当前位置:文档之家› 自适应扰动观察法在光伏MPPT中的应用与仿真

自适应扰动观察法在光伏MPPT中的应用与仿真

自适应扰动观察法在光伏MPPT中的应用与仿真
自适应扰动观察法在光伏MPPT中的应用与仿真

太阳能电池阵列模拟器

微电网直流平台设备 光伏PV模拟器(1) 产品特点: ■功率容量:600W--1500kW■可模拟太阳能电池板输出特性(国内首创)■可模拟不同光照和温度下I-V曲线■通过填充因子(Fill Factor)可模拟多种太阳能电池的输出特性■可模拟太阳能电池板被遮罩时的I-V曲线■可测试静态和动态下的MPPT情况■MPPT工作点实时显示于上位机软件上■具有恒功率模式 ■具有恒内阻模式,对内阻进行设定■具有强大的图形化上位机软件■稳压精度高、纹波电压低 ■采用16bit高速ADC,快速精确测量■采用ARM、DSP双CPU控制■应用全桥移相软开关技术

■动态稳定性用Matlab仿真优化■采用高速DSP进行PID运算,直接输出PWM■变压器采用非晶铁芯,具有高饱和磁感应强度、高导磁率、高电感量、低损耗、体积小、重量轻、抗电磁干扰能力强、频率特性优良、温度稳定性高的特性 ■快速存储9组数据(电压,电流,功率)■具有过压、过流、过温、短路保护功能■电压、电流、时间设定,数字式按键输入,精确度高;■具有RS232C通讯接口(RS485,GPIB为可选)■产品通过CE认证■符合EN50530/Sandia/CGC-GF004标准 原理图:

可编程直流负载(2) ■采用触摸屏+PLC方式进行控制,具有本控与PC控制两种方式,提供相应上位机操作软件。 ■采用不锈钢合金电阻制造 ■可根据功率检测要求,可以按键组合投放,设定放电功率。 ■检测各种发电设备以及放电设备的工作效率、满负载运行最大输出功率及带载能力。 ■模拟各类复杂工作环境,功率的突加突卸,检测放电设备的实际带载能力和效率 ■采用精准的高精度负载材质能真正模拟实际负载的带载力和负载微变适应能力 ■急停和温度保护,超载,短路,过温设备自动切断 ■上限下限电压设定,根据能量自动降至范围电压点(限程控机) ■温度保护设定,温度0~100°可以设定,同时检测实时温度情况 ■可编程界面0~30组功率电流任意设置,最小执行操作时间1ms可循环999999次(限程控机) ■负载的最小分辨率为1W,可精确模拟发电或产品通断能力 ■可以将测量数据上传到电脑并实现对检测过程数据的过程过程记录存储功能(限程控机) ■具有面板操作或远程控制两种操作方式(限程控机) ■具有过温保护功能和温度设定以及温度监测 ■可定制不同时间常数负载 ■应用于发电机、UPS、开关、熔断器、电器附件、变压器、温升试验、低压电气的出厂检验、生产调试、模拟恶劣负载环境、科研开发、军工等精确测试场所 ■采按钮控制或开关切换(触摸屏控制含RS232通讯接口) ■可测量电压、电流、功率

短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用

第26卷第20期中国电机工程学报V ol.26 No.20 Oct. 2006 2006年10月Proceedings of the CSEE ?2006 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2006) 20-0098-05 中图分类号:TM51 文献标识码:A 学科分类号:480?60 短路电流结合扰动观察法在光伏发电 最大功率点跟踪控制中的应用 张超,何湘宁 (浙江大学电力电子研究所,浙江省杭州市310027) Short-current Combined With Perturbation and Observation Maximum-power-point Tracking Method for Photovoltaic Power Systems ZHANG Chao, HE Xiang-ning (Power Electronics Institute of Zhejiang University, Hangzhou 310027, Zhejiang Province, China) ABSTRACT: The output power of PV module varies with module temperature, solar insolation and loads, so it is necessary to track MPP of the PV array all the time. In past years, many MPP control algorithms were presented to draw maximum power from the solar array. A novel online short circuit current method is presented. This method can track MPP changes rapidly without disturbing PV system. On the basis of this method, P&O(perturbation and observation) method with optimized perturbation step was proposed to reduce the power oscillation around MPP. Simulations and experimental results show that the PV generation system has good steady state and transient characteristics with the proposed MPPT control method. KEY WORDS:photovoltaic; maximum power point tracking; short circuit control; perturbation and observation control 摘要:光伏电池输出功率随外部环境和负载的变化而变化,为充分发挥光伏器件的效能,需采用最大功率点跟踪电路。对于最大功率点跟踪电路的控制已经提出了许多方法,其中短路电流法和扰动观察法因其具有简单有效的优点而得到广泛应用。针对短路电流法的缺点,该文提出一种新的在线短路电流控制方法。该方法在不干扰系统正常工作的情况下,能迅速感知外部环境变化,但该方法效率不高。为充分发挥光伏电池的效能,在线短路电流控制方法的基础上再引入扰动观察法。该文扰动观察法的扰动步长针对最大功率点处稳态特性进行优化,优化后,扰动观察法可有效消除光伏器件输出功率在最大功率点的振荡现象,从而提高系统效率。仿真和实验研究证明,该方法可以快速跟踪外部环境变化,并消除系统在最大功率点的振荡现象。 基金项目:国家教育部博士点基金项目(20050335059).关键词:光伏;最大功率点跟踪;短路电流法;扰动观察法0 引言 光伏发电作为一种具有广阔前景的绿色能源已成为国、内外学术界和工业界研究的热点[1-2]。光伏电池输出功率与外界环境和负载情况有关,为充分发挥光伏电池的功效,需在光伏器件和负载之间串联最大功率点跟踪(maximum power point tracking,MPPT)电路[3-4]。MPPT电路常用的控制方法有固定参数法(如固定电压法、固定电流法)、扰动观察法及增加电导法等[5]。 固定参数法利用在最大功率点工作时光伏器件工作电压、电流与器件开路电压、短路电流的近似比例关系进行控制,此方法只需一个检测参数,控制简单易行,但获取开路电压或短路电流要中断系统正常工作,对系统运行存在干扰,此外所采用的控制关系是近似关系,不能实现最优控制,因此该方法控制精度低,仅适用于小功率场合。扰动观察法根据光伏器件在最大功率点处?P/?U=0的特性进行最大功率点跟踪控制,以左侧为例说明该方法具体工作过程:在系统稳定工作情况下,假设增大最大功率点跟踪电路功率器件的占空比,控制器对占空比调节前后的光伏器件输出功率、输出电压进行采样计算,如果输出功率与输出电压为?P/?U >0,则表明系统工作在最大功率点左侧,应继续增加占空比,直到?P/?U =0,具体工作中,由于扰动观测法需要比较占空比变化前后的功率、电压,因此光伏输出功率会在最大功率点两次反复变化,严重时

光伏组件与阵列设计

1.1 引言 太阳电池是将太直接转换为电能的最基本元件,一个单体太阳能电池的单片为一个PN结,工作电压约为0.5V,工作电流约为20-25mA/cm2, 一般不能单独作为电源使用。因而需根据使用要求将若干单体电池进行适当的连接并经过封装后,组成一个可以单独对外供电的最小单元即组件(太阳能电池板)。其功率一般为几瓦至几十瓦,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。 当应用领域需要较高的电压和电流,而单个组件不能满足要求时,可把多个组件通过串连或并联进行连接,以获得所需要的电压和电流,从而使得用户获取电力。根据负荷需要,将若干组件按一定方式组装在固定的机械结构上,形成直流发电的单元,即为太阳能电池阵列,也称为光伏阵列或太阳能电池方阵。一个光伏阵列包含两个或两个以上的光伏组件,具体需要多少个组件及如何连接组件与所需电压(电流)及各个组件的参数有关。 太阳能电池片并、串联组成太阳能电池组件;太阳能电池组件并、串联构成太阳能电池阵列。 1.2 光伏组件 1.2.1组件概述 光伏组件(俗称太阳能电池板)是将性能一致或相近的光伏电池片(整片的两种规格125*125mm、156*156mm),或由激光机切割开的不同规格的太阳能电池,按一定的排列串、并联后封装而成。由于单片太阳能电池片的电流和电压都很小,把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。电池串联的片数越多电压越高,面积越大或并联的片数越多则电流越大。如一个组件上串联太阳能电池片的数量是36片,这意味着这个太阳能组件大约能产生17伏的电压。 1.2.2电池的连接与失配 失配的影响:失配损失是由于电池或者组件的互联引起的,这些电池或者组件没有相同的特性或者经历了不同的条件。在PV组件和方阵中,在某种条件下失配问题是一个严重的问题,因为一个组件在最差情况的输出是由其中的具有最低输出的太阳电池决定。例如,当一个太阳电池被遮挡而组件中的其它的太阳电池并没有被遮挡时,一个处于“良好”状态的太阳电池产生的功率可以被低性能的太阳电池耗散,而不是提供给负载。这可以导致非常高的局部电力耗散,并且由此而产生的局部加热可以引起组件不可恢复的损伤。 太阳能电池在串、并联成电池组件时,由于每片太阳能电池电性能不可能绝对一致,这就使得串、并联后的输出总功率往往小于各个单体太阳能电池输出功率之和,称作太阳能电池的失配。在太阳能组件的制造以及组建安装为阵列的过程中,失配问题总会存在,并或多或少的影响太阳能电池的性能。这是因为:1,

扰动观察法

function [sys,x0,str,ts,simStateCompliance] = PO_MPPT_Boost(t,x,u,flag) switch flag, case 0, [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes; case 1, sys=mdlDerivatives(t,x,u); case 2, sys=mdlUpdate(t,x,u); case 3, sys=mdlOutputs(t,x,u); case 4, sys=mdlGetTimeOfNextVarHit(t,x,u); case 9, sys=mdlTerminate(t,x,u); otherwise DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); end function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes sizes = simsizes; sizes.NumContStates = 0; sizes.NumDiscStates = 3; sizes.NumOutputs = 1; sizes.NumInputs = 2; sizes.DirFeedthrough = 1; sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes); x0 = [0,0,0.5];%[U I Uref] str = []; ts = 1e-6; simStateCompliance = 'UnknownSimState'; % end mdlInitializeSizes function sys=mdlDerivatives(t,x,u) sys = []; % end mdlDerivatives function sys=mdlUpdate(t,x,u) DU=0.001; %步长 dU=u(1)-x(1); dP=u(1)*u(2)-x(1)*x(2); if dP>0 if dU>0 Uref=x(3)+DU;

数字式光伏电池阵列模拟器的研制

数字式光伏电池阵列模拟器的研制 2011-03-17 16:30:18 来源:OFweek太阳能光伏网 介绍太阳能电池的工作原理及其数学模型的基础上,选择半桥变换器作为主电路拓扑,研制了一台光伏电池阵列模拟器。控制部分采用TMS320F2812 DSP作为模拟器控制电路的主控制器,将数字PI控制算法应用在数字式光伏电池阵列模拟器中。在闭环实验下,模拟器的静态工作点与所模拟的太阳能电池的输出特性相吻合,并能够动态模拟负载变化的工作情况。证明了所设计的模拟器能够用于光伏发电系统实验。 1 引言 太阳能作为一种新型的可再生资源受到越来越广泛的重视,但在光伏系统的研发过程中,太阳能电池阵列由于实验受到日照强度、环境温度的影响,导致实验成本过高,研发周期变长。光伏电池阵列模拟器可以大大缩短光伏系统的研究周期,提高研究效率及研究结果的可信性。 本文设计的光伏电池阵列模拟器以半桥电路为基础,基于DSP控制,并加入了PI控制改善系统动态性能和稳态精度。 2 太阳能电池的工作特性 太阳能电池在有光照条件下,光生电流会流过负载,从而产生负载电压。这时太阳能电池的等效电路如图1所示。其中,RS为串联电阻,Rsh为旁漏电阻,也称跨接电阻,它是由体内的缺陷或硅片边缘不清洁引起的。显然,旁路电流Ish 和二极管的正向电流ID (通过PN结总扩散电流)都要靠IL提供,剩余的led光电流经过RS,流出太阳能电池而进入负载。 根据文献资料[1],利用厂家提供的短路电流Isc,开路电压VOC,最大功率点处的电流Im和最大功率点处的电压Vm这四个参数可以得到太阳能电池板便于工程计算的模型:

这样,就把太阳能电池板的I-V特性曲线转换为简单的、便于工程计算的形式。 3 光伏电池阵列模拟器设计 模拟器的目的是要能模拟一定光照下,随负载变化的太阳能电池板的电特性,包括最大输出功率,输出I-V特性,以及不同日照下的变化。其应该完成以下三个方面的要求: (1) 系统能够按照光伏阵列的输出特性完成输出,当外电路负载一定时,系统能够在工作点上保持稳定的输出; (2) 当外接负载发生变化时,模拟器能够以合乎要求的速度变化到新工作点并能稳定在该点; (3) 能够输出要求的功率; 本文设计的光伏阵列模拟器的系统结构框图如图2所示,整个系统主要由功率电路和采集控制电路两部分构成。功率电路采用半桥拓扑,用以完成直流变换,经整流滤波后,产生合适的输出电压。检测电路实时采集输出电压、电流,并送给DSP控制电路。DSP依据采集到的值,产生合适的占空比信号控制半桥两个IGBT开关。隔离驱动电路用于驱动IGBT开关,并实现与控制电路的隔离。如果想要模拟一条新的太阳能电池板I-V曲线,只需在软件中重新设定该曲线的和,这四个参数就可以了。 由于半桥母线电压为100V,单个管子承受耐压应该在100V以上,系统最大输出电流为3.5A。综合以上因素后,我们选择Infinion公司生产的IGBT单管IKW40N120T2,其耐压1200V,可通过的均值电流40A,且该单管价格便宜,开通、关断时间极短,开通压降只有1.7V,因此,开关损耗较小,是较理想的选择。 在本系统中,一共需要四路采集,分别是半桥高低端电压采集,输出电压电流采集。这四路信号都要设定过压或过流保护。采集电流信号使用电流传感器,采集电压信号使用电阻分压的形式。本设计的采集电路使用差分信号传输,并基于三级采集电路设计:首先使用全差分放大器LTC1992进行单端到差分信号的转换;然后使用模拟线性光耦HCPL7840进行信号隔离;最后使用仪用运放INA121将信号进行适当放大。 4 控制算法实现 4.1 寻找负载工作点的算法设计 光伏模拟器主要是跟踪负载的工作点,使得模拟器在不同负载情况下的输出能满足光伏阵列的输出特性。静态工作点的确定是模拟器的关键,如何在一特定负载下快速寻找到期望工作点,并使电源工作在这个点上。当负载变化,或是环境条件变化时,又如何找到新的工作点,并快速且精确的控制电源运行在这个工作点上,是模拟器控制算法所要解决的核心问题。 当负载电阻确定后,想要确定工作点处的电压电流,需要代入式(1)进行计算,但公式复杂,且涉及指数运算,在程序实现上十分麻烦,而且也会影响系统响应的速度。从我们研究太阳能电池的输出I-V特性曲线可以看到,在短路电流点附近,电池板接近恒流,输出I-V曲线在这一段接近一条直线;在开路电压点附近,电池板接近恒压,输出I-V曲线在这一段也接近一条直线。所以我们用四条直线来对电池板输出I-V曲线进行拟合,如图3所示。

一种应用于光伏系统MPPT的变步长扰动观察法

万方数据

万方数据

万方数据

一种应用于光伏系统MPPT的变步长扰动观察法 作者:朱铭炼, 李臣松, 陈新, 龚春英, ZHU Ming-lian, LI Chen-song, CHEN Xin,GONG Chun-ying 作者单位:南京航空航天大学,江苏,南京,210016 刊名: 电力电子技术 英文刊名:POWER ELECTRONICS 年,卷(期):2010,44(1) 参考文献(5条) 1.欧阳名三;余世杰;沈玉樑一种太阳能电池MPPT控制器实现及测试方法的研究[期刊论文]-电子测量与仪器学报2004(02) 2.Wen-Jung Chiang;Hurng-Liahng Jou;Jinn-Chang Wu Maximum Power Point Tracking Method for the Voltage-mode Grid-connected Inverter of Photovoltaic Generation System 2008 3.LIU Fang-rui;DUAN Shan-xu;LIU Fei A Variable Step Size INC MPPT Method for PV Systems 2008(07) 4.张超;何湘宁短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用[期刊论文]-中国电机工程学报2006(20) 5.徐鹏威;刘飞;段善旭几种光伏系统MPPT方法的分析比较及改进[期刊论文]-电力电子技术 2007(05) 本文链接:https://www.doczj.com/doc/7e2477246.html,/Periodical_dldzjs201001008.aspx

关于太阳能电池阵模拟器的设计

关于太阳能电池阵模拟器的设计 1 引言 太阳能(Solar Energy),一般是指太阳光的辐射能量,在现代一般用作发电。自地球形成生物就主要以太阳提供的热和光生存,而自古人类也懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。但在化石燃料减少下,才有意把太阳能进一步发展。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。目前,在航天电源领域内,绝大多数卫星电源均使用太阳能电池作为其动力核心。卫星电源的性能直接影响到卫星的性能和工作寿命,对卫星的正常运行和使用也有重大的影响。因此,为了提高电源系统的性能和可靠性,对卫星电源系统进行仿真和测试评估具有十分重要的意义。 卫星的空间工作条件恶劣且复杂,温度范围大,日照条件变化迅速,且太阳能电池方阵处于高能粒子辐射下,在地面上无法采用实际的太阳能电池方阵来再现卫星在空间轨道中的工作状态,因此需要采用太阳能电池模拟器(Solar Array Simulator,简称SAS)来模拟太阳能电池阵在空间的工作状况。SAS是卫星电源模拟器的重要组成部分,其主要任务是真实地遵循太阳能电池方阵在各种复杂空间条件下的实际输出特性曲线,在卫星的地面测试阶段代替太阳能电池方阵为卫星上的各分系统供电。 2 太阳能电池的数学模型 根据太阳能电池原理和图1 所示的实际测量结果建立了多种模型,用于太阳能电池的测试和应用研究。事实证明,这些模型具有足够的工程精度。 2.1 单指数模型 图2 示出太阳能电池的等效电路。 Iph 取决于太阳能电池各工作区的半导体材料性质和电池几何结构参数以及入射光强、表面反射率、前后表面复合速度、材料吸收系数等。由于器件的瞬时响应时间相比于绝大多数光伏系统的时间常数显得微不足道,因此分析中可忽略结电容。设定图中所示的电压、电流为正方向,由固体物理理论和全电路欧姆定律即可推出目前常用的单指数形式的太阳能电池模型: 式中 I0———二极管反向饱和电流 q———电子电荷 I———电池的输出电流 K———波尔兹曼常数 T———绝对温度 A———二极管品质因子(曲线因子),一般A=1~2: 2.2 双指数模型 在单指数模型中,在不同的电压范围内,决定IVD 的因素也不同。当电压较高时,IVD 主要由电中性区的注入电流决定;当电压较低时,IVD 主要由空间电荷区的复合电流决定。为了提高模型精度,可以综合考虑这两种情况,在等效电路中用两个参数不同的二极管来产生这两个电流,。

固定电流法与变步长扰动观察法结合的M算法研究

2012~2013学年度电气与电子工程学院研究生课程 《太阳能光伏并网发电系统》课程报告 固定电流法与变步长扰动观察法结合的 MPPT算法研究 院系:电气与电子工程学院 专业:应用电子工程系 任课教师: 学生姓名: 学号: 指导教师: 二○一三年五月

ABSTRACT:The output power of PV module is a non-linear function of temperature, solar insolation and loads, so it is necessary to track MPP of the PV array all the time. When the external environment rapidly changes,in order to regulate the PV array operating point near the maximum power point quickly, the online constant-current method to track MPP is utilized at first, and then the variable step P&O is adopted to adjust the PV array operating point to be at the maximum-power point. The simulation of the improved method and common methods show that, contrast to the latter, the former can trace the maximum-power point more quickly, efficiently and accurately, which is concise and easy to implement, and also can reduce the energy loss caused by the oscillation of the operating point about the maximum-power point, thus enhancing the PV system efficiency. KEYWORDS:Photovoltaic panel characteristics; maximum power point tracking; constant current method; variable perturb step perturbation and observation method 摘要:光伏器件输出功率是外部环境、负载的非线性函数,为了充分发挥光伏器件的效能,需采用最大功率点跟踪方法进行控制。当外界环境突变时,采用在线固定电流法进行初步跟踪,调整光伏阵列的工作点到最大功率点附近。在此基础上再使用变步长扰动观察法,使得工作点进一步调节到最大功率点,并有效减少了光伏阵列输出功率在最大功率点的振荡。对该结合方法及相关的MPPT算法分别仿真,结果表明,该方法可以在外界环境剧烈变化下快速、有效、准确地跟踪最大功率点,简明易于实现,同时有效减少在光伏阵列最大功率点附近振荡所带来的能量损失,提高了光伏发电系统的效率。 关键词:光伏电池特性;最大功率点跟踪;固定电流法;变步长扰动观察法 1引言 光伏电池是光伏发电系统电能的来源,光伏电池输出功率是其所受日照强度、器件结温的非线性函数。即使在外部环境稳定的情况下,光伏电池的输出功率也会随着外部负载的变化而变化,只有当外部负载与光伏器件达到阻抗匹配时,光伏器件才会输出最大功率。为了实时从光伏阵列获得最大输出功率,需要在光伏发电系统中实现最大功率点的跟踪控制。通常的实现方法是需根据外部环境和负载情况不断调节光伏器件的工作点使其输出最大功率,我们将此功率调节过程称为最大功率点跟踪(Maximum Power Point Tracking,MPPT)。 MPPT电路常用的控制方法有固定参数法(如固定电压法、固定电流法)、扰动观察法及增加电导法等。各种MPPT控制方法中,固定电流法和扰动观察法因简单有效而较常用,但各自也存在缺陷。本文在分析固定电流法和扰动观察法的基础上,采用了一种固定电流法结合扰动观察法的MPPT控制。在外界环境或负载突变时,采用在线固定电流法将光伏阵列的工作点调整到最大功率点附近,以保证跟踪的快速性。在此基础上,为进一步提高对光伏阵列的利用效率,在最大功率点附近,采用变步长扰动观察法,从而减小系统在最大功率点附近的振荡。 2光伏电池特性 光伏电池单元是非线性器件,它的等效电路模型如图2.1所示。图2.1中的电流源产生光生电流I ph,它的数值由光照强度与温度共同决定。串联电阻R S与并联电阻R P用来表征太阳能电池内部的功率损耗。由于太阳能电池表面的材料的电阻率,当电流经过太阳能板流向外部内路时,其必然为产生串联损耗,故引入串联电阻R S。并联电阻R P表征由漏电流引起的损耗。

(整理)便携式光伏阵列IV曲线测试仪详细资料

便携式光伏阵列IV曲线测试仪 便携式光伏阵列IV曲线测试仪已经成功应用于光伏电站验收,光伏发电站监造,光伏发电系统的年检、光伏发电站日常维护检测。是鉴衡认证中心应用于光伏电站金太阳认证的唯一指定检测工具,还应用于中国质量认证中心、中国电力科学研究院等与多家光伏检测签约实验室。便携式光伏阵列IV曲线测试仪产品详细介绍如下: 一、便携式光伏阵列IV曲线测试仪背景介绍 光伏电站投入运行之前必须经过严格检测后验收,国家GBT 18210-2000 《晶体硅光伏(PV)方阵I-V 特性的现场测量》给出了相应的技术要求。在投入运行后的20年内,电站运营方也要不断对光伏电站各子阵列的I-V特性进行测试,查找故障隐患,以便日常维护及维修。 光伏系统根据其对功率的需求配备或大或小的光伏阵列,这一光伏阵列是由太阳电池组件按串联、并联规则组合在一起的。如果各串联的太阳电池组件的工作特性由于离散性而导致不一致,在工作点的电流会不同,则必然会带来效率的损失;同理,如果太阳电池组件并联,则由于离散性,其相同工作电压条件下的最佳效率点会不一致,也会出现效率的损失。这种由于太阳电池组件特性曲线之间失配而带来的损失,称为“联结损耗"。由于“联结损耗"的存在,使得由众多太阳电池联成的阵列效率总是低于单个电池的发电效率。太阳电池的I-V特性曲线本身具有很强的实时性,易于受环境因素的影响,对于温度、照度的变化敏感。所以太阳电池安装环境条件的多变性,必然会使得太阳电池在不同环境条件下的实际发电量和负载工作点大相径庭。厂家提供的太阳电池组件的特征参数都是基于标准测试条件,而这些特征参数并不能反映太阳电池的实际工作情况。 由此可以看出,如果仅仅依靠厂家提供的太阳电池组件的特征参数进行系统设计,往往很难达到理想的设计效果。例如光伏电站,其所配用的光伏阵列容量可以通过计算得出,但事实证明许多理论计算配置的系统是不合理的,有时甚至是失败的,其原因就是由于光伏系统中的光伏阵列存在组合效率损失,并在不同日照强度、环境温度下的特性有很大差异。 所以在光伏发电站安装、光伏发电站监造、光伏发电站验收、光伏发电站年检时,一定要使用大功率的光伏阵列I-V特性测试仪对光伏阵列进行检验检测、核实光伏组件工作性能及安装合理性。 二、便携式光伏阵列IV曲线测试仪工作原理 PV-8150K主机内置有满足大功率、高电压、时间常数τ精确计算的充放电的专用电容器,动态电容充电现场测试方法是根据电容的特性,将内置电容器当成光伏阵列的可变负载,通过对光伏阵列给电容充电整个过程进行电流和电压采样,来测试并用专用软件将数据处理成光伏阵列的伏安特性曲线。其测量工作原理如下图所示。

基于RT-LAB的光伏发电系统实时仿真

万方数据

万方数据

万方数据

万方数据

万方数据

基于RT-LAB的光伏发电系统实时仿真 作者:郑鹤玲, 葛宝明, 毕大强, ZHENG He-ling, GE Bao-ming, BI Da-qiang 作者单位:郑鹤玲,葛宝明,ZHENG He-ling,GE Bao-ming(北京交通大学电气工程学院,北京,100044),毕大强,BI Da-qiang(电力系统国家重点实验室,清华大学电机系,北京,100084) 刊名: 电工电能新技术 英文刊名:ADVANCED TECHNOLOGY OF ELECTRICAL ENGINEERING AND ENERGY 年,卷(期):2010,29(4) 参考文献(14条) 1.姜东红;吴根水;屠宁RT-LAB软件在半实物仿真系统中的应用[期刊论文]-测控技术 2008(04) 2.常晓飞;符文星;闫杰RT-LAB在半实物仿真系统中的应用研究[期刊论文]-测控技术 2008(10) 3.周德佳;赵争鸣;袁立强基于同步矢量电流比例-积分控制器的光伏并网系统[期刊论文]-清华大学学报 2009(01) 4.吴理博;赵争鸣;刘建政单级式光伏并网逆变系统中的最大功率点跟踪算法稳定性研究[期刊论文]-中国电机工程学报 2006(06) 5.茆美琴;余世杰;苏建徽带有MPPT功能的光伏阵列Mat lab通用仿真模型 2005(05) 6.苏建徽;余世杰;赵为数字式太阳电池阵列模拟器[期刊论文]-太阳能学报 2002(01) 7.苏建徽;余世杰;赵为硅太阳电池工程用数学模型[期刊论文]-太阳能学报 2001(04) 8.杜柯;段善旭;刘飞基于Mat lab的一种光伏阵列模拟器的研究[期刊论文]-通信电源技术 2006(03) 9.张熙霖基于DSP2407的光伏方阵仿真电源的设计与研究 2004 10.Matsui Mikihiko;Kitano Tatsuya;Xu Dehong A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC Link 1999 11.吴理博;赵争鸣;刘建政用于太阳能照明系统的智能控制器[期刊论文]-清华大学学报 2003(09) 12.禹华军;潘俊民无功补偿技术在光伏并网发电系统孤岛检测中的应用[期刊论文]-电工电能新技术 2005(03) 13.杨海柱;金新民并网光伏系统最大功率点跟踪控制的一种改进措施及其仿真和实验研究[期刊论文]-电工电能新技术 2006(01) 14.Schaefer J C Review of photovoltaic power plant performance and economics[外文期刊] 1990(02) 本文链接:https://www.doczj.com/doc/7e2477246.html,/Periodical_dgdn201004014.aspx

光伏系统变步长扰动观察法MPPT算法研究

光伏系统变步长扰动观察法MPPT算法研究 王小昆,胡贤新 (中国矿业大学信电学院,江苏,徐州221116) 摘要:光伏电池阵列输出功率受光照强度和温度变化的影响,因此最大功率点跟踪(MPPT)技术广泛应用于光伏系统中。在所有最大功率点(MPP)控制策略中,扰动观察(P&O)MPPT算法因易实现被广泛应用,然而它的缺点是在稳定工作状态下工作点通过MPP时会导致能量振荡损耗,并且在光照强度或温度发生突变时表现较差的动态响应。在本文中,提出一种改进型变步长扰动观察MPPT算法,此方法依据工作点动态调整步长变化,与传统固定步长方法比较,本文提出的方法能有效地提高MPPT速度和转换效率,通过仿真和实验结果分析,验证了此改进算法的可行性。 关键词:最大功率点跟踪;扰动观察法;变步长 Research on Variable Step Size P&O MPPT Algorithm for PV Systems WANG Xiao-kun,HU Xian-xin (School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China) Abstract:Maximum power point tracking (MPPT) techniques are employed in photovoltaic (PV) systems to maximum the PV array output power which depends on solar irradiance and temperature. Among all the MPPT strategies,The P&O Maximum Power Point Tracking algorithm is mostly used, due to its ease of implementation. However, its main drawbacks are the waste of energy in steady conditions, when the working point moves across the MPP and the poor dynamic performances exhibited when a step change in solar irradiance or in temperature occurs. In this paper, a modified variable step size P&O MPPT algorithm is proposed, the step size is automatically tuned according to the operating point. Compared with the conventional fixed step size method, the proposed approach can effectively improve the MPPT speed and efficiency simultaneously.A theoretical analysis and the design principle of the proposed algorithm are provided and its feasibility is also verified by simulation and experimental results. Keywords:Maximum power point tracking (MPPT); the Perturb and Observe (P&O); Variable Step Size 1 引言 随着世界能源消耗的不断增加,石油、煤炭等不可再生能源不断枯竭,可再生能源在能源消费中的地位越来越突出,其取之不尽和对自然环境影响较小的特点,得到了广泛的应用,其中太阳能是主要清洁能源之一,主要是光伏发电系统投资成本越来越低,并且技术不断进步、系统运行稳定、维护简单、对环境无污染。光伏发电系统现在主要应用于蓄电池充电、扬水系统、居民生活供电、卫星系统供电等场所[1-2]。 定稿日期:2010-12-11 作者简介:王小昆(1983-),男,安徽巢湖人,硕士研究生,研究方向光伏并网系统及电力电子技术 光伏系统存在两个重要不足,其一电池板发电效率非常低,在低光照强度下表现尤为突出,其二电能的产生随着天气状况变化而产生明显的变化,比如光照强度和温度变化等。 最大功率点跟踪(Maximum power point tracking,简称MPPT)变成了光伏发电系统中的重要组成部分,它能将电池板阵列产生的最大功率传输到逆变系统中,实现效率的最优化。基于控制器复杂程度,所用传感器数量,制造成本和性能有多种不同的MPPT控制方法被相继提出。MPPT算法实现目标是跟踪的快速性和准确性,即在光照强度和温度发生突变时快速响应以及稳定工作时较小振荡。目前常用的方法有恒压法

KDCIV系列光伏阵列IV模拟器

KDC/IV系列光伏阵列IV模拟器 产品简介 合肥科威尔电源系统有限公司最新推出KDC/IV系列光伏阵列IV模拟器最大输出电压达1500V,单机最大输出功率为15kW,采用移相全桥软开关技术,效率在93%以上。可以精确的仿真太阳能光伏阵列,确保了I-V模拟器实际输出的精度和动态特性。KDC/IV系列光伏阵列IV模拟器是测试逆变器MPPT效率的重要工具,产品性价比高,解决了光伏逆变器MPPT跟踪及其效能满载测试的难题。 KDC/IV系列光伏阵列IV模拟器电路原理图如下,三相交流380V输入,输出直流0~1500V可调,输出电流0~35A可调,输出最大功率可达15kW。直流源主要由输入整流(AC-DC)电路、DC-DC电路以及控制通讯电路等三部分构成。交流输入通过整流电路得到直流电压,再通过DC-DC电路得到输出可调的直流电压和直流电流,从而得到需要的模拟直流源,通讯接口电路主要是为了上位机与下位机之间的信息交换,以查看和设置直流源的工作状态。

KDC系列高频直流源电路原理图 产品功能特点 ●自动宽范围输出电流可达35A电压达到1500V(可以多机并联使用); ●自动编程控制I-V曲线输出(可自动编程任意多条曲线,按时间运行);●模拟不同类型太阳电池阵列I-V曲线(单晶,多晶,薄膜); ●模拟不同温度及光照强度下的I-V曲线; ●模拟光伏阵列局部阴影遮挡I-V曲线; ●模拟缩放全天日照变化下I-V曲线; ●静态和动态下MPPT效能测试; ●内置EN50530及CGC/GF004关于动态MPPT测试要求,一键式调取测试; ●模拟全天累计电能计量; ●输出电流、电压精度高; ●多种标准的输出接口CAN/USB/RS485/ETHERNET; ●转换效率最高可达93%以上; ●LCD大屏幕显示,曲线、编程一目了然,触摸式操作,简单便捷; ●具有资料存贮记录功能; ●友好的人机操作界面,可本机操作也可通过上位机软件操作 ●标准3U机箱,方便安装。 KDC/IV-15-1500输出特性曲线

相关主题
文本预览
相关文档 最新文档