当前位置:文档之家› 高二物理《磁场》重难知识点解析及综合能力精析

高二物理《磁场》重难知识点解析及综合能力精析

高二《磁场》重难点精析及综合能力强化训练

高中,物流,高一力学是基础,高二电磁学是根本,高三知识综合用,所以高二部分,往往是高考的难点和重点,应当全面掌握这一块的方法和内容,综合利用。

I. 重难知识点精析

一、知识点回顾

1、磁场

(1)磁场的产生:磁极周围有磁场;电流周围有磁场(奥斯特实验),方向由安培定则(右手螺旋定则)判断(即对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向);变化的电场在周围空间产生磁场(麦克斯韦)。

(2)磁场的基本性质:磁场对放入其中的磁极、电流(安培力)和运动电荷(洛仑兹力)有力的作用(对磁极一定有力的作用;对电流和运动电荷只是可能有力的作用,当电流、电荷的运动方向与磁感线平行时不受磁场力作用)。

2、磁感应强度

IL

F B =(条件:L ⊥B ,并且是匀强磁场中,或ΔL 很小)磁感应强度B 是矢量。 3、磁感线

⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。磁感线的疏密表示磁场的强弱。 ⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线

4、安培力——磁场对电流的作用力

(1)BIL F =(只适用于B ⊥I ,并且一定有F ⊥B, F ⊥I ,即F 垂直B 和I 确定的平面。B 、I 不垂直时,对B 分解,取与I 垂直的分量B ⊥)

(2)安培力方向的判定:用左手定则。

通电环行导线周围磁场

地球磁场 通电直导线周围磁场

另:只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方

向;当两导线互相垂直时,用左手定则判定。

5、洛仑兹力——磁场对运动电荷的作用力,是安培力的微观表现

(1)计算公式的推导:如图,整个导线受到的安培力为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。由以上四式可得F=qvB 。条件是v 与B 垂直。当v 与B 成θ角时,F=qvB sin θ。 (2)洛伦兹力方向的判定:在用左手定则时,四指若为正电荷运动的方向,则拇指为洛仑兹力方向;而对负电荷而言,

受洛仑兹力方向与正电荷相反。

(3)带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:Bq

m T Bq mv r π2,==。由于F 始终与V 垂直,所以洛仑兹力一定不做功。

6、速度选择器

正交的匀强磁场和匀强电场组成速度选择器。带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,

B

E v =。在本图中,速度方向必须向右。 ①这个结论与离子带何种电荷、电荷多少都无关。

②若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。

二、典型题举例

1、导线在安培力作用下的受力分析

例1. 光滑导轨与水平面成α角,导轨宽L 。匀强磁场磁感应强度为B 。金属杆长也为L ,质量为m ,水平放在导轨上。当回路总电流为I 1时,金属杆正好能静止。求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?

解:画出金属杆的截面图。由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。根据左手定则,这时B 应垂直于导轨平面向上,

大小满足:BI 1L =mg sin α, B =mg sin α/I 1L 。

当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。(在解这

类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方

向,从而弄清各矢量方向间的关系)。

2、带电粒子在复合场中的运动

例2. 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。则该带电微粒必然带_____,旋转方向为_____。若已知圆半径为r ,电场强度

为E 磁感应强度为B ,则线速度为_____。

解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针转动;再由E

Brg v Bq mv r mg Eq ===得和

3、带电粒子在有界的匀强磁场中运动的问题

带电粒子进入有界匀强磁场中运动时,其轨迹是一段或多段圆弧,解决问题的关键:根据洛仑兹力方向时刻垂直于粒子运动方向指向轨迹圆心的特点,正确判定和画出轨迹圆心的位置和所对应的圆心角,因为圆心和圆心角一旦确定,有关圆运动的半径在磁场中运动的时间等问题就可以根据已知条件迎刃而解。注意分析粒子运动轨迹所具有的对称性,简化时问题的分析和处理,注意粒子的周期性重复性,防止因解答结果的片面性而遗漏部分答案。 例3. 如图直线MN 上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),

它们从磁场中射出时相距多远?射出的时间差是多少? 解:正负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点相距2r ,由图还看出经历时间相差

2T /3。答案为射出点相距Be mv s 2=,时间差为Bq

m t 34π=∆。关键是找圆心、找半径和用对称。

II.重难知识点荐入

1.磁场的产生

磁体 、 电流 、 变化的电场 周围有磁场。

安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。(但这并不等于说所有磁场都是由运动电荷产生的,因为麦克斯韦发现变化的电场也能产生磁场。)

2.磁场的基本性质:磁场对放入其中的 磁极 和 电流 有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。这一点应该跟电场的基本性质相比较。

3.磁场方向:五种表述是等效的①磁场的方向②小磁针静止时N 极指向③N 极的受力方向 ④磁感线某点的切线方向⑤磁感应强度的方向

4.磁感线

⑴用来形象地描述磁场中各点的磁场 强弱 和 方向 的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。磁感线的 疏密 表示磁场的强弱。

⑵磁感线是 封闭 曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线:

M

通电直导线周围磁场 通电环行导线周围磁场

⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 5.磁感应强度:IL

F B (条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。 磁感应强度是矢量。单位是 特斯拉 ,符号为T 。由磁场本身决定,和放不放入电流无关。

6.安培力 (磁场对电流的作用力)

(1)安培力方向的判定

⑴用左手定则。

⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。

⑶用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。 例1. 如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动? 解:先画出导线所在处的磁感线,上下两部分导线所受安培力

的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。分析的关键是画出相关的磁感线。

例2. 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会___(增大、减小还是不变?)。水平面 对磁铁的摩擦力大小为___。

解:本题有多种分析方法。⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示)的合力竖直向上。磁铁对水平面的压力减小,但不受摩擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。

例3. 电视机显象管的偏转线圈示意图如右,即时电流方向如图

所示。该时刻由里向外射出的电子流将向哪个方向偏转?

解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电

流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。(本题用其它方法判断也行,

但不如这个方法简洁)。

(2)安培力大小的计算

F =BLI sin α(α为B 、L 间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。

例4. 如图所示,光滑导轨与水平面成α角,导轨宽L 。匀强磁场磁

感应强度为B 。金属杆长也为L ,质量为m ,水平放在导轨上。当

回路总电流为I 1时,金属杆正好能静止。求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?

解:画出金属杆的截面图。由三角形定则得,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。根据左手定则,这时B 应垂直于导轨

平面向上,大小满足:BI 1L =mg sin α, B =mg sin α/I 1L 。 当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿

导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。

例6. 如图所示,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B 的匀强磁场方向竖直向下。电键闭合后,在磁场力作用下铜棒被平抛出去,下落h 后的水平位移为s 。求闭合电键后通过铜棒的电荷量Q 。 解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F Δt =mv 0

而被平抛出去,其中F =BIL ,而瞬时电流和时间的乘积等于电荷量Q =I

Δt ,

最终

7.洛伦兹力

(1)洛伦兹力

运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的 微观解释 。

公式F= qvB 。条件是v 与B 垂直。 (2)洛伦兹力方向的判定:在用左手定则时,四指必须指电流方向(不是速度方向),即 正电荷 定向移动的方向;对负电荷,四指应指负电荷定向移

磁场。该发电机哪个极板为正极?两板间最大电压为多少?

解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。所以上极板为正。正、负极板间会产生电场。当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。当外电路

断开时,这也就是电动势E 。当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将

发生偏转。这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。

在定性分析时特别需要注意的是:

⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。

⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。)

x

⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。在外电路断开时最终将

达到平衡态。

(3)洛伦兹力大小的计算

带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:R = mv/qB T = 2πm/qB

例8. 如图直线MN 上方有磁感应强度为B 的匀强磁场。正、负电

子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?(提示:关键是找圆心、找半径和用对称。) 解:由公式知,它们的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好

组成正三角形。所以两个射出点相距2r ,由图还可看出,经历时间相差2T /3。答案为射出

。关键是找圆心、找半径和用对称。

例9. 一个质量为m 电荷量为q 的带电粒子从x 轴上的P (a ,0)点以速度v ,沿与x 正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一

象限。求匀强磁场的磁感应强度B 和射出点的坐标。 解:由射入、射出点的半径可找到圆心O /,并得出半径为

0。 4.带电粒子在匀强磁场中的偏转 ⑴穿过矩形磁场区。一定要先画好辅助线(半径、速度及延长线)。偏转角由sin θ=L /R 求出。侧移由R 2=L 2-(R-y )2解出。经历时间由Bq

m t θ=得出。 注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强

电场中的偏转结论不同!

⑵穿过圆形磁场区。画好辅助线(半径、速度、轨迹圆的圆心、

连心线)。偏角可由R r =2tan θ求出。经历时间由Bq m t θ=得出。

注意:由对称性,射出线的反向延长线必过磁场圆的圆心。

8.带电粒子在混合场中的运动

1.速度选择器

正交的匀强磁场和匀强电场组成速度选择器。带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出:

qvB=Eq ,B E v =。在本图中,速度方向必须向右。

⑴这个结论与离子带何种电荷、电荷多少都无关。

⑵若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场

力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一M

条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。

例10. 某带电粒子从图中速度选择器左端由中点O 以速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带 电;第二次射出时的速度为 。

解:B 增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同

。例11. 如图所示,一个带电粒子两次以同样的垂直于场线的初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L 偏转角度均为α,求E ∶B

解:分别利用带电粒子的偏角公式。在电场中偏转:

角相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。

2.带电微粒在重力、电场力、磁场力共同作用下的运动

带电微粒在三个场共同作用下做匀速圆周运动。必然是电场力和重力平衡,而洛伦兹力

匀速圆周运动。则该带电微粒必然带_____,旋转方向为_____。若已知圆半径为r ,电场强度为E 磁感应强度为B ,则线速度为_____。

解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针

III.综合能力提升测试

一、选择题:(每小题4分,共40分,请将每小题正确答案的字母填入答卷的表格内)

1、磁体之间的相互作用是通过磁场发生的。对磁场认识正确的是

A .磁感线有可能出现相交的情况

B .磁感线总是由N 极出发指向S 极

C .某点磁场的方向与放在该点小磁针静止时N 极所指方向一致

D .若在某区域内通电导线不受磁场力的作用,则该区域的磁感应强度一定为零

2、右图是电子射线管的示意图。接通电源后,电子射线由阴极沿x 轴方向射出,在荧光屏上会看到一条亮线。要使荧光屏上的亮线向下(z

是 (填选项代号)。 A .加一磁场,磁场方向沿z 轴负方向

B .加一磁场,磁场方向沿y 轴正方向

C .加一电场,电场方向沿z 轴负方向

D .加一电场,电场方向沿y 轴正方向

3、如图,用两根相同的细绳水平悬挂一段均匀载流直导线MN ,电流I 方向从M 到N ,绳

子的拉力均为F 。为使F =0,可能达到要求的方法是

A .加水平向右的磁场

B .加水平向左的磁场

C .加垂直纸面向里的磁场

D .加垂直纸面向外的磁场

4、如图,在阴极射管正下方平行放置一根通有足够强直流电流的长直导线,且导线中电流

方向水平向右,则阴极射线将会

A .向上偏转

B .向下偏转

C .向纸内偏转

D .向纸外偏转

5、取两个完全相同的长导线,用其中一根绕成如图(a )所示的螺线管,当该螺线管中通以电流强度为I 的电流时,测得螺线管内中部的磁感应强度大小为B ,若将另一根长导线对折后绕成如图(b )所示的螺线管,并通以电流强度也为I 的电流时,则在螺线管内中部的磁感应强度大小为

A .0

B .0.5B

C .B

D .2 B 6、粒子甲的质量与电荷量分别是粒子乙的4

倍与2倍,两粒子均带正电,让它们在匀强磁场中同一点以大小相等、方向相反的速度开始运动。已知磁场方向垂直纸面向里。以下四个图中,能正确表示两粒子子运动轨迹的是

7、如图所示,长方形abcd 长ad =0.6 m ,宽ab =0.3 m ,O 、e 分别是ad 、bc 的中点,以ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B =0.25 T 。

一群不计重力、质量m =3×10-7 kg 、电荷量q =+2×10-3 C 的带电粒子以速度v =5×l02 m/s 沿垂直ad 方向且垂直于磁场射人磁场区域

A .从Od 边射人的粒子,出射点全部分布在Oa 边

B .从aO 边射人的粒子,出射点全部分布在ab 边

C .从Od 边射入的粒子,出射点分布在Oa 边和ab 边

A

B C D

D .从aO 边射人的粒子,出射点分布在ab 边和bc 边

8、如图所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场。一个不计

重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成120°角,若粒子穿过y 轴正半轴后在磁场中到x 轴的最大距离为a ,则该粒子的比荷和所带电荷的正负是 A .32v aB ,正电荷 B .2v aB

,正电荷 C .32v aB ,负电荷 D .2v aB ,负电荷 9、下列说法中正确的有

A .只要带电粒子在磁场中运动,就会受到洛仑兹力的作用

B.带电粒子在空间定向运动,其周围空间一定形成磁场

C.带电粒子垂直射入磁场中,必做圆周运动

D.洛仑兹力总是不做功

10、如图所示,一带负电的质点在固定的正的点电荷作用下绕该正电荷做匀速圆周运动,周期为T 0,轨道平面位于纸面内,质点的速度方向如图中箭头所示。现加一垂直于轨道平面

的匀强磁场,已知轨道半径并不因此而改变,则

A .若磁场方向指向纸里,质点运动的周期将大于T 0

B .若磁场方向指向纸里,质点运动的周期将小于T 0

C .若磁场方向指向纸外,质点运动的周期将大于T 0

D .若磁场方向指向纸外,质点运动的周期将小于T 0

二.填空题:(每空3分,共18分)

11、磁场对放入其中的长为L 、电流强度为I 、方向与磁场垂直的通电导线有力F 的作用,可以用磁感应强度B 描述磁场的力的性质,磁感应强度的大小B =___________,在物理学中,用类似方法描述物质基本性质的物理量还有___________等。

12、在磁感应强度B 的匀强磁场中,垂直于磁场放入一段通电导线。若

任意时刻该导线中有N 个以速度v 做定向移动的电荷,每个电荷的电量

为q 。则每个电荷所受的洛伦兹力f =___________,该段导线所受的安

培力为F =___________。

13、边长为a 的正方形,处于有界磁场,如图所示,一束电子以v 0水平

射入磁场后,分别从A 处和C 处射出,则v A :v C =____;所经历的时间之

比t A :t B =____。

三.计算与简答:(14、15、16小题10分,17小题12分共42分。解答时要求写出必要的文字说明、方程式和重要的演算步骤)

14、据报道,最近已研制出一种可以投入使用的电磁轨道炮,其原理如图所示。炮弹(可视为长方形导体)置于两固定的平行导轨之间,并与轨道壁密接。开始时炮弹在轨道的一端,通以电流后炮弹会被磁力加速,最后从位于导轨另一端的出口高速

射出。设两导轨之间的距离w =0.10 m ,导轨长L =5.0 m ,炮弹质

量m =0.30 kg 。导轨上的电流I 的方向如图中箭头所示。可认为,炮

弹在轨道内运动时,它所在处磁场的磁感应强度始终为B =2.0 T ,

方向垂直于纸面向里。若炮弹出口速度为v =2.0×103 m/s ,求通过

导轨的电流I 。忽略摩擦力与重力的影响。

× × × × × × × × × × × × × × × O B x

y

v

15、磁谱仪是测量α能谱的重要仪器。磁谱仪的工作原理如图所示,放射源S 发出质量为m 、电量为q 的α粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上。(重力影响不计) ⑴若能量在E ~E +ΔE (ΔE >0,且

E E )范围内的α粒子均垂直于限束

光栏的方向进入磁场。试求这些α粒子打

在胶片上的范围Δx 1。

⑵实际上,限束光栏有一定的宽度,α粒

子将在2φ角内进入磁场。试求能量均为

E 的α 粒子打到感光胶片上的范围Δx 2 16、在半径为R 的半圆形区域中有一匀强

磁场,磁场的方向垂直于纸面,磁感

应强度为B 。一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。

⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。

⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。

17、两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x 轴和y 轴,交点O 为原点,如图所示,在y >0,0<x <a 的区域有垂直于纸面向里的匀强磁场,在y >0,x >a 的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B 。在O 点有一处小孔,一束质量为m 、带电量为q (q >0)的粒子沿x 轴经小孔射入磁场,最后扎在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种数值。已知速度最大的粒子在0<x <a 的区域中运动的时间与在x >a 的区域中运动的时间之比为2∶5,在磁场中运动的总时间为7T /12,其中T 为该粒子在磁感应强度为B 的匀强磁场中作圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。

P

参考答案

一、选择题:

11、

IL

F

,电场强度 12、qvB ,NqvB 13、1:2 2:1 三.计算与简答:

14、 炮弹的加速度为:F IwB a m m

=

= 炮弹做匀加速运动,有:22v aL =

解得:2

50.610 A 2mv I BwL

=

=⨯

15、(1)设α粒子以速度v 进入磁场,打在胶片上的位置距S 的距离为x

圆周运动 2

v q v B

m R

= α粒子的动能 2

12

E m v =

且 x =2R

解得: x qB =

由上式可得: 1x E ∆≈

(2)动能为E 的α粒子沿ϕ±角入射,轨道半径相同,设为R

圆周运动 2

v qvB m R

=

α粒子的动能 2

12

E m v =

由几何关系得2222cos cos )2

x R R ϕ

ϕϕ∆=-=

-= 16、⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。

设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得:

2

11/2v m qBv d = 解得:12qBd

v m

=

⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O /Q =R /。 由几何关系得: /OQO ϕ∠= //OO R R d =+-

由余弦定理得:2

/22//()2cos OO R R RR ϕ=+- 解得:[]

/

(2)

2(1cos )d R d R R d ϕ-=

+-

设入射粒子的速度为v ,由2

/v m qvB R

=

解出:[]

(2)

2(1cos )qBd R d v m R d ϕ-=

+-

17、粒子在磁感应强度为B 的匀强磁场中运动的半径为:

mv

r qB

=

速度小的粒子将在x <a 的区域走完半圆,射到竖直屏上。半圆的直径在y 轴上,半径的范围从

0到a ,屏上发亮的范围从0到2a 。

轨道半径大于a 的粒子开始进入右侧磁场,考虑r =a 的极限情况,这种粒子在右侧的圆轨迹与x

轴在D 点相切(虚线),OD =2a ,这是水平屏上发亮范围的左边界。

速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C 和C /,C 在y 轴上,由对称性可知C /在x =2a 直线上。

设t 1为粒子在0<x <a 的区域中运动的时间,t 2为在x >a 的区域中运动的时间,由题意可知

1225

t t = 12712

T t t += 解得: 16T t =

2512

T

t =

由两式和对称性可得:

∠OCM=60°

∠MC/N=60°

/

MC P

∠=360°

5 12

⨯=150°所以∠NC/P=150°-60°=90°

即NP为1

4

圆周,因此,圆心C/在x轴上。

设速度为最大值粒子的轨道半径为R,由直角ΔCOC/可得

2R sin60°=2a

3

R=

由图可知OP=2a+R,因此水平荧光屏发亮范围的右边界的坐标

2(1

x a

=+

高二物理磁场问题归纳_知识精讲

高二物理磁场问题归纳知识精讲 三. 重难点解析: 1. 磁场 (1)定义:磁体或电流周围存在一种特殊物质,能够传递磁体与磁体、磁体和电流、电流和电流之间的相互作用,这种特殊的物质叫磁场。 (2)磁场的基本性质:对放入其中的磁体和电流产生力的作用。 (3)磁场的产生:①磁体能产生磁场;②电流能产生磁场。 (4)磁场的方向: 注意:小磁针北极(N极,指北极)受力的方向即小磁针静止时北极所指方向,为磁场中该点的磁场方向。 说明:所有的磁作用都是通过磁场发生的,磁场与电场一样,都是场物质,这种物质并非由基本粒子构成。 2. 电流的磁场 (1)电流对小磁针的作用 1820年,丹麦物理学家奥斯特发现,通电后,通电导线下方的与导线平行的小磁针发生偏转。如图所示。 (2)电流和电流间的相互作用 有互相平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察发生的现象是:同向电流相吸,异向电流相斥。 小结:磁体与磁体间、电流与磁体间、电流和电流间的相互作用都是通过磁场来传递的,故电流能产生磁场。 3. 磁感线 (1)磁感线是为了形象地描述磁场而人为假设的曲线。其疏密反映磁场的强弱,线上每一点的切线方向都跟该点的磁场方向相同。 (2)磁感线的特点: ①在磁体外部,磁感线从北极发出,进入南极;在磁体内部由南极回到北极。 ②磁感线的疏密表示磁场的强弱,磁感线越密的地方磁场越强;磁场方向在过该点的磁感线的切线上。 ③磁感线闭合而不相交,不相切,也不中断。 (3)熟记几种常见磁场的磁感线的分布。 如:条形磁铁、通电直导线、圆形电流、通电螺线管等。 说明:磁感线是为了形象地研究磁场而人为假设的曲线,并不是客观存在于磁场中的真实曲线。实验时利用被磁化的铁屑来显示磁感线的分布情况,只是研究磁感线的一种方法,使得看不见、摸不着的磁场变得具体形象,给研究带来方便;但是,绝不能认为磁感线是由铁屑排列而成的。另外,被磁化的铁屑所显示的磁感线分布仅是一个平面上的磁感线分布情况,而磁铁周围的磁感线应该分布在长、宽、高组成的三维空间内。 4. 安培定则(右手螺旋定则) (1)定义:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。如图所示。 (2)安培定则的拓展

高二物理选修3-1第三章磁场知识点总结复习

第三章磁场教案 3.1 磁现象和磁场 第一节、磁现象和磁场 1.磁现象 磁性:能吸引铁质物体的性质叫磁性. 磁体:具有磁性的物体叫磁体. 磁极:磁体中磁性最强的区域叫磁极。 2.电流的磁效应 磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 电流的磁效应:电流通过导体时导体周围存在磁场的现象(奥斯特实验)。 3.磁场 磁场的概念:磁体周围存在的一种特殊物质(看不见摸不着,是物质存在的一种特殊形式)。 磁场的基本性质:对处于其中的磁极和电流有力的作用. 磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的. 磁场对电流的作用,电流与电流的作用,类比于库仑力和电场,形成磁场的概念,磁场虽然看不见、摸不着,但是和电场一样都是客观存在的一种物质,我们可以通过磁场对磁体或电流的作用而认识磁场. 4.磁性的地球 地球是一个巨大的磁体,地球周围存在磁场———地磁场.地球的地理两极与地磁两极不重合(地磁的N极在地理的南极附近,地磁的S极在地理的北极附近),其间存在磁偏角. 地磁体周围的磁场分布情况和条形磁铁周围的磁场分布情况相似。 宇宙中的许多天体都有磁场。月球也有磁场。 例1、以下说法中,正确的是() A、磁极与磁极间的相互作用是通过磁场产生的 B、电流与电流的相互作用是通过电场产生的 C、磁极与电流间的相互作用是通过电场与磁场而共同产生的 D、磁场和电场是同一种物质

例2、如图表示一个通电螺线管的纵截面,ABCDE在此纵截面内5个位置上的小磁针是该螺线管通电前的指向,当螺线管通入如图所示的电流时,5个小磁针将怎样转动? 例3、有一矩形线圈,线圈平面与磁场方向成 角,如图所示。设磁感应强度为B,线圈面积为S,则穿过线圈的磁通量为多大? 例4、如图所示,两块软铁放在螺线管轴线上, 当螺线管通电后,两软铁将(填“吸引"、 “排斥”或“无作用力”),A端将感应出极。

(完整版)高二物理磁场知识点(经典)

一、磁现象和磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感应强度 1、 表示磁场强弱的物理量.是矢量. 2、 大小:B=F/Il (电流方向与磁感线垂直时的公式). 3、 方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N 极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向. 4、 单位:牛/安米,也叫特斯拉,国际单位制单位符号T . 5、 点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. 6、 匀强磁场的磁感应强度处处相等. 7、 磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强 度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则. 三、几种常见的磁场 (一)、 磁感线 ⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。 ⒉磁感线是闭合曲线???→→极极磁体的内部极 极磁体的外部N S S N ⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。 ⒋任何两条磁感线都不会相交,也不能相切。 5.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场. 6.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向· 7、 *熟记常用的几种磁场的磁感线: (二)、匀强磁场 1、 磁感线的方向反映了磁感强度的方向,磁感线的疏密反映了磁感强度的大小。 2、 磁感应强度的大小和方向处处相同的区域,叫匀强磁场。其磁感线平行且等距。 例:长的通电螺线管内部的磁场、两个靠得很近的异名磁极间的磁场都是匀强磁场。 3、 如用B=F/(I ·L)测定非匀强磁场的磁感应强度时,所取导线应足够短,以能反映该位 置的磁场为匀强。 (三)、磁通量(Φ) 1.磁通量Φ:穿过某一面积磁力线条数,是标量.

高二物理磁场知识点

高二物理磁场知识点 高二物理磁场知识点汇总 高中物理学习方法“五会”和“双头堵” 除了课堂上的学习外,平时的积累与练习也是学生提高成绩的重要途径,本文为大家提供了高中物理学习方法“五会”和“双头堵”,祝大家阅读愉快。 首先,对物理概念的学习,要做到“五会”。 物理概念和物理规律是解决各类问题的基础,因此在学习中要真正理解和掌握,对概念、规律内容的各种表达形式有清楚的认识,能理解它们的确切含义,理解它们的成立条件和适用范围,理解它们在物理理论大厦中的位置,会应用它们分析解决问题。总结起来,要应力求做到“五会”: 1、会表述:能熟记并正确地叙述概念、规律的内容。 2、会表达:明确概念、规律的表达公式及公式中每个符号的物理意义。 3、会理解:能掌握公式的应用范围和使用条件。 4、会变形:会对公式进行正确变形,并理解变形后的含义。 5、会应用:会用概念和公式进行简单的判断、推理和计算。 一个物理概念,只有做到以上五会,才算真正掌握了。 其次,解物理题时学会“两头堵”的分析方法。 物理知识的特点是由简到难,逐步深入,随着学习知识的增多,物理题也越来越难。增强解题能力要靠正确的思维方法。我们拿到一道题后,可以采用两条思路:一是从结论入手,看结论想需知,逐步向已知靠拢;二是要“发展”已知,从已知想可知,逐步推向未知;当两个思路“接通”时,便得到解题的通路。这种分析问题的方法,就是我们平时常说的“两头堵”的方法。这种方法说起来容易,真正领会和掌握并非“一日之功”,还需要同学们在学习的过程中逐步地体会并加以应用。 以上就是为大家整理的高中物理学习方法“五会”和“双头堵”,

希望同学们阅读后会对自己有所帮助,祝大家阅读愉快。 高中物理学法:高效物理知识记忆方法一 为大家提供“高中物理学法:高效物理知识记忆方法一”一文,供大家参考使用: 高中物理学法:高效物理知识记忆方法一 人的一切学习都包含有记忆。培养学生的任何能力,都离不开记忆力。记忆是智慧的仓库,是智力活动的基础和源泉。在一定程度上,记忆力标志着一个人的智力水平。一个人记忆得如何,跟是否掌握正确的记忆方法有密切的关系。因此,引导学生掌握正确的记忆方法,培养和训练他们的记忆力,是教学中的一个重要的、影响深远的环节。 1.联想法 联想,是一种创造性的活动。联想的特点是思路开阔、富有延展性、灵活性,联想能使脑神经细胞兴奋,在大脑皮层留下清晰的印迹,因而,记忆十分牢固。坚持使用这种记忆方法,有助于发展想象力,培养创造精神。 如在高中教材:"弹性碰撞"一节里,讲述了"一个运动钢球(m1)对心碰撞另一个静止钢球(m2)"的规律,推导出了两钢球碰撞后的速度表达式: 在实际处理问题时,只要记住①、②两式就能解决这一类碰撞问题,而不必要每次解题都要重新推导①、②两式的来龙去脉。学习中学生应用这两式来讨论有关问题时,常常将式中分子项的脚标搞混乱。为澄清这种混乱,可把碰撞现象与公式联系起来看,"由于是m1去碰m2,我们就可把①式中的分子项'm1-m2'视为'm1→m2',即把减号'-'形象地看成为动作指向的箭头'→',把'm1-m2'形象地读作'运动球m1→(去碰)静止球m2'(或称:主动球m1→(去碰)被动球m2)",作了如此联想后,即使以后遇到题目叙述为"运动的B球去碰静止的A球",也能迅速正确地写出表达式来。对于②式中的分子项,则只要记住它是"主动球动量的2倍(2m1v1)"即可。除此之外,①、②两式的分母均相同,无所谓记忆的困难。 以上就是“高中物理学法:高效物理知识记忆方法一”的所有内

高二下册物理磁现象及磁场的知识点归纳-高二磁场知识点

高二下册物理磁现象及磁场的知识点归纳:高二磁场知识点 高中物理与九年义务教育物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,研究的重点是力学。小编为大家推荐了高二下册物理磁现象和磁场知识点,请大家仔细阅读,希望你喜欢。 1、磁现象: 磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。 磁体:具有磁性的物体,叫做磁体。 磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体; ②来源:天然磁体(磁铁矿石)、人造磁体; ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。 磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。 磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。 磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。 无论磁体被摔碎成几块,每一块都有两个磁极。 磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。 2、磁场: 磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。 磁场的基本性质:对放入其中的磁体产生磁力的作用。 磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。 磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识: ①磁感线是假想的曲线,本身并不存在; ②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向; ③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密; 3、地磁场: 地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。 指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。 地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。(《梦溪笔谈》)

人教版 高二物理 选修3-1 第三章 磁场 知识点学案(含答案)

磁场复习学案 姓名班级 主题内容要求 考点 磁场及描述 1.电流的磁场Ⅰ 2.磁感应强度,磁感线,地磁场Ⅱ 3.磁性材料,分子电流假说Ⅰ 磁场对电流的作用 力 4.磁场对通电直导线的作用,安培力,左手定则Ⅱ 5.磁电式电表原理Ⅰ 磁场对运动电荷的 作用力 6.磁场对运动电荷的作用,洛伦兹力,带电粒子在匀强磁场中的运 动 Ⅱ 7.质谱仪,回旋加速器Ⅰ 重点 本章的重点是:描述磁场特性的基本物理量——磁感应强度,表达磁场对电流和运动电荷作用规律 的基本公式和基本定则——安培力公式、洛伦兹力公式和左手定则. 难点 本章的难点是:磁感应强度的定义、洛伦兹力公式的导出、带电粒子在匀强磁场中的运动以及带电 粒子在复合场中运动问题的分析方法等等,是教学中的难点,在教学中要十分注意讨论问题的逻辑 和思想方法. 热点 纵观近几年高考,涉及本章知识点的题目年年都有,考查次数最多的是与洛伦兹力有关的带电粒子 在匀强磁场或复合场中的运动,其次是与安培力有关的通电导体在磁场中的加速或平衡问题. 一、磁现象 天然磁石和人造磁铁都叫做永磁体,它们能吸引铁质物体的性质-叫磁性.如磁铁能吸引铁屑、铁钉等物质.磁体的各部分磁性强弱不同,磁性最强的区域叫磁极. 能够自由转动的磁体,静止时指南的磁极叫做南极(S极),指北的磁极叫做北极(N极).自然界中的磁体总存在着两个磁极,同名磁极相互排斥,异名磁极相互吸引. 二、电流的磁效应 丹麦物理学家奥斯特的贡献是发现了电流的磁效应.著名的奥斯特实验是把导线沿南北方向放置在指南的磁针上方,通电时磁针转动. 三、磁场 磁体与磁体之间、磁体与通电导线之间,以及通电导体与通电导体之间的相互作用是通过磁场发生的.磁体的周围、电流的周围存在磁场. 四、地球的磁场

高二物理磁场知识精讲

高二物理磁场知识精讲 电流的磁场、磁感应强度、磁感线、地磁场、安培定则、磁通量、安培力的大小、磁电式电表原理(A 级要求),左手定则(B 级要求)。 (一)磁场 1. 在电流、磁体周围空间存在磁场这种特殊形态的物质。 2. 磁场基本性质:对处在磁场中的通电导线、运动电荷、磁体有磁场力的作用。 3. 磁现象电本质:由运动电荷产生的。 (二)描述磁场的物理量: 1. 磁感应强度B (1)定义:用一小段通电导线垂直该点磁场方向放置时,所受磁场力F 与电流I 和长度l 乘积的比值描述磁场强弱。 I B B F Il ⊥=时,(定义式) (2)B 方向:即磁场方向,是放在该点小磁针静止时N 极受到磁场力方向。(B 的方向并是F 安方向) (3)单位:T (特斯拉) (4)B 的叠加:遵循平行四边形定则 2. 磁感线: (1)磁场方向(方向):磁感线上某点的切线方向 磁场强弱(大小):磁感线疏密。B B ⎧⎨⎩ (2)磁感线特点: ①磁体外部,N 极指向S 极,在磁体内部,由S 极指向N 极,是闭合曲线。 ②磁感线也是人为引入的,并非真实存在,而磁场是客观存在的。 (3)在条形磁铁,蹄形磁铁,通电直导线,通电导线环和通电螺线管形成的五种典型磁场,通电直导线,通电导线环,通电螺线管形成的磁场的磁感线分布由安培定则判定。 3. 磁场力—安培力 (1)安培力大小:F BIL 安(与与的夹角)=sin θθB I 当I B F BIL ⊥=时,安 当时,安I B F //=0 (2)安培力方向:用左手定则判定。左手定则的表述中让磁感线垂直穿过手心,伸开四指方向指向电流方向,拇指方向就是导线所受安培力方向。实质上只适用于B 与I 垂直的情况。若B 与I 有夹角θ时,此时应将B 分解为平行于电流方向的B //与垂直于电流方向的B ⊥。由于B //对I 没有力作用,可以不予考虑,则只要让B ⊥的方向垂直穿过手心,四指指向电流方向,则可以确定安培力的方向。 注:F 安的方向总垂直于B 和电流I 所决定的平面。 (3)安培力矩:①M NBIS =cos θ N :线圈匝数,I :线圈中电流强度。S :线圈面积。

高二物理知识点磁场

高二物理知识点磁场 高二物理知识点磁场 一、磁场: 1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用; 2、磁铁、电流都能能产生磁场; 3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用; 4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向; 二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向; 1、磁感线是人们为了描述磁场而人为假设的线; 2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极; 3、磁感线是封闭曲线; 三、安培定则: 1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的.方向就是磁感线的环绕方向; 2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向; 3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向; 四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极); 五、磁感应强度:磁感应强度是描述磁场强弱的物理量。1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL 2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向) 3、磁感应强度的国际单位:特斯拉 T, 1T=1N/A。m

六、安培力:磁场对电流的作用力; 1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I 和导线长度L三者的乘积。2、定义式F=BIL(适用于匀强电场、导线很短时) 3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。 七、磁铁和电流都可产生磁场; 八、磁场对电流有力的作用; 九、电流和电流之间亦有力的作用;(1)同向电流产生引力; (2)异向电流产生斥力; 十、分子电流假说:所有磁场都是由电流产生的; 十一、磁性材料:能够被强烈磁化的物质叫磁性材料:(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁; 十二、磁场对运动电荷的作用力,叫做洛伦兹力 1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向; (1)洛仑兹力F一定和B、V决定的平面垂直。 (2)洛仑兹力只改变速度的方向而不改变其大小 (3)洛伦兹力永远不做功。 【高二物理知识点磁场】

物理高二选修3-1《磁场》知识归纳

电场、恒定电流、磁场知识点汇总 (一)磁场知识点汇总 一、 磁场 ⒈磁场是一种客观物质,存在于磁体和运动电荷(或电流)周围。 ⒉磁场(磁感应强度)的方向规定为磁场中小磁针N 极的受力方向(磁感线的切线方向)。 ⒊磁场的基本性质是对放入其中的磁体、运动电荷(或电流)有力的作用。 二、 磁感线 ⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。 ⒉磁感线是闭合曲线⎩⎨⎧→→极 极磁体的内部极极磁体的外部N S S N ⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。 ⒋任何两条磁感线都不会相交,也不能相切。 三、 安培定则是用来确定电流方向与磁场方向关系的法则 弯曲的四指代表⎩⎨⎧)()(环形电流或通电螺线管电流的方向 直线电流磁感线的环绕方向 四、 安培分子电流假说揭示了磁现象的电本质,即磁体的磁场和电流的磁场一样,都是由 电荷的运动产生的。 五、 几种常见磁场 ⒈直线电流的磁场:无磁极,非匀强,距导线越远处磁场越弱 ⒉通电螺线管的磁场:管外磁感线分布与条形磁铁类似,管内为匀强磁场。 ⒊地磁场(与条形磁铁磁场类似) ⑴地磁场N 极在地球南极附近,S 极在地球北极附近。 地磁场B 的水平分量总是从地球南极指向北极,而竖直分量南北相反,在南半球垂直地面向上,在北半球垂直地面向下 ⑵在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。 ⑶假如地磁场是由地球表面所带电荷产生,则地球表面所带电荷为负电荷(根据安培定则、地磁场的方向与地球自转方向判断)。 六、 磁感应强度:⑴定义式LI F B =(定义B 时,B I ⊥)⑵B 为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则。 七、 磁通量 ⒈定义一:φ=BS ,S 是与磁场方向垂直的面积,即φ=B ⊥S ,如果平面与磁场方向不垂直,应

高二物理磁现象和磁场的知识点详解

高二物理磁现象和磁场的知识点详解 1、磁现象 2、磁场:一种特殊物质,对放入其中的磁体具的力的作用, 3、磁感线:为了方便研究磁场假想的曲线 1磁感线是闭合的曲线,在磁体外部由N极指向S极,内部则相反 2曲线上任一点的切线方向就是该点的磁场方向 3在磁场中任一点小磁针静止时N极所指方向就是该点磁场方向 4曲线的疏密程度表示该点磁场的强弱矢量,越密越强,所以磁感线不能相交 4、电流周围的磁场:电流周围存在磁场,其方向由安培定则判定 安培定则:1通电直导线:右手握住导线,大姆指指向电流的方向,四指的指向就是周围磁场的方向 2通电螺线管:右手握住线圈,四指指向电流的方向,大姆指的指向就是磁场的方向 附:地磁场的NS极和地理NS极方向相反 磁现象简介: 磁场磁铁吸引铁、钴、镍等物质的性质称为磁性。磁铁两端磁性强的区域称为磁极,一端为北极N极,一端为南极S极。实验证明,同性磁极相互排斥,异性磁极相互吸引。 什么是磁性?简单说来,磁性是物质放在不均匀的磁场中会受到磁力的作用。在相同的不均匀磁场中,由单位质量的物质所受到的磁力方向和强度,来确定物质磁性的强弱。因为任何物质都具有磁性,所以任何物质在不均匀磁场中都会受到磁力的作用。 在磁极周围的空间中真正存在的不是磁力线,而是一种场,我们称之为磁场。磁性物质的相互吸引等就是通过磁场进行的。我们知道,物质之间存在万有引力,它是一种引力场。磁场与之类似,是一种布满磁极周围空间的场。磁场的强弱可以用假想的磁力线数量来表示,磁力线密的地方磁场强,磁力线疏的地方磁场弱。单位截面上穿过的磁力线数目称为磁通量密度。 运动的带电粒子在磁场中会受到一种称为洛仑兹Lorentz力作用。由同样带电粒子在不同磁场中所受到洛仑磁力的大小来确定磁场强度的高低。特斯拉是磁通密度的国际单位制单位。磁通密度是描述磁场的基本物理量,而磁场强度是描述磁场的辅助量。特斯拉Tesla,N1886~1943是克罗地亚裔美国电机工程师,曾发明变压器和交流电动机。

高二物理磁场知识点总结大全 物理高中磁场知识点

高二物理磁场知识点总结大全物理高中磁 场知识点 下面是我整理的高二物理磁场知识点总结大全物理高中磁场知识点,以供参考。 高二物理电磁场知识点大家觉得不知道如何去归纳,感觉要归纳电磁场知识点很难。以下是我整理的物理电磁场知识点,希望可以分享给大家提供参考。 一、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。

3.磁现象的电本质 运动的电荷产生磁场,磁场对运动电荷有磁场力的作用,所有的磁现象都可以归结为运动电荷通过磁场而发生相互作用。 二、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 三、磁场 磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点 在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极 磁感线是闭合曲线 磁感线不相交

高二物理《磁场》重难知识点解析及综合能力精析

高二《磁场》重难点精析及综合能力强化训练 高中,物流,高一力学是基础,高二电磁学是根本,高三知识综合用,所以高二部分,往往是高考的难点和重点,应当全面掌握这一块的方法和内容,综合利用。 I. 重难知识点精析 一、知识点回顾 1、磁场 (1)磁场的产生:磁极周围有磁场;电流周围有磁场(奥斯特实验),方向由安培定则(右手螺旋定则)判断(即对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向);变化的电场在周围空间产生磁场(麦克斯韦)。 (2)磁场的基本性质:磁场对放入其中的磁极、电流(安培力)和运动电荷(洛仑兹力)有力的作用(对磁极一定有力的作用;对电流和运动电荷只是可能有力的作用,当电流、电荷的运动方向与磁感线平行时不受磁场力作用)。 2、磁感应强度 IL F B =(条件:L ⊥B ,并且是匀强磁场中,或ΔL 很小)磁感应强度B 是矢量。 3、磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。磁感线的疏密表示磁场的强弱。 ⑵磁感线是封闭曲线(和静电场的电场线不同)。 ⑶要熟记常见的几种磁场的磁感线 4、安培力——磁场对电流的作用力 (1)BIL F =(只适用于B ⊥I ,并且一定有F ⊥B, F ⊥I ,即F 垂直B 和I 确定的平面。B 、I 不垂直时,对B 分解,取与I 垂直的分量B ⊥) (2)安培力方向的判定:用左手定则。 通电环行导线周围磁场 地球磁场 通电直导线周围磁场

另:只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方 向;当两导线互相垂直时,用左手定则判定。 5、洛仑兹力——磁场对运动电荷的作用力,是安培力的微观表现 (1)计算公式的推导:如图,整个导线受到的安培力为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。由以上四式可得F=qvB 。条件是v 与B 垂直。当v 与B 成θ角时,F=qvB sin θ。 (2)洛伦兹力方向的判定:在用左手定则时,四指若为正电荷运动的方向,则拇指为洛仑兹力方向;而对负电荷而言, 受洛仑兹力方向与正电荷相反。 (3)带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:Bq m T Bq mv r π2,==。由于F 始终与V 垂直,所以洛仑兹力一定不做功。 6、速度选择器 正交的匀强磁场和匀强电场组成速度选择器。带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq , B E v =。在本图中,速度方向必须向右。 ①这个结论与离子带何种电荷、电荷多少都无关。 ②若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。 二、典型题举例 1、导线在安培力作用下的受力分析 例1. 光滑导轨与水平面成α角,导轨宽L 。匀强磁场磁感应强度为B 。金属杆长也为L ,质量为m ,水平放在导轨上。当回路总电流为I 1时,金属杆正好能静止。求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止? 解:画出金属杆的截面图。由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。根据左手定则,这时B 应垂直于导轨平面向上, 大小满足:BI 1L =mg sin α, B =mg sin α/I 1L 。 当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。(在解这 类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方 向,从而弄清各矢量方向间的关系)。 2、带电粒子在复合场中的运动 例2. 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。则该带电微粒必然带_____,旋转方向为_____。若已知圆半径为r ,电场强度 为E 磁感应强度为B ,则线速度为_____。

高二物理知识点:磁场范文

高二物理知识点:磁场范文 第一篇:高二物理知识点:磁场范文 高二物理知识点:磁场 查字典物理网高中频道为各位同学整理了高二物理知识点:磁场,供大家参考学习。更多内容请关注查字典物理网高中频道。 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。

三、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点 (1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。 (2)磁感线是闭合曲线。 (3)磁感线不相交。 (4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。 3.几种典型磁场的磁感线 (1)条形磁铁 (2)通电直导线 a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向; b.其磁感线是内密外疏的同心圆。 (3)环形电流磁场 a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。 b.所有磁感线都通过内部,内密外疏。 (4)通电螺线管 a.安培定则:让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向; b.通电螺线管的磁场相当于条形磁铁的磁场。 以上就是小编为大家整理的高二物理知识点:磁场。 第二篇:物理磁场的知识点 作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科

高二磁场物理知识点

高二磁场物理知识点 磁场是我们物理课程中的重要内容之一,在高二阶段,我们需 要掌握一些关键的磁场物理知识点。本文将通过介绍磁场的概念、磁感应强度、磁场线以及洛伦兹力等几个方面来帮助我们更好地 理解和掌握高二磁场物理知识点。 一、磁场的概念 磁场是指在任何空间中存在磁力作用的区域。我们通常用符号 B来表示磁场,其单位是特斯拉(T)。磁场可以由磁物质产生, 也可以由电流产生。 二、磁感应强度 磁感应强度是磁场的物理量,用符号B表示,表示单位面积内 通过的磁通量。根据法拉第电磁感应定律,可以得到以下公式: B = φ / A 其中,B表示磁感应强度,φ表示磁通量,A表示面积。 三、磁场线

磁场线是描述磁场分布的一种方法。磁场线是沿着磁场的方向,其方向与磁场强度的方向一致。磁场线的性质有如下几点: 1. 磁场线不交叉,不闭合; 2. 磁场线形状通常是弯曲的; 3. 磁场线在磁场的强烈区域更密集,表示磁场强度大; 4. 磁场线从一个极端出发,回到另一个极端。 四、洛伦兹力 洛伦兹力是在磁场中带电粒子受到的力。根据右手定则,我们 可以得到洛伦兹力的方向: 1. 若带电粒子的速度方向与磁场方向相同,洛伦兹力垂直于速 度方向和磁场方向; 2. 若带电粒子的速度方向与磁场方向相反,洛伦兹力仍然垂直 于速度方向和磁场方向,但方向相反; 3. 当带电粒子的速度方向与磁场方向垂直时,洛伦兹力为零。 除了上述几个知识点外,我们还需要掌握磁场和电流之间的关系,如安培环路定理、法拉第电磁感应定律等。这些知识点在高 二物理中属于重点内容,我们应该充分理解并熟练运用。

总结 高二磁场物理知识点是我们需要掌握的重要内容。通过学习磁场的概念、磁感应强度、磁场线、洛伦兹力等几个方面,我们可以更好地理解和掌握磁场的相关知识。同时,我们还要深入学习磁场和电流之间的关系,如安培环路定理、法拉第电磁感应定律等。只有将这些知识应用灵活并结合实际问题,我们才能够更好地理解和应用磁场物理知识。

高二必修三物理磁场知识点

高二必修三物理磁场知识点 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质

运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。 三、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点 (1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。 (2)磁感线是闭合曲线。 (3)磁感线不相交。 (4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。 3.几种典型磁场的磁感线 (1)条形磁铁 (2)通电直导线 a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向; b.其磁感线是内密外疏的同心圆。 (3)环形电流磁场 a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。

高二年级物理磁场知识点

高二年级物理磁场知识点 1.高二年级物理磁场课文 恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U 内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt =U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总

{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I 与R成反比) 电阻关系(串同并反)R串=R1+R2+R3+1/R并= 1/R1+1/R2+1/R3+ 电流关系I总=I1=I2=I3I并=I1+I2+I3+ 电压关系U总=U1+U2+U3+U总=U1=U2=U3 功率分配P总=P1+P2+P3+P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成 (2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro) 接入被测电阻Rx此后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻形状 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数 {注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使关键字在 中央而使附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻 电流表内接法:电流表外接法:

高二物理知识点磁场归纳

2022高二物理知识点磁场归纳 广阔同学要想顺利通过高考,承受更好的高等教育,就要做好考试前的复习准备。查字典物理网为大家整理了高二物理知识点磁场归纳,希望对大家有所帮助。 一、磁场 磁极和磁极之间的互相作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的互相作用也是通过磁场发生的。 电流和电流之间的互相作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的根本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早提醒磁现象的电本质的。

一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致一样,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生互相作用。 三、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点 (1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S 极到N极 (2)磁感线是闭合曲线 (3)磁感线不相交 (4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强 3.几种典型磁场的磁感线

高二物理磁场带电粒子在磁场中运动知识精点

嗦夺市安培阳光实验学校高二物理磁场、带电粒子在磁场中运动北师大版 【本讲教育信息】 一. 教学内容: 磁场、带电粒子在磁场中运动 磁场: 产生:运动的电荷产生磁场(磁现象的电本质) 基本性质:对处在磁场中的运动电荷(电流)有力的作用 运动实例:带电粒子在匀强磁场中做匀速圆周运动 【典型例题】 例1. 如图所示,一根质量为m长为L的细铝棒,用两个倔强系数为k的弹簧水平悬挂在匀强磁场中,当电流I的方向向右时,两根弹簧缩短△x,当电流I的方向向左时,两弹簧伸长△x,则磁感应强度为() 解析:当通以向右的电流时,杆受力如图甲所示: 杆受重力G,向上的安培力F安及向下的弹簧的弹力T1、T2(T1=T2) 当通以向左的电流时,杆受力如图乙所示: 联立(1)(2),则 选项A正确 例2. 如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离l=16cm处,有一个点状的α放射源S,它向各个方向发射α粒子,α粒子的速度都是v=3.0×106m/s,已知α粒子的电荷与质量之比 q m C kg =⨯ 50107 ./,现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度。 解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R表示轨道半径,有: 代入数值得R=10cm,可见2R>l>R 因朝不同方向发射的α粒子的圆轨道都过S,由此可知,某一圆轨迹在图中N左侧与ab相切,则此切点P1就是α粒子能打中的左侧最远点,为定出P1点的位置,可作平行于ab的直线cd,cd到ab的距离为R,以S为圆心,R为半径,作弧交cd于Q点,过Q点作ab的垂线,它与ab的交点即为P1,由图中几何关系得: 再考虑N的右侧,任何α粒子在运动过程中离S的距离不可能超过2R,以2R为半径,S为圆心作圆,交于N右侧的P2点,此即右侧能打到的最远点。 由图中几何关系得: 例3. 如图所示,质量为m,带电量为-q的绝缘滑环套在固定于水平方向

相关主题
文本预览
相关文档 最新文档