解决如上问题而被再次提起。 本文将详细介绍零中频接收机的问题以及设计解决方案,结合TI的零中频方案TRF3711测试结果证明,零中频方案在宽带系统的基站中是可以实现的。 1、超外差接收机 1.1超外差接收机问题 为了更好理解零中频接收的优势,本节将简单总结超外差接收机的一些设计困难和缺点。 图一是简单超外差接收机的架构,RF信号经过LNA(低噪声放大器)进入混频器,和本振信号混频产生中频信号输出,镜像抑制滤波器滤出混频的镜像信号,中频滤波器滤除带外干扰信号,起到信道选择

的作用,图中标示了频谱的搬移过程及每一部分的功能。 在超外差接收机种最重要的问题是怎样在镜像抑制滤波器和信号选择滤波器的设计上得到平衡,如图一所示,对滤波器而言,当其品质因子和插损确定,中频越高,其对镜像信号的抑制就越好,而对干扰信号的抑制就比较差,相反,如果中频越低,其对镜像信号的抑制就变差,而对干扰信号的抑制就非常理想,由于这个原因,超外差接收机对镜像滤波器和信道滤波器的选择传输函数有非常高的要求,通常会选用声表滤波器(SAW),或者是采用高阶LC滤波器,这些都不利于系统的集成化,同时成本也非常高。 在超外差接收机中,由于镜像抑制滤波器是外置的,LNA必须驱动50R负载,这样还会导致面积和放大器噪声,增益,线性度,功耗的平衡性问题。 镜像滤波器和选择滤波器的平衡设计也可采用镜像抑制架构,如图二所示的Hartley(1)和Weaver (2)拓扑架构,在A点和B点的输出是相同极性的有用信号和极性相反的镜像信号,这样通过后面的加法器,镜像信号就可以被抵消掉,从而达到简化镜像滤波器的设计,但是这种架构由于相位和幅度不平衡,其镜像信号没有办法完全抑制,如证明(6),镜像抑制比I IR。 E指相对的电压幅度差,指相位差,如果E和Θ足够小,式(1)可以简化为(2)。 这里Θ是弧度,如果E=5%,Θ=5度,IIR约为26dB,如果要达到60dB的IIR,需要Θ低于0.1度,这是非常难以实现的,通常这种架构可以做到30-40dB的镜像抑制(7),所以,即使采用这种架构,镜像抑制滤波器和信道选择仍然需要仔细设计。

中频数字接收机的设计

文章编号:1009-671X(2006)04-0007-03 中频数字接收机的设计 于 搏,赵忠凯,王 丹 (哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001) 摘 要:介绍了中频数字接收机的总体设计方案,提出了固定中频数字接收机的设计思想与方法,结合软件无线电的有关理论与方法,阐述中频数字接收机的具体实现.主要采用高速的A/D 转换器和高端现场可编程逻辑阵列的结构,使得总体系统的处理速度大为提高,而且集成度高,可靠性好,使用灵活,具有很强的应用参考价值.关键词:数字接收机;软件无线电;固定中频中图分类号:T N 852 1 文献标识码:A 收稿日期:2005-05-10. 作者简介:于 搏(1980-),男,硕士研究生,主要研究方向:通信与信息系统,E_mail:yubohrb@https://www.doczj.com/doc/739585768.html,. Design of intermediate frequency digital receiver YU Bo,ZHAO Zhong_kai,WANG Dan (School of Information and Communication Engineer ing ,Harbin Engineer ing U niv ersity,Harbin 150001,China) Abstract:The g eneral design of dig ital receiver in intermediate frequency is presented.The design conception and method are introduced in conjunction w ith the theory and method of software radio.T he concrete imple mentation procedure is demonstrated thoroughly.T he application of A/D and FPGA highly increases the final processing speed of this system w ith high integration,good reliability and flexibility.So it possesses reference v alue in various applications. Keywords:digital receiver;softw are radio;fixed intermediate frequency 随着信息时代和信息社会的到来,信息技术和电子对抗技术业已成为现代战争的主要手段,作为电子战实施的一个关键环节,中频数字接收机[1]的研究与探索越来越受到人们的强烈关注. 本研究的重点是结合软件无线电的方法研制基于固定中频数字下变频的中频数字化接收机,并且最终能够用硬件实现其基本功能.本设计首先,提出一种对固定中频进行数字下变频的实现方法,通过简要分析论证了其正确性和可靠性;其次,整个硬件系统仅采用一片FPGA 来处理,并采用3片双通道A/D 芯片同时同步采样的运行模式.这片FPGA 为主控芯片,通过FPGA 对整个系统进行通信和控制,大大提高了系统的运行速度. 1 硬件设计 中频数字接收机的每路信号的总体硬件结构流程图如图1所示. 1 1 模拟带通滤波器 中频信号有各种干扰存在,最好在接收中频信 图1 总体硬件结构流程图 号前先对它进行模拟滤波,将所选频率范围取出.本设计选用的是VANLONG 公司生产的BP60110型模拟带通滤波器,其中心频率为70MHz,中频带宽为20MHz,矩形系数为2,故信号通频带带宽为10MHz.但是,BP60110的插入损耗最大值为 第33卷第4期 应 用 科 技 Vol.33, .42006年4月 Applied Science and T echnology Apr.2006

零中频与超外差接收机优劣

零中频射频接收机技术 作者:东南大学射频与光电集成电路研究所李智群王志功2004年7月A版 摘要:零中频(Zero IF)或直接变换(Direct-Conversion)接收机具有体积小、成本低和易于单片集成的特点,正成为射频接收机中极具竞争力的一种结构。本文在介绍超外差(Super Heterodyne)结构与零中频结构性能和特点的基础上,重点分析零中频结构存在的本振泄漏(LO Leakage)、偶次失真(Even-Order Distortion)、直流偏差(DC Offset)、闪烁噪声(Flicker Noise)等问题,并给出零中频接收机的设计方法和相关技术。 关键词:零中频;超外差;本振泄漏;自混频 引言 近年来随着无线通信技术的飞速发展,无线通信系统产品越来越普及,成为当今人类信息社会发展的重要组成部分。射频接收机位于无线通信系统的最前端,其结构和性能直接影响着整个通信系统。优化设计结构和选择合适的制造工艺,以提高系统的性能价格比,是射频工程师追求的方向。由于零中频接收机具有体积小、成本低和易于单片集成的特点,已成为射频接收机中极具竞争力的一种结构,在无线通信领域中受到广泛的关注。本文在介绍超外差结构和零中频结构性能和特点的基础上,分析零中频结构可能存在的问题,并给出零中频接收机的设计方法和相关技术。 超外差接收机 超外差(Super Heterodyne)体系结构自1917年由Armstrong发明以来,已被广泛采用。图1为超外差接收机结构框图。在此结构中,由天线接收的射频信号先经过射频带通滤波器(RF BPF)、低噪声放大器(LNA)和镜像干扰抑制滤波器(IR Filter)后,进行第一次下变频,产生固定频率的中频(IF)信号。然后,中频信号经过中频带通滤波器(IF BPF)将邻近的频道信号去除,再进行第二次下变频得到所需的基带信号。低噪声放大器(LNA)前的射频带通滤波器衰减了带外信号和镜像干扰。第一次下变频之前的镜像干扰抑制滤波器用来抑制镜像干扰,将其衰减到可接受的水平。使用可调的本地振荡器(LO1),全部频谱被下变频到一个固定的中频。下变频后的中频带通滤波器用来选择信道,称为信道选择滤波器。此滤波器在确定接收机的选择性和灵敏度方面起着非常重要的作用。第二下变频是正交的,以产生同相(I)和正交(Q)两路基带信号。 超外差体系结构被认为是最可靠的接收机拓扑结构,因为通过适当地选择中频和滤波器可以获得极佳的选择性和灵敏度。由于有多个变频级,直流偏差和本振泄漏问题不会影响接收机的性能。但镜像干扰抑制滤波器和信道选择滤波器均为高Q值带通滤波器,它们只能在片外实现,从而增大了接收机的成本和尺寸。目前,要利用集成电路制造工艺将这两个滤波器与其它射频电路一起集成在一块芯片上存在很大的困难。因此,超外差接收机的单片集成因受到工艺技术方面的限制而难以实现。

直流偏移对于手机零中频接收机之危害

Introduction 由于现今智能手机要求的RF功能越来越多,这连带使得零件数目越来越多,且越来越要求轻薄短小[1,4], 下图是零中频架构的接收机[4],由于零中频架构,去除掉了中频的零件,具备了低成本,低复杂度,以及高整合度,这使得零中频架构的收发器,在手持装置,越来越受欢迎。但连带也有一些缺失,典型的缺失之一,便是DC Offset[2-3]。

由[5]可知,零中频架构的接收机,便是直接将射频讯号,降频为基频的直流讯号,而DC Offset之所以成为零中频架构的难题,在于它们会座落在频谱上为零之处,或其附近,很难滤除,因此会直接干扰到主频,且其强度甚至有可能大过讯号本身[3]。 由[9]可知,DC Offset会造成相位误差。

而解调时,会以EVM来衡量相位误差的程度,如下图左。而DC Offset会使星座图整体有所偏移,如下图右,换言之,DC Offset会使接收机的EVM变大[10-11] 。 而由[12]可知,若EVM变大,则同样的SNR,对应到的BER会升高,其解调结果会变差,亦即DC Offset会使灵敏度变差。

由[13]可知,接收机的LNA,其Gain皆非单一固定值,即VGA(Variable gain amplifier) 架构,如下图: 以灵敏度的角度而言,之所以希望透过AGC机制,以及VGA,来缩减LNA输出讯号的动态范围,主要便是希望ADC的输入讯号,其强度大小能适中,使讯号在解调时,不会因讯号过小而导致SNR下降,也不会因讯号过大,使后端电路饱和,Noise Floor上升,而导致SNR下降[4]。

中频数字化接收机系统设计与实现.

中频数字化接收机系统设计与实现 软件无线电是一种基于宽带A/D器件、高速DSP芯片,以软件为核心(Software-Oriented)的崭新的体系结构。其基本思想就是将宽带A/D 尽可能地靠近射频天线以便将接收到的模拟信号尽可能早地数字化,尽量通过软件来实现电台的各种功能。通过运行不同的算法,软件无线电可以实时地配置信号波形,使它能够提供各种话音编码、信道调制、加密算法等无线电通信业务。我们知道信号失真是长期困扰模拟处理的难题,如本振频率漂移、相位噪声、混频产生的虚假信号、放大时产生的谐波以及互调、机内噪声等问题。尽管设计人员想方设法,但结果并不能令人满意,而软件无线电技术简单有效地解决了这些问题。在数字化之后,本振、混频、放大、滤波都仅仅是数字运算,不会产生谐波、互调等虚假信号。与传统的模拟方式相比,软件无线电具有灵活性、适应性和开放性等特点,被誉为无线电领域的又一次革命。 1 接收机总体设计 由于受器件水平的制约,直接对射频采样处理还有一定难度。在保留软件无线电通用、灵活、开放的前提下,采用了中频数化方案[1],整个接收机的结构框图如图1所示。 该接收机接收信号频率范围:10~100MHz,为防止频谱混叠,前端电调谐滤波器分8段滤波器,由8031控制选用。第一本振LO1采用数字锁相环产生所需频率,通过预置,可产生正弦信号频率范围:1360~2350MHz,步进值10Hz,电调谐滤波器与一本振互动联调。混频后,将信号通过一中心频率为 1350MHz的带通滤波器后,进行二次混频。第二本振LO2产生信号的频率固定设置为:1371.4MHz,因此中频信号为:21.4MHz,通过 AGC控制输出信号强度范围为:-50~-10dBm/50Ω。 2 中频数字化单元设计 该单元是接收机的核心部件,主要完成几种信号(AM、FM、SSB、CW、FSK、BPSK,QPSK)的解调工作,同时负责对模拟前端提供AGC控制用电平强度值和AFC控制用载波频率误差值。8031主控电路板则要为中频数字化值单元提供:信号类型、中频带宽、AGC时间常数、BFO值、PSK信号波特率等控制命令。中频数字化处理单元硬件系统大体构成如图2所示[1]。 2.1 数据采集部分 该部分电路主要由数控放大器和模/数转换器AD6640构成,负责完成数据采集工作。固定增益放大器(18dB)的中频输入信号为:21.4MHz,-50~-10dBm/50Ω(0.7mV~70mV),输出为-38dBm~+2dBm/50Ω(2.8mV~0.4V)。 AD6640是AD公司生产的新一代模数转换器件,分辨率12bit,输入动态范围±1V,采样速度可达65Msps,在5V供是时功耗仅为710mW。注意A/D前采用固

零中频射频接收机技术

零中频射频接收机技术 作者:李智群王志功来源:电子产品世界时间: [文字选择:大中小][添加到收藏夹] 超外差接收机 超外差(Super Heterodyne)体系结构自1917年由Armstrong发明以来,已被广泛采用。图1为超外差接收机结构框图。在此结构中,由天线接收的射频信号先经过射频带通滤波器(RF BPF)、低噪声放大器(LNA)和镜像干扰抑制滤波器(IR Filter)后,进行第一次下变频,产生固定频率的中频(IF)信号。然后,中频信号经过中频带通滤波器(IF BPF)将邻近的频道信号去除,再进行第二次下变频得到所需的基带信号。低噪声放大器(LNA)前的射频带通滤波器衰减了带外信号和镜像干扰。第一次下变频之前的镜像干扰抑制滤波器用来抑制镜像干扰,将其衰减到可接受的水平。使用可调的本地振荡器(LO1),全部频谱被下变频到一个固定的中频。下变频后的中频带通滤波器用来选择信道,称为信道选择滤波器。此滤波器在确定接收机的选择性和灵敏度方面起着非常重要的作用。第二下变频是正交的,以产生同相(I)和正交(Q)两路基带信号。 超外差体系结构被认为是最可靠的接收机拓扑结构,因为通过适当地选择中频和滤波器可以获得极佳的选择性和灵敏度。由于有多个变频级,直流偏差和本振泄漏问题不会影响接收机的性能。但镜像干扰抑制滤波器和信道选择滤波器均为高Q值带通滤波器,它们只能在片外实现,从而增大了接收机的成本和尺寸。目前,要利用集成电路制造工艺将这两个滤波器与其它射频电路一起集成在一块芯片上存在很大的困难。因此,超外差接收机的单片集成因受到工艺技术方面的限制而难以实现。 零中频接收机 由于零中频接收机不需要片外高Q值带通滤波器,可以实现单片集成,而受到广泛的重视。图2为零中频接收机结构框图。其结构较超外差接收机简单许多。接收到的射频信号经滤波器和低噪声放大器放大后,与互为正交的两路本振信号混频,分别产生同相和正交两路基带信号。由于本振信号频率与射频信号频率相同,因此混频后直接产生基带信号,而信道选择和增益调整在基带上进行,由芯片上的低通滤波器和可变增益放大器完成。 零中频接收机最吸引人之处在于下变频过程中不需经过中频,且镜像频率即是射频信号本身,不存在镜像频率干扰,原超外差结构中的镜像抑制滤波器及中频滤波器均可省略。这样一方面取消了外部元件,有利于系统的单片集成,降低成本。另一方面系统所需的电路模块及外部节点数减少,降低了接收机所需的功耗并减少射频信号受外部干扰的机会。 不过零中频结构存在着直流偏差、本振泄漏和闪烁噪声等问题。因此有效地解决这些问题是保证零中频结构正确实现的前提。 本振泄漏(LO Leakage) 零中频结构的本振频率与信号频率相同,如果混频器的本振口与射频口之间的隔离性能不好,本振信号就很容易从混频器的射频口输出,再通过低噪声放大器泄漏到天线,辐射到空间,形成对邻道的干扰,图3给出了本振泄漏示意图。本振泄漏在超外差式接收机中不容易发生,因为本振频率和信号频率相差很大,一般本振频率都落在前级滤波器的频带以外。 偶次失真(Even-Order Distortion) 典型的射频接收机仅对奇次互调的影响较为敏感。在零中频结构中,偶次互调失真同样会给接收机带来问题。如图4所示,假设在所需信道的附近存在两个很强的干扰信号,LNA存在偶次失真,其特性为y(t)=a1x(t)+a2x2(t)。若 x(t)=A1cosw1t+A2cosw2t,则y(t)中包含a2A1A2cos(w1-w2)t项,这表明两个高频干扰经过含有偶次失真的LNA将产生一个低

一种实用的中频数字接收机设计

一种实用的中频数字接收机设计 一种实用的中频数字接收机设计 ???摘要:针对后三代移动通信系统研究所需硬件平台的要求,提出了一种灵活性强的可扩展中频接收机设计方案。这种方案可以在较高的中频频率上实现信号的数字化接收,且适用于多种输入信号。该方案以自顶向下的思路,吸取其它方案的优点,完成了基于软件无线电思想的数字化接收机设计。该系统结构简单,成本低,有良好的实用性和通用性。???关键词:带通带通采样?采样速率采样速率?数字下变频 ? ???近年来,移动通信的发展十分迅速。应对更高速率业务的要求,我国对于后三代移动通信系统(B3G)的研究也逐渐兴起,但是目前多局限于对仿真数据进行理论研究和模拟阶段,有必要建立一个硬件实验平台,以便寻找研究成果的应用方法。此硬件平台应具有适合于软件无线电的体系,在硬件结构上与无线通信的通用功能模块相一致:不仅可以接收现存通信标准规定的信号,还可以处理由用户自定义的信号,为未来研究提供可靠的实测数据。该平台还应具有高度的灵活性、开放性以支持多种通信体制和不同的QoS(Quality of Service)要求。???从软件无线电的观点来看,受宽带天线、高速A/D转换器及数字信号处理器等发展水平的限制,实现一个理想的软件无线电平台[1]的条件目前还不具备。因此,本文根据系统提出的中频频率为70MHz、信号带宽为10MHz的设计要求,在分析比较了几个方案优缺点的基础上,着重研究了在现有器件情况下最大限度

地实现中频数字化这一关键问题,最终设计了一种可用于所述实验平台的中频数字化接收机。在使用该方案的实际系统上,可以对新一代蜂窝移动通信系统中的关键技术进行研究和实验评估。1初步设计方案???站在系统灵活性的角度,本文暂不考虑使用模拟解调器的中频接收方案,而采用数字化的处理,先提出两种方案。1.1单路带通采样方案???根据系统的中频频率和带宽两项参数指标,若进行低通采样,由Nyquist定理知,采样速率至少要150Msps才能保证频谱不会发生混迭。但以目前芯片的制作水平来看,采样速率大于150Msps且分辨率在10bit以上的ADC成本会很高;此外,后级接口电路必须使用超高速逻辑电路,基带数字信号处理的压力很大,还增加了整个电路板的布线、制版工艺难度,从而带来许多问题。观察系统的中频接收信号:最高截止频率为75MHz,但信号带宽只有10MHz;若低通采样此信号,则默认信号分布在0~75MHz整个频带范围内,对此频带不再加以利用,因而频谱利用率较低。可以运用带通采样机制,按远低于2倍信号最高截止频率的采样速率进行欠采样,将中频信号频谱无混迭地搬移至基带[1]。此方案的示意图。 ? ???例如,当发送端的基带信号基带信号是实信号时,选择接收机的采样速率fs=35Msps,频谱周期性复制到:fI±kfs(k为整数),采样前后信号频谱的变化。 ? ? ???从图中可以看到,带通采样利用ADC作为近似理想的混频器对信号进

中频数字接收机的设计

文章编号:1009-671X (2006)04-0007-03 中频数字接收机的设计 于 搏,赵忠凯,王 丹 (哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001) 摘 要:介绍了中频数字接收机的总体设计方案,提出了固定中频数字接收机的设计思想与方法,结合软件无线电的有关理论与方法,阐述中频数字接收机的具体实现.主要采用高速的A/D 转换器和高端现场可编程逻辑阵列的结构,使得总体系统的处理速度大为提高,而且集成度高,可靠性好,使用灵活,具有很强的应用参考价值.关键词:数字接收机;软件无线电;固定中频中图分类号:TN85211 文献标识码:A 收稿日期:2005-05-10.作者简介:于 搏(1980-),男,硕士研究生,主要研究方向:通信与信息系统,E -mail :yubohrb @https://www.doczj.com/doc/739585768.html,. Design of intermediate frequency digital receiver YU Bo ,ZHAO Zhong-kai ,WAN G Dan (School of Information and Communication Engineering ,Harbin Engineering University ,Harbin 150001,China ) Abstract :The general design of digital receiver in intermediate frequency is presented.The design conception and method are introduced in conjunction with the theory and method of software radio.The concrete imple 2mentation procedure is demonstrated thoroughly.The application of A/D and FP G A highly increases the final processing speed of this system with high integration ,good reliability and flexibility.So it possesses reference value in various applications. K eyw ords :digital receiver ;software radio ;fixed intermediate frequency 随着信息时代和信息社会的到来,信息技术和电子对抗技术业已成为现代战争的主要手段,作为电子战实施的一个关键环节,中频数字接收机[1]的研究与探索越来越受到人们的强烈关注. 本研究的重点是结合软件无线电的方法研制基于固定中频数字下变频的中频数字化接收机,并且最终能够用硬件实现其基本功能.本设计首先,提出一种对固定中频进行数字下变频的实现方法,通过简要分析论证了其正确性和可靠性;其次,整个硬件系统仅采用一片FPG A 来处理,并采用3片双通道A/D 芯片同时同步采样的运行模式.这片FPG A 为主控芯片,通过FPG A 对整个系统进行通信和控制,大大提高了系统的运行速度. 1 硬件设计 中频数字接收机的每路信号的总体硬件结构流程图如图1所示. 111 模拟带通滤波器 中频信号有各种干扰存在,最好在接收中频信 图1 总体硬件结构流程图 号前先对它进行模拟滤波,将所选频率范围取出.本设计选用的是VANLON G 公司生产的BP60110型模拟带通滤波器,其中心频率为70MHz ,中频带宽为20MHz ,矩形系数为2,故信号通频带带宽为10MHz.但是,BP 60110的插入损耗最大值为 第33卷第4期 应 用 科 技 Vol.33,№.42006年4月 Applied Science and Technology Apr.2006

WCDMA之零中频接收机原理剖析大全

WCDMA 相较于2G时代的GSM技术,WCDMA在Data Rate与信道容量,都大大提升[1],采用了几个不同于GSM的技术。一个是CDMA技术,也就是分码多任务,用简单的比喻来比较TDMA, FDMA, CDMA的不同[2] : 在会议室内,若要保持通话时不被干扰,一种分别是选择不同时间通话(TDMA) 一种是同时间通话,但分别在不同的隔间(FDMA)

还有一种是同时间又同隔间通话,但讲不同语言(CDMA) 这三种技术,分别在时域跟频域的比较 : 由上图可知,CDMA 不分时也不分频,但因为分码,采正交码技术,不同码之间完全没有相关,因此大大提高了安全性。 C

另外则是展频技术, 将讯号的带宽拓宽,使其带以拓宽,与前述的正交码有送数据没有关系,故的传送数据,因此使得讯号得知,带宽拓宽后,其信道 由上式可知,信道容量也跟个位的SNR ,b E 即每个位的式 : 便可算出系统的SNR , 使其带宽远大于未作展频调变之原始数据带宽交码有关。由于Tx 端会采用一组正交码,且该Rx 端也需使用该组正交码,才能解开展频,得讯号不易被干扰与撷取[3],同时也由Shanno 其信道容量也提升了,连带提高了Data Rate[4] 量也跟SNR 有关,但在CDMA 中,会先以 E N 个位的能量,而0N 即噪声的功率频谱密度, 其中b f 是Data Rate ,因此若提升0 b E N , 则可提升

另外,由于原始数据的Chip Rate ,会在展频后大大提升,使得讯号会额外获得增益,进而再提高SNR ,该增益称为处理增益,Processing Gain ,P G ()10log( )C P R G dB R = R 是原始资料的Chip Rate ,C R 是展频后的Chip Rate ,由[5]可知,R 与C R 分别为12.2Kbps 与3.84Mcps ,带入上式,

差频接收机、零中频接收机和低中频接收机的特点

2, 综合分析超外差(heterodyne)接收机、零中频(homodyne)接收机和低中频(low-IF)接收机的特点。 答案:(1)超外差式接收机(heterodyne receiver): 优点(benefits):1)超外差式接收机可以有很大的接收动态范围。2)超外差式接收机具有很高的邻道选择性(selectivity)和接收灵敏度(sensitivity)。一般超外差式接收机在混频器前面会有一个预选射频滤波器,在混频器后面还会有一个中频滤波器。这就使得它具有良好的选择性,可以抑制很强的干扰。3)超外差式接收机受I/Q信号不平衡度影响小,不需要复杂的直流消除电路。 缺点(drawback):1)由于超外差式接收机一般会用到一级或几级中频混频所以电路会相对于零中频接收机复杂且成本高集成度不高。2)超外差式接收机会用到很多离散的滤波器,这些滤波器可以是SAW或陶瓷的,但一般比较昂贵,而且体积较大,是的集成度不高,成本也较高。3)超外差式接收机一般需要较高的功率消耗。 应用:相干检测的方案中(QPSK、QAM)。 (2)零中频接收机(homodyne receiver): 优点(benefits):1)零中频接收机可以说是目前集成度最高的一种接受机,体积小,成本也很低,但是如果到了VHF频段设计零中频接收机将变得非常复杂、困难。因为频率越高,IQ解调器所用到的本振很难做到正交,频率也很难做到很准确,一个解决办法就是增加AFC电路,自动控制本振频率。2)功率消耗较低。3)不需要镜像频率抑制滤波器,同样减小了体积和成本。 缺点(drawback):1)由于信道选择性完全是在基带有源低通滤波器实现的,所以诸如大的动态范围、低噪声和良好的线性度这些指标要求使得有源低通滤波器的设计和实现非常困难。2)需要直流消除电路。由本振自混频(self-mix)和强干扰信号自混频在基带产生的直流电压会恶化接收信号,需要用到直流消除技术。如果不应用直流消除技术,这种方案就只能用在没有直流成分的调制方案中(比如:NC-FSK)。3)因为零中频接收机的载波是在射频频段,这样载波恢复变得很困

中频数字接收机设计管理论文

中频数字接收机设计管理论文 摘要:针对后三代移动通信系统研究所需硬件平台的要求,提出了一种灵活性强的可扩展中频接收机设计方案。这种方案可以在较高的中频频率上实现信号的数字化接收,且适用于多种输入信号。该方案以自顶向下的思路,吸取其它方案的优点,完成了基于软件无线电思想的数字化接收机设计。该系统结构简单,成本低,有良好的实用性和通用性。 关键词:带通采样采样速率数字下变频 近年来,移动通信的发展十分迅速。应对更高速率业务的要求,我国对于后三代移动通信系统(B3G)的研究也逐渐兴起,但是目前多局限于对仿真数据进行理论研究和模拟阶段,有必要建立一个硬件实验平台,以便寻找研究成果的应用方法。此硬件平台应具有适合于软件无线电的体系,在硬件结构上与无线通信的通用功能模块相一致:不仅可以接收现存通信标准规定的信号,还可以处理由用户自定义的信号,为未来研究提供可靠的实测数据。该平台还应具有高度的灵活性、开放性以支持多种通信体制和不同的QoS(QualityofService)要求。 从软件无线电的观点来看,受宽带天线、高速A/D转换器及数字信号处理器等发展水平的限制,实现一个理想的软件无线电平台[1]的条件目前还不具备。因此,本文根据系统提出的中频频率为70MHz、信号带宽为10MHz的设计要求,在分析比较了几个方案优缺点的基础上,着重研究了在现有器件情况下最大限度地实现中频数字化这一关键问题,最终设计了一种可用于所述实验平台的中频数字化接收机。在使用该方案的实际系统上,可以对新一代蜂窝移动通信系统中的关键技术进行研究和实验评估。 1初步设计方案 站在系统灵活性的角度,本文暂不考虑使用模拟解调器的中频接收方案,而采用数字化的处理,先提出两种方案。 1.1单路带通采样方案, 根据系统的中频频率和带宽两项参数指标,若进行低通采样,由Nyquist定理知,采样速率至少要150Msps才能保证频谱不会发生混迭。但以目前芯片的制作水平来看,采样速率大于150Msps且分辨率在10bit以上的ADC成本会很高;

数字中频接收机的设计与实现

文章编号:1001-893X(2004)05-0041-04 数字中频接收机的设计与实现Ξ 王 彦,曹 鹏,费元春 (北京理工大学信息科学技术学院电子工程系,北京100081) 摘 要:数字中频接收机(DIFR)是对中频信号直接采样,其信道化功能由数字正交下变频器和数字滤波器来实现。因此,DIFR适用于接收和处理多载波、多模式信号,可解决很多种信号之间的互通互连问题。本文基于DIFR对动态范围、带宽、自动增益控制和高速信号采集等技术需求,优化设计了一种大动态宽带DIFR,给出了该系统的实现方案、各部分的参数分配及系统设计指标;给出了一种新型的数字自动增益控制(DAG C)实现电路,并提出了其控制算法。 关键词:数字中频接收机;中频采样;数字自动增益控制;数字滤波器;数字下变频;数字通道化中图分类号:T N85 文献标识码:A Design and Implementation of a Digital I ntermediate Frequency R eceiver WANG Yan,C AO Peng,FEI Yuan-chun (Department of Electronic Engineering,School of In formation Science and T echnology,Beijing Institute of T echnology,Beijing100081,China) Abstract:Digital Intermedeate Frequency(IF)Receivers(DIFRs)are directly to sam ple intermediate frequency signal.Their channellized function is achieved by digital quadrant down conversion and digital filtering.DIFRs can receive and process multi-carrier and multi-m ode signals,s o it can be used to s olve the intercommuni2 cation problems of these signals.This paper introduces the design of a large dynamic and broad band DIFR,and presents the actual project and key specifications of the IF low noise am plifier,digital automatic gain control (DAG C),digital down conversion and digital filter,and provides the control alg orithm of DAG C. K ey w ords:Digital intermediaoe frequency receiver(DIFS);Intermediate frequency sam pling;Digital automatic gain control;Digital filter;Digital down conversion;Digital channellized 数字中频接收机(DIFR)是对中频信号直接采样,然后在数字部分实现数字下变频、码速变换、信道化、时钟回复、解调、解扩等功能,可利用数字下变频近乎完美的正交性以及数字电路软件可编程的灵活性。因此,DIFR可用来解决多波段、多模式信号之间的互通互连问题,提高无线通信设备的性价比、使用效率,延长其使用寿命。近年来,数字中频接收机(DIFR)受到国内外军用和商用通信领域的高度重视,发展非常迅速,并取得了一些重大突破[1~4]。DIFR消除了传统超外差接收机中的中频混频、放大、滤波、解调等模拟电路,主要有以下几方面优点:第一,数字下变频几乎可以做到绝对正交; 第二,利用数字滤波器实现通道选频,其特性可现场编程,因此,适用于接收和处理多载波、多模式信号,解决它们之间的互通互连问题; 第三,电路元件的一致性性好,基本可以消除温 ? 1 4 ? Ξ收稿日期:2004-01-08 基金项目:国家部委预研项目(××××××××0302)

相关主题
文本预览
相关文档 最新文档