当前位置:文档之家› 磁性吸附碳纳米管复合材料在军事方面的应用

磁性吸附碳纳米管复合材料在军事方面的应用

磁性吸附碳纳米管复合材料在军事方面的应用
磁性吸附碳纳米管复合材料在军事方面的应用

磁性吸附碳纳米管复合材料在军事方面的应用

前言

自碳纳米管发现以来,由于其独

特的力学、磁学、电学等性能,已

迅速成为世界科学研究的前言和热

点。随着现时代的发展,为了现代

高科技战争的需要,越来越多的磁

性材料被应用到了军事方面,特别

是以磁性吸附纳米管复合材料为主

的材料更是各位军事大国所首选的

研究领域。纳米吸波材料是一种高科技、高性能的纳米功能材料,磁性吸附碳纳米管复合材料就是利用了碳纳米管能把微小颗粒吸入管腔并且紧密排列的特质,将磁性材料吸附在其管内,使其具有一定的磁损耗,也就是能吸收入射的电磁波能量,并将其电磁能转化为热能而消耗掉,或是电磁波受到干扰而消失,从而减少雷达散射截面积,达到隐形的目的。与传统的吸波材料相比,磁性吸附纳米管复合材料拥有比较优良的机械、电性能,其比重小、高温抗氧化、介电性能可调、稳定性好、在高频和宽频吸收段吸收比较强,能够满足现代战争的需求。目前有很多隐形战斗机也应用了这种材料,比如说B-2A幽灵、F22A猛禽、F35A~C雷电II、F-15SE沉默鹰、UH-60S沉默黑鹰,这更是给其战斗能力提升到了一个全新的档次。

磁性吸附碳吸附纳米管复合材料的制备

磁性吸附碳纳米管主要是通过两个步骤来完成,其第一步是先用化学方法使碳纳米管开口,然后再用物理、化学的方法或者是两者相结合的方法将磁性材料填充到碳纳米管中。下面介绍第二步的两种方法:

一、物理法填充法

所谓物理法填充法也可称为毛细管作用诱导填充法,也就是通过毛细作用力将液体或者熔化金属填充到碳纳米管腔内的一种方法,这就是一个润湿的问题。显

然,只有低表面张力的液体或熔融物才

能润湿碳管表面,而高于分界点

200mN/m 的物质无法润湿碳管,就不能

用毛细填充法。1992年美国海军实验室

的Pedeson等人利用局域密度泛涵理论

对碳纳米管和HF分子进行了计算机模

拟。根据计算结果他们预言:开口的碳

纳米管作为可高度化的“分子吸管”,可

以通过毛细作用力将HF等极性分子填

充到其管腔内,而从理论上证明了对碳

纳米管进行毛细填充的可能性。1993年Ajayan和Iijma用碳纳米管做“模具”,制备出碳纳米管内填充Pb的纳米导线。其制备方法是:将用电弧法制备的MWCNTs和金属Pb在400度空气炉中退火,首先将MWCNTs端帽打开,随后金属Pb填充到MWCNTs空腔内。由于碳纳米管端帽的富勒烯半球中存在碳原子围成的五元结构,在空气炉中加热是,这种五元环缺陷比围成碳管管体的六元环更易于金属发生反应而使碳管端口优先打开,随后熔融态的金属Pb便可填充到MWCNTs内。

二、化学法填充法

化学法填充法即溶液化学法,通常是指将碳纳米管和待填充金属的盐类一起加到强酸熔液中,通过强酸熔液的作用打开碳纳米管的端帽进行填充的一种方法。碳纳米管的端帽打开后,金属盐

溶液的溶质在毛细作用力驱动

下填入管内,然后再在惰性气体

中进行退火处理,即可得到金属

氧化物填充的碳纳米管。如果要

制备纯金属填充的碳纳米管,可以将中间产物在还原气体中进行退火处理,即可使之还原成纯金属。牛津大学的Tsang等人率先提出熔液化学法,制备了NiO填充的碳纳米管。对碳纳米管进行NiO填充的试验过程如下:将碳纳米管分散在含有水和硝酸镍的硝酸熔液中。接下来将得到的黑色不溶物在100度下干燥一夜。然后,将得到的样品在氦气保护下进行退火处理。电镜观测表面,经过硝酸处理后,约30%的碳纳米管的端部被打开,这些端部打开的碳纳米管中60%~70%都填充了NiO。在碳纳米管的外表面也发现了NiO的纳米粒子的存在,但未观测到碳纳米管有插层现象发生。将得到的填充有NiO的碳纳米管在氢气气体中退火处理后,得到金属Ni填充的碳纳米管。

结束语

虽然目前的碳纳米管的研究取得了很大的进展,但还是存在很多的问题,比如说碳纳米管的提纯、碳纳米管在溶剂中贵大分散性很差等等,这都是现代研究的重点领域,也是要想让磁性吸附碳纳米复合材料对军事贡献的一个重要前提。我相信,以后的磁性吸附碳纳米复合材料不仅在对战斗机隐形方面有应用,在更多的军事方面也得到更大的推广,造福我们社会。

磁性碳纳米管的制备及性能研究

毕业设计(论文)题目磁性多壁碳纳米管的制 备及其性能研究 系(院)化学与化工系 专业化学工程与工艺 班级2009级2班 学生姓名韩方欣 学号2009022608 指导教师张岩 职称讲师 二〇一三年六月十八日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 二〇一三年月日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 二〇一三年月日

磁性多壁碳纳米管的制备及性能研究 摘要 本研究以多壁碳纳米管为实验材料,综合论述了磁性多壁碳纳米管的制备方法及其性能研究,还通过响应面分析方法探讨了磁性多壁碳纳米管吸附去除染料废水中罗丹明B的最佳工艺条件,采用紫外可见分光光度计测定了染料废水中罗丹明B的吸光度,以确定染料废水中罗丹明B的去除率,进而研究吸附时间,罗丹明B浓度,pH值及吸附温度对磁性多壁碳纳米管吸附性能的的影响。具体研究内容和研究结果如下: (1)本实验采用浸渍法将多壁碳纳米管制备成带有磁性的磁性多壁碳纳米管。 (2)采用单因素实验和响应面实验初步确定了磁性多壁碳纳米管吸附去除染料废水中罗丹明B的工艺条件,即吸附时间为12.00 h,罗丹明B浓度为3.7 mg/L,吸附温度为30 ℃,pH值为4.50。 (3)经测定优化后得到的罗丹明B的去除率为0.993717。 关键词:磁性多壁碳纳米管;响应面;吸附;罗丹明B

尼龙_碳纳米管复合材料研究进展

基金项目:河南省教育厅自然科学基金项目(200510459101); 作者简介:李中原(1971-),男,博士研究生; 3通讯联系人:E 2mail :zhucs @https://www.doczj.com/doc/724503987.html,. 尼龙Π碳纳米管复合材料研究进展 李中原,刘文涛,许书珍,何素芹3,朱诚身3 (郑州大学材料科学与工程学院 郑州 450052) 摘要:碳纳米管(C NTs )由于其独特的结构,较高的长径比,较大的比表面积,且具有超强的力学性能和良好 的导热性,已经证明是塑料的非常优异的导电填料,聚合物基碳纳米管复合材料可望应用于材料领域的多个方面,尤其在汽车、飞机及其它飞行器的制造等军事和商业应用上带来革命性的突破。本文介绍了碳纳米管的结构形态和碳纳米管的制备、纯化、修饰方法及聚合物基碳纳米管复合材料的制备、性能,并综述了近几年来尼龙Π碳纳米管复合材料的研究进展及应用前景。 关键词:碳纳米管;尼龙;复合材料 引言 聚酰胺具有优良的机械性能、耐磨性、耐酸碱性、自润滑性等优点,居于五大工程塑料之首,被广泛用作注射及挤出成型材料,主要用于在机械、仪器仪表、汽车、纺织等方面,并将在轴承、齿轮、风扇叶片、汽车部件、医疗器材、油管、油箱、电子电器制品的制造方面发挥重要作用,尤其是作为汽车零部件及电器元件。由于酰胺极性基团存在极易吸水、尺寸稳定性差等缺点,使其应用受到了很大限制[1]。纳米复合材料是近年来发展十分迅速的一种新兴复合材料,被认为是21世纪最有发展前途的材料,已成为材料学、物理学、化学、现代仪器学等多学科领域研究的热点。热塑性塑料基纳米复合材料是研究最早、最多、应用最广的材料,聚合物Π蒙脱土纳米复合材料目前有的已实现了产业化[2]。碳纳米管由于其独特的结构、 奇异的性能和潜在的应用价值,在理论上是复合材料理想的增强材料。近年来聚合物Π碳纳米管复合材料的研究已成为纳米科学研究中的一个新热点。碳纳米管的发现可以追溯到1985年C 60 [3]的发现,1991年日本学者Iijima [4]在对电弧放电后的石墨棒进行显微观察时发现阳极上形成了圆柱状沉积,沉积主要 由柱状排列的平行的中空管状物形成,管状物的直径一般在几个到几十个纳米之间,而管壁厚度仅为几个纳米,故称之为碳纳米管C NTs (carbon nanotubes ),并在自然杂志上发表。碳纳米管具有超级的力学性能[5],在碳纳米管中,碳原子之间存在着三种基本的原子力包括:强的δ键合,C C 键之间的π键合以及多壁碳纳米管层与层之间的相互作用力,它们对碳纳米管的力学性能有着重要的贡献,理论和实验结果显示碳纳米管具有相当高的弹性模量,可达1TPa ,强度是钢的10~100倍,多壁碳纳米管MWC NTs (multiwalled carbon nanotubes )的轴向杨氏模量实验值为200G ~4000G Pa ,轴向弯曲强度为14G Pa ,轴向压缩强度为100G Pa ,并且具有超高的韧性,理论最大延伸率可达20%,密度却只有钢的六分之一。它耐强酸、强碱、耐热冲击、有优异的热,电性能;高温强度高、有生物相容性和自润滑性。在真空中2800℃以下不氧化,在空气中700℃以下基本不氧化,热传导是金刚石的两倍,导电性和铜一样。本文将从碳纳米管的纯化与修饰,尼龙Π碳纳米管复合材料的制备方法及其性能特征三方面对尼龙Π碳纳米管复合材料的研究进展进行总结。

碳纳米管

碳纳米管简介 潘春旭 =================================== 武汉大学 物理科学与技术学院 地址:430072湖北省 武汉市 武昌区 珞珈山 电话:027-8768-2093(H);8721-4880(O) 传真:027-8765-4569 E-Mail: cxpan@https://www.doczj.com/doc/724503987.html,;cxpan@https://www.doczj.com/doc/724503987.html, 个人网页:https://www.doczj.com/doc/724503987.html,/cxpan =================================== 1. 什么是碳纳米管? 1991年日本NEC公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空的碳纤维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管”。理论分析和实验观察认为它是一种由六角网状的石墨烯片卷成的具有螺旋周期管状结构。正是由于饭岛的发现才真正引发了碳纳米管研究的热潮和近十年来碳纳米管科学和技术的飞速发展。 按照石墨烯片的层数,可分为: 1) 单壁碳纳米管(Single-walled nanotubes, SWNTs):由一层石墨烯片组成。单壁管典型的直 径和长度分别为0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。 2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。形状象个同轴电缆。 其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典 型直径和长度分别为2~30nm和0.1~50μm。 多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相 比,单壁管是由单层圆柱型石墨层构成, 其直径大小的分布范围小,缺陷少,具有 更高的均匀一致性。无论是多壁管还是单 壁管都具有很高的长径比,一般为100~ 1000,最高可达1000~10000,完全可以 认为是一维分子图1 碳纳米管原子排列结构示意图 2. 碳纳米管的独特性质 1) 力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级。它是最强的纤维,在强度与重量之比方面,这种纤维是最理想的。如果用碳纳米管做成绳索,是迄今唯一可从月球挂到地球表面而不会被自身重量拉折的绳索,如果用它做成地球——月球载人电梯,人们来往月球和地球献方便了。用这种轻而柔软、结实的材料做防弹背心那就更加理想了。 除此以外,它的高弹性和弯曲刚性估计可以由超过兆兆帕的杨氏模量的热振幅测量证实。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa;对于多层壁,理论计算太复杂,难于给出一确定的值。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。

宏量可控制备碳纳米管阵列

附件2 论文中英文摘要格式 作者姓名:张强 论文题目:宏量可控制备碳纳米管阵列 作者简介:张强,男,1984年3月出生,2004年9月师从于清华大学魏飞教授,于2009年7月获博士学位。 中文摘要 化学工程为现代高新技术产业的发展提供了最基本的生产手段与技术。近年来,纳米技术的蓬勃发展为新型工业开拓了科学和工程技术应用空间。作为一种具有一维管状结构的纳米材料,碳纳米管在力学、热学、电学、光学、声学等方面表现出优异的性能,成为纳米领域中最受关注的对象之一。随着应用研究的深入,人们发现,相互缠绕的聚团状碳纳米管往往作为一种化工原材料添加到最终产品中,这样就难以充分发挥碳纳米管的优异性能。相关研究表明,碳纳米管的取向和排列可以显著影响其作为宏观材料的性能。如果能够将碳纳米管做成高度规整的定向阵列结构,那么阵列本身就是带有功能的产品——超级弹簧、定向薄膜、过滤器、电池电极、场发射体等;碳纳米管阵列也可以经进一步加工形成人工合成的超强纤维、电子器件、高性能复合材料,从而极大地提高材料的性能;由于碳纳米管阵列的易分散性,即使破坏碳纳米管阵列的排列,将其单分散后应用于导电、导热、力学增强复合材料时仍表现出比聚团状单壁和多壁碳纳米管更为优异的性能。所以,碳纳米管阵列是诸多类型碳纳米管材料中的高端产品。 虽然高度规整的碳纳米管阵列已经开发出很多应用。但是,时至今日,基于碳纳米管阵列的所有应用还不能够看到明确的实用前景。其重要原因是可控、大规模宏量制备应用研究所需的宏量规模的定向碳纳米管阵列样品仍然非常困难。众多研究者采用高纯硅片作为基板,每批次仅获得几毫克碳纳米管阵列样品。碳纳米管阵列的市售价格可高达2000美元/片硅片。因此,要实现纳米技术为人类造福的目标,首要的问题就是能够探索出可在工业规模上大量生产碳纳米管阵列的方法。而探索宏量可控制备碳纳米管阵列的科学以及开发工业生产碳纳米管阵列的技术是化学工程发展中的新问题。本文研究了碳纳米管阵列所涉及到的各个尺度上的科学问题,并应用纳米过程工程的基本方法分析了碳纳米管阵列的宏量制备,探索制备过程中的技术和控制手段,为碳纳米管阵列的宏量制备提供一个切实可行的技术路线,进而为碳纳米管阵列的实用化铺平道路。 本文在理解碳纳米管团聚结构特点的基础上,对碳纳米管阵列的生长机理进行了探索。采用时空分析方法,指出在原子/分子层次上,碳纳米管的生长遵循气液固生长机制。此模型较好地解释单根碳纳米管如何在纳米金属催化剂生长,以及碳纳米管的直径控制,但是并未解释碳纳米管如何有效组装形成有序阵列。我们通过催化剂标记的方法,发现在单根尺度上,碳纳米管阵列遵循底部生长机制,即碳纳米管的生长点在其与基板结合的根部,但没有解释

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

单壁碳纳米管

序号讲座时间讲座名称主讲人12014-3-2714:30-15:35 单壁碳纳米管的结构控制生长方 法研究 张锦22014-3-3116:00-16:50sps技术与稀土功能材料张久兴32014-4-2515:00-16:20最高引用高分子论文评析江明 42014-5-2215:00-16:06Infrared transmitting glasses for night vision and energy applications 章向华 52014-06-0514:30-15:50 Methodologies toward Efficient Syntheses of Chiral Natural Products and Drugs 汤文军、马利 单壁碳纳米管 刘文菊① 中山大学化学与化学工程学院, 广东广州510275, 11320143) 摘要单壁碳纳米管具有多种优良性能,在多个领域均有广阔应用前景,可使用多种方法制备,如电弧放电法、催化裂解法、激光蒸发法、热解聚合物法、水热合成法和电解法等方法。关键词单壁碳纳米管合成方法应用 1引言 碳纳米管(Carbon Nanotubes,CNTs),又名巴基管,是一种具有特殊结构的一维量子材料,其特征是:径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定

的距离,约0.34nm,直径一般为2~20nm。并且根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。 碳纳米管可看作是由石墨层卷曲而成的无缝管,当石墨层为单层时,对应的为单壁碳纳米管(Single Walled Carbon Nanotubes,SWNTs);当石墨层为两层或多层时,则分别对应双壁或多壁碳纳米管。[1] 碳纳米管的强度和弹性模量极高、热稳定性极好,可制造高强度、稳定性好的轻型复合增强性功能材料,具有巨大的潜在应用价值。而单壁碳纳米管最能体现碳纳米管的性质特点,单壁碳纳米管的发现与研究已经被Science评为1997年人类十大发现之一,足可证明单壁碳纳米管的巨大潜力。 图1 由石墨烯片层卷曲成SWNT的示意图[1] 2SWNT的合成方法 单壁碳纳米管的制备方法众多,其中最为成熟、应用最多的方法主要包括电弧放电法和催化裂解法。除以上两种方法以外,激光蒸发法、热解聚合物法、水热合成法和电解法等方法也被用于单壁碳纳米管的制备。[2]

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

碳纳米管复合材料生产制造项目申报材料

碳纳米管复合材料生产制造项目 申报材料 投资分析/实施方案

碳纳米管复合材料生产制造项目申报材料 一些有机溶剂(如NMP)可分散和剥离碳纳米管,在有机溶剂中可对石墨进行剥离并得到无缺陷的石墨烯,并且得到的石墨烯产量大没有表面化 学修饰。 该碳纳米管复合材料项目计划总投资13652.07万元,其中:固定资产 投资10591.43万元,占项目总投资的77.58%;流动资金3060.64万元,占项目总投资的22.42%。 达产年营业收入20728.00万元,总成本费用16464.61万元,税金及 附加212.10万元,利润总额4263.39万元,利税总额5063.54万元,税后 净利润3197.54万元,达产年纳税总额1866.00万元;达产年投资利润率31.23%,投资利税率37.09%,投资回报率23.42%,全部投资回收期5.77年,提供就业职位368个。 报告根据项目的经营特点,对项目进行定量的财务分析,测算项目投 产期、达产年营业收入和综合总成本费用,计算项目财务效益指标,结合 融资方案进行偿债能力分析,并开展项目不确定性分析等。 ...... 碳纳米管具有独特的导电性、很高的热稳定性和本征迁移率,比表大,微孔集中在一定范围内,满足理想的超级电容器电极材料的要求。碳纳米

管的电磁效应同样存在着两端正负极场和单极粒子的特质性质,前者是以复合量子态的存在,是在下面第5行成复合材料人们的生活应用,而后着的单极碳粒子的性质是可以组成粒子点阵跃迁跳跃的纳米线,它的能效要有更高的辐射能量存在。

碳纳米管复合材料生产制造项目申报材料目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

新型碳纳米管磁性复合材料的制备及磁性能

高姗姗等:磷灰石/硅灰石生物玻璃基骨水泥的溶胶–凝胶法制备及性能· 1247 ·第36卷第9期 新型碳纳米管磁性复合材料的制备及磁性能 曹慧群1,邵科1,李耀刚2,朱美芳2 (1. 深圳大学化学与化工学院,深圳 518060;2. 东华大学材料科学与工程学院,纤维改性国家重点试验室,上海 200051) 摘要:采用水热–沉淀法制备了ZnFe2O4包覆碳纳米管(carbon nanotubes,CNTs)磁性复合材料。采用X射线衍射、扫描电镜、透射电镜、M?ssbauer 谱仪和振动样品磁强计等仪器表征制备样品的结构与性能。200℃是制备纳米ZnFe2O4包覆CNTs磁性复合材料的较好的反应条件,温度过高或过低都生成较多的γ-Fe2O3。包覆在CNTs上的ZnFe2O4纳米粒子为球形,粒径为13~20nm。M?ssbauer谱结果表明:大部分ZnFe2O4纳米粒子表现出超顺磁性,少量表现出铁磁性。磁滞回线结果表明:复合材料的矫顽力值为254215.85A/m。 关键词:磁性复合材料;碳纳米管;铁酸锌;磁性能 中图分类号:TB33 文献标识码:A 文章编号:0454–5648(2008)09–1247–04 SYNTHESIS AND MAGNETIC PROPERTIES OF NOVEL CARBON NANOTUBES MAGNETIC COMPOSITES CAO Huiqun1,SHAO Ke1,LI Yaogang2,ZHU Meifang2 (1. College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060; 2. College of Material Science and Engineer, State Key Laboratory for Modification of Chemical Fibers and Polymer Material, Donghua University, Shanghai 200051, China) Abstract: Novel magnetic composites of carbon nanotubes(CNTs) coated with ZnFe2O4 nanoparticles were synthesized by a precipi-tation-hydrothermal method. The composites were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, M?ssbauer spectrum(MS), and vibrating sample magnetometry. A temperature of about 200 was identified to ℃ be an appropriate reactive condition to obtain CNTs coated with ZnFe2O4. It is concluded that more γ-Fe2O3 existed in composites when the temperature is higher or lower than 200. The ZnFe ℃2O4 nanoparticles coated on surface of CNTs are round, and the size of the nanoparticles ranges from 13nm to 20nm. The MS results reveal that most of the ZnFe2O4 nanoparticles show superparamagnetic relaxation, and some of them exhibit ferrite magnetic relaxation. The sample demonstrates good magnetic properties with a coercive strength of 254215.85A/m. Key words: magnetic composites; carbon nanotubes; ferrite znic; magnetic property 碳纳米管(carbon nanotubes,CNTs)具有独特的物理化学性质,在很多领域都具有良好的应用前景,自1991年发现CNTs以来,引起了人们极大的兴趣。[1–3] 将纳米材料与CNTs结合来制备CNTs复合材料已经有大量报道,其中磁性纳米材料与CNTs复合材料的制备引起了人们特别的关注,用具有磁性的金属及其氧化物填充CNTs的研究相对较多,[4–14] 对于磁性纳米材料包覆CNTs。Jiang等[15]采用溶剂热的方法制备了磁性四氧化三铁/CNTs复合材料,并研究了复合材料的电性能。Liu等[16]采用水热法合成的NiFe2O4/CNTs复合材料,研究了复合材料的电性能,相对于NiFe2O4的电性能提高5倍。Correa- Duarte等[17]采用聚合物包覆和层–层组装技术合成出氧化铁纳米颗粒包覆的CNTs功能材料,并在低磁场中将制备的磁性纳米管材料定向排列后,复合材料表现出超顺磁行为,温度为5K时的矫顽力(H c)为22288.00A/m,不存在剩磁;或室温下不存在矫顽力。He等[18]制备的多壁CNTs–Fe2+复合材料在5 K时,H c=20696.00A/m,饱和磁化强度(M s)为0.016 Am2/kg。 收稿日期:2007–12–13。修改稿收到日期:2008–03–19。基金项目:国家自然科学基金(50473002)项目资助。 第一作者:曹慧群(1976—),女,博士,讲师Received date:2007–12–13. Approved date: 2008–03–19. First author: CAO Huiqun (1976–), female, Doctor, lector. E-mail: chq0524@https://www.doczj.com/doc/724503987.html, 第36卷第9期2008年9月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 36,No. 9 September,2008

聚合物碳纳米管复合材料研究综述

聚合物/碳纳米管复合材料研究综述 摘要 综述了目前碳纳米管在填充聚合物来制备介电、导电、吸波、导热等复合材料方面的应用。对常见的几种聚合物/碳纳米管复合材料的制备工艺以及碳纳米管在聚合物中的分散方法进行了详细地阐述。最后对聚合物/碳纳米管在研究过程中存在的问题和未来的研究方向进行了相应地分析和展望。 关键词:碳纳米管; 逾渗理论; 复合材料; 制备工艺; 分散 Review of Research on Polymer /Carbon Nanotube Composite Abstract The current carbon nanotube-filled polymer compound to prepare the electricity,conductive,absorbing,thermal conductivity,and other aspects of application of composite materials are reviewed.Several common polymer / carbon nanotube composite preparation process as well as the dispersion of carbon nanotubes in polymer are elaborated.Finally,the polymer /carbon nanotube in the study process and future research is analyzed and prospected. Key words: carbon nanotubes; percolation theory; composite; preparation; dispersion

单壁碳纳米管的轴向能带工程

中国科学B辑:化学 2009年 第39卷 第10期: 1069~1088 https://www.doczj.com/doc/724503987.html, https://www.doczj.com/doc/724503987.html, 《中国科学》杂志社SCIENCE IN CHINA PRESS 单壁碳纳米管的轴向能带工程 现晓军, 刘忠范* 北京大学纳米化学研究中心, 北京大学化学与分子工程学院, 北京 100871 * 通讯作者, E-mail: zfliu@https://www.doczj.com/doc/724503987.html, 收稿日期:2009-07-11; 接受日期:2009-08-02 摘要单壁碳纳米管具有优异的电子学特性, 是制备新一代高性能集成电路的重要材料. 碳纳米管芯片之路存在诸多挑战, 包括直径和手性的控制生长方法、金属性和半导体性单壁碳纳米管的分离方法、器件加工与集成方法等. 这些课题从本质上讲大多属于化学问题, 因此碳纳米管芯片研究为化学家们提供了新的机遇与挑战. 过去10年来, 我们围绕单壁碳纳米管的轴向能带工程这一研究思路, 开展了一系列碳纳米管芯片的基础探索工作, 发展了若干有效的单壁碳纳米管局域能带的调控方法, 包括温度阶跃生长法、脉冲供料生长法、基底调控法以及形变调控法等. 本文系统地阐述了这些局域能带调控方法, 为使读者对该领域的研究进展有一个较为全面的了解, 文中对其他课题组开展的代表性工作也给予了综述性介绍. 关键词 碳纳米管 CVD CMOS器件 轴向能带工程 纳米转移印刷技术 1引言 碳纳米管是日本NEC公司的电子显微学家Iijima S(饭岛澄男)博士发现的. 1991年, Iijima S在用高分辨透射电镜观察富勒烯原始样品时, 偶然发现了多层套管状的多壁碳纳米管[1]. 两年后, Iijima S和IBM公司的Bethune D S在“Nature”杂志的同一期上同时报道了由单层管构成的单壁碳纳米管[2,3], 从而掀起了世界范围的持续至今的碳纳米管研究热潮. 理论上讲, 单壁碳纳米管是理想的导电沟道材料, 用单壁碳纳米管制作的场效应晶体管(FET)有着硅晶体管无与伦比的优越性, 因此它的问世为新一代高性能集成电路研究注入了新的活力[4]. 首先, 单壁碳纳米管中载流子的传输是一维的, 这就意味着载流子散射的相空间减小, 反向散射受到强烈抑制, 从而导致极高的载流子迁移率. 理论和实验研究都表明, 碳纳米管中载流子的迁移率比硅材料高两个数量级以上. 高载流子迁移率带来的好处是工作电流大, 延迟时间短, 因此可以预期, 碳纳米管芯片的速度将大大高于硅芯片. 硅基CMOS器件在特征尺寸进入纳米领域时, 会出现所谓的短沟效应. 单壁碳纳米管的直径通常在1~2 nm范围, 载流子被限域在非常狭小的空间范围内运动, 因此可以有效地抑制这种短沟效应, 使得理想的静电学控制成为可能, 这是碳纳米管FET的另一个优点. 碳纳米管中的碳原子呈稍微变形的sp2成键构型, 径向方向不存在未饱和的悬挂键, 因此不需要表面化学钝化, 这一点与呈sp3成键结构的硅材料完全不同. 这意味着碳纳米管器件不必一定使用二氧化硅作为栅极绝缘材料, 可以采用其它高介电常数材料, 在材料选择上的自由度大得多. CMOS技术是传统的硅基微电子器件的基础, 其基本结构单元是互补的n型和p型场效应晶体管. 因为碳纳米管能带中的导带和价带是对称的, 由此人们预测碳纳米管FET中的电子和空穴传输特性也是相似的, 这样可以为互补电路提供更平衡的电 1069

碳纳米管科普

碳纳米管科普 骞伟中?
一 心细如发,发真得够细吗??
中国有句谚语为"心细如发",用来形容一个人的心思缜密,细微程度达 到了头发丝的尺寸。 在古人的眼里, 头发丝已经是非常细的东西的代表了。 或者, 人们形容薄时,爱用“薄如蝉翼” ,但蝉翼真得够薄吗?然而,大家知识头发丝 的直径或蝉翼的厚度是什么尺度的吗?仅仅是几十微米而已。 有没有比头发丝更 细的丝及比蝉翼更薄的纸吗? 事实上还多得很。 比如铜丝,现代的加工技术可以将铜丝拉伸到小于 10 微米的级别。用于光 导通讯的玻璃纤维丝,也能达到这个级别。 而更绝的是,用激光刻蚀可以在硅片上刻出几十纳米(nm)的细槽,从而成 为现代超级计算机的基础。 但你可能更加想不到的是, 人类真得造出了直径仅 0.4‐1nm 的碳丝(图 1), 而 且还是中空结构。这种材料与头发丝相比,直径小了 1 万倍。另外一种比喻可以 让你进一步想象 1nm 有多大,人的指甲的生长速度几乎是不为人察觉的。人一 般觉得指甲长了,总得一周左右 的时间。但即使这样,您的指甲 仍以每秒 1nm 的速度在不停地生 长。但由于一个分子的大小也就 在 0.3nm(如氢气分子)到 0.6 nm(如苯分子),所以你可以想象 这种碳丝在本质上就是一种原子 线或分子线。但它的确构成了一 种长径比巨大的固体材料,成为 一种实物,而不再是无所束缚的, 到处乱跑的分子或原子。
图1 碳纳米管的三种卷曲结构 (从上而下的英文 字形结构;手性结构)?
armchair
zigzag
chiral
为:扶手椅式结构;Z

实际上, 这种神奇的材料的发现是基于非常偶然的机缘。 在 1985‐1990 年间, 科学家热衷于制造一种形状像足球的由 60 个碳组成的分子。这种分子通常是用 电弧放电,将石墨靶上的碳原子进行激发,然后进行自组装而得。而在偶然的机 缘里,科学家发现,只要能量足够,这些碳原子就会自动连接起来,形成一条碳 链。而利用放大倍数在 10 万倍至 100 万倍的电子显微镜下,科学家惊异地发现 这个丝状的材料竟然是中空的管状材料,所以,根据其元素,尺寸与形状,科学 家形象地称这种材料为“碳纳米管” 。应该说这种丝状材料与头发相比,才是真 正算得上细与小。当然如果说一个人“心细如碳纳米管” ,则恐怕不只是“心细 如发”的赞许与褒扬,而或许带有一种调侃或讽刺意味的“小心眼”了。由此可 见,社会科学中的词语包含了粗与细的平衡,什么事都得适可而止,非常玄妙。 然而,在追求真理与真知的“实心眼”科学家那里,却不是这样,自从 C60 与碳纳米管的发现,人类正式进行了纳米时代,可能大家都听过“纳米领带” , “纳米洗衣机” 或 “纳米药物” 。 不论这些东西是否属实, 却毫无疑问地夸耀 “细” 与“小”的作用。 事实上,追求细小或细微或精细,是人类科技进步的一条主线。 从人类走过的路程可以看到,从旧石器时代,新石器时代,以及青铜时代, 铁器时代,到火车轮船时代,以及飞机及计算机时代。从手工打造,铸造,到普 通车床加工, 再到数字车床加工, 激光刻蚀。 比如, 普通汽车与拖拉机的发动机, 一般有成千至万个零件。而飞机或火箭的发动机则有上百万个零件组成。而保证 这个零件良好组合或密封,以及长时间工作不损伤的关键因素,就在加工结构的 精细化与细微化。一般来说,汽车与拖拉机对应的加工精度为微米级,而计算机 与手机等通讯产品中硅片的加工精度则为纳米级。人类加工的产品越来越精细, 也就越来越有功能。而到达纳米级后,计算机硅片的加工要求又从 100 nm,小 到 60?nm,直到目前的 15?nm。这些数字减小的后面,是一代一代计算机的更新 换代与巨大的产业价值。 而我们故事的主人公:碳纳米管,竟然可以小至 0.4‐1nm。大家可以想见, 如果计算机的加工基础可以小到这个程度,或由这么小的材料来组装器件,则现 代的工业革命又将会发生什么样的变化。 在此开篇,有必要向大家介绍一下时空的概念。在时间尺度上,生物的新陈

纳米磁性空心微球及其与碳纳米管复合材料的制备及性能研究

目录 1前言 (1) 1.1纳米磁性空心微球概述 (2) 1.1.1纳米磁性空心微球研究现状 (2) 1.1.2纳米磁性空心微球的制备方法 (2) 1.1.3纳米磁性空心微球的应用 (8) 1.2稀土掺杂铁氧体吸波材料的研究现状 (10) 1.3碳纳米管的研究现状 (10) 1.4磁性碳纳米管复合材料的研究现状 (11) 1.5论文选题目的及意义 (12) 1.5.1论文选题目的及意义 (12) 1.5.2论文主要研究内容 (13) 2实验药品与仪器设备 (14) 2.1实验药品 (14) 2.2实验仪器 (15) 2.3样品的表征手段及条件 (15) 2.3.1X射线衍射分析(XRD) (15) 2.3.2扫描电镜分析(SEM) (16) 2.3.3透射电镜分析(TEM) (16) 2.3.4振动样品磁强计(VSM) (16) 2.3.5矢量网络分析仪 (16) 3钴铁氧体空心微球的制备及性能研究 (18) 3.1钴铁氧体空心微球的制备 (18) 3.1.1以聚苯乙烯(PS)球为模板法 (18) 3.1.2以碳微球为模板法 (18)

3.1.3溶剂热法 (19) 3.2钴铁氧体空心微球的表征与分析 (19) 3.2.1XRD分析 (19) 3.2.2形貌和粒径分析 (21) 3.2.3磁性能研究 (24) 3.2.4吸波性能研究 (26) 3.3本章小结 (27) 4钴锌、钴镍铁氧体空心微球的制备及性能研究 (28) 4.1钴锌、钴镍铁氧体空心微球的制备及性能研究 (28) 4.1.1钴锌铁氧体空心微球的制备 (28) 4.1.2钴镍铁氧体空心微球的制备 (28) 4.2钴锌、钴镍铁氧体空心微球的表征与分析 (28) 4.2.1XRD分析 (28) 4.2.2形貌和粒径分析 (29) 4.2.3磁性能研究 (31) 4.2.4吸波性能研究 (34) 4.3本章小结 (37) 5稀土掺杂钴锌铁氧体微球的制备及性能研究 (38) 5.1稀土掺杂钴锌铁氧体微球的制备 (38) 5.1.1镧掺杂钴锌铁氧体微球的制备 (38) 5.1.2铈掺杂钴锌铁氧体微球的制备 (38) 5.1.3钕掺杂钴锌铁氧体微球的制备 (38) 5.2稀土掺杂钴锌铁氧体微球的表征与分析 (38) 5.2.1XRD分析 (38) 5.2.2形貌和粒径分析 (39) 5.2.3磁性能研究 (40) 5.2.4吸波性能研究 (44)

浅谈碳纳米管

浅谈碳纳米管 摘要:就对于碳纳米管的优良性质,以及将来在许多的领域的应用,不可避免的说到碳纳米管可能作为某些材料的替代产品,碳纳米管的缺陷和如何改进等问题。 关键词:碳纳米管优良性能 前言:随着科学技术的发展,很多材料和能源都已经快到达它们物理性能的极限了,由于人们对纳米材料的不断探索,终于发现了许多纳米材料所具有的其他材料没有的优良性能,那么我们就来浅谈谈碳纳米管为什么具有这么多的优良性能,和这些优良性能的前景。 正文:正如人们都知道的纳米材料由于具备尺寸小,比表面积大,表面能高等特点,表现出许多特有的物理效应如表面效应小尺寸效应,量子效应和介电限域效应等。从而使纳米材料具有传统材料所不具备的异或反常的物理特性。 碳纳米管由于由于其中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量和高强度。从而使其表现出良好的力学性能,碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。碳纳米管的导电性也是可观的,由于碳纳米管的碳原子之间构成六边形,必然就会有一个孤对电子环绕在每个碳原子周围,从

而使其有具有相当好的导电性。理论预测其导电性能取决于其管径和管壁的螺旋角。当碳纳米管的管径大于6nm时,导电性能下降;当管径小于6nm时,碳纳米管可以被看成具有良好导电性能的一维量子导线。有报道有人通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。当然碳纳米管也具有优良的导热性碳纳米管具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管 ,该复合材料的热导率将会可能得到很大的改善。其他性能,碳纳米管还具有光学和储氢等其他良好的性能,正是这些优良的性质使得碳纳米管被认为是理想的聚合物复合材料的增强材料。 对于碳纳米管的应用前景那是可观的,随着化石原料的逐渐枯竭,人们正在寻找清洁能源,目前被人们所看重的莫过于氢能和太阳能了。不管它们中的哪一种能源,目前都陷于瓶颈之中,氢能怎么制取,怎么存储到现在还是问题,至于太阳能我想不必多少,太阳能虽然总量巨大,但是利用率很低,至今还在探索,但是我想说碳纳米管的研究可能就可以解决这些问题,从而解决现在的能源危机。

相关主题
文本预览
相关文档 最新文档