当前位置:文档之家› 光伏系统中扰动观察法的建模及仿真

光伏系统中扰动观察法的建模及仿真

光伏系统中扰动观察法的建模及仿真
光伏系统中扰动观察法的建模及仿真

工业电力系统动态建模和仿真分析

工业电力系统动态建模和仿真分析 (Industrial power system dynamic modeling and simulation analysis) 一、概述 工业电力系统: 大型电力系统复杂性:本身有发电机、电动机 中型工业电力系统:即使无发电机,也包括大量中压电动机 意义、内容: 1、确定通过动态建模与仿真分析验证: 1、机组的暂态稳定(极限切除时间) 2、特定的大容量电动机的电压稳定 3、校验电流电压型保护的定植 4、确定低频减载与孤网运行 二、介绍原件与组成: (一)、同步电机实用模型: 1、意义:对于dq0坐标下同步电机方程,如果单独考虑与定子d绕组、q绕组相独立的零轴绕组,则在计及d,q,f,D,Q5个绕组的电磁过渡过程(以绕组磁链或电流为状态量)以及转子机械过渡过程(以ω及δ为状态量)时,电机为七阶模型。对于一个含有上百台发电机的多机电力系统,若再加上其励磁系统、调速器和原动机的动态方程,则将会出现“维数灾”给分析计算带来极大的困难。因此在实际工程问题中,常对同步电机的数学模型作不同程度的简化,以便在不同的场合下使用。 2、对派克方程中的转子变量 若,则 可用定子侧等效量取代原来的转子量,得到用这些实用等效量表示的同步电机实用方程。原派克方程中的定子量,保留易测量及计算的和及和,而消去和两个变量。 3、三阶实用模型 其简单而又能计算励磁系统动态,因而广泛的应用于精度要求不十分高,但仍需计及励磁系统动态的电力系统动态分析中,较适用于凸极机。 模型导出基于: (1)、忽略定子d绕组、q绕组的暂态,即定子电压方程中取P=P=0 (2)、在定子电压方程中,设ω≈(p.u.)在速度变化不大的过渡过程中,其引起的误差很小。 (3)、忽略D绕组、Q绕组,其作用可在转子运动方程补入阻尼项来近似考虑。 及以下三个定子侧等效实用变量: 为消除转子励磁绕组的变量 、 定子励磁电动势 电机(q轴)空载电动势 电机瞬变电动势 (二)、励磁系统数学模型: 描述同步发电机励磁系统(包括励磁调节器)物理过程的数学方程。是电力系统机电暂态过程数学模型的重要组成部分,主要应用于电力系统稳定计算。

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计 1引言 开发新能源和可再生资源是全世界面临的共同课题,在新能源中,太阳能发电已成为全球发展最快的技术。太阳能作为一种清洁无污染的能源,开发前景十分广阔。然而由于太阳存在着间隙性,光照强度随着时间不断变化等问题,这对太阳能的收集和利用装置提出了更高的要求(见图1)。目前很多太阳能电池板阵列基本都是固定的,不能充分利用太阳能资源,发电效率低下。据测试,在太阳能电池板阵列中,相同条件下采用自动跟踪系统发电设备要比固定发电设备的发电量提高35%左右。 所谓太阳能跟踪系统是能让太阳能电池板随时正对太阳,让太阳光的光线随时垂直照射太阳能电池板的动力装置,能显著提高太阳能光伏组件的发电效率。目前市场上所使用的跟踪系统按照驱动装置分为单轴太阳能自动跟踪系统和双轴太阳能自动跟踪系统。所谓单轴是指仅可以水平方向跟踪太阳,在高度上根据地理和季节的变化人为的进行调节固定,这样不仅增加了工作量,而且跟踪精度也不够高。双轴跟踪可以在水平方位和高度两个方向跟踪太阳轨迹,显然双轴跟踪优于单轴跟踪。 图1 太阳能的收集装置现场 从控制手段上系统可分为传感器跟踪和视日运动轨迹跟踪(程序跟踪)。传感器跟踪是利用光电传感器检测太阳光线是否偏离电池板法线,当太阳光线偏离电池板法线时,传感器发出偏差信号,经放大运算后控制执行机构,使跟踪装置从新对准太阳。这种跟踪装置,灵敏度高,但是遇到长时间乌云遮日则会影响运行。视日运动轨迹跟踪,是根据太阳的实际运行轨迹,按照预定的程序调整跟踪装置。这种跟踪方式能够全天候实时跟踪,其精度不是很高,但是符合运行情况,应用较广泛。 从主控单元类型上可以分为PLC控制和单片机控制。单片机控制程序在出厂时由专业人员编写开发,一般设备厂家不易再次进行开发和参数设定。而学习使用PLC比较容易,通过PLC厂家技术人员的培训,设备使用厂家的技术人员可以很方便的学会简单的调试和编写,并且PLC能够提供多种通讯接口,通讯组网也比较方便简单。

太阳能电池阵列模拟器

微电网直流平台设备 光伏PV模拟器(1) 产品特点: ■功率容量:600W--1500kW■可模拟太阳能电池板输出特性(国内首创)■可模拟不同光照和温度下I-V曲线■通过填充因子(Fill Factor)可模拟多种太阳能电池的输出特性■可模拟太阳能电池板被遮罩时的I-V曲线■可测试静态和动态下的MPPT情况■MPPT工作点实时显示于上位机软件上■具有恒功率模式 ■具有恒内阻模式,对内阻进行设定■具有强大的图形化上位机软件■稳压精度高、纹波电压低 ■采用16bit高速ADC,快速精确测量■采用ARM、DSP双CPU控制■应用全桥移相软开关技术

■动态稳定性用Matlab仿真优化■采用高速DSP进行PID运算,直接输出PWM■变压器采用非晶铁芯,具有高饱和磁感应强度、高导磁率、高电感量、低损耗、体积小、重量轻、抗电磁干扰能力强、频率特性优良、温度稳定性高的特性 ■快速存储9组数据(电压,电流,功率)■具有过压、过流、过温、短路保护功能■电压、电流、时间设定,数字式按键输入,精确度高;■具有RS232C通讯接口(RS485,GPIB为可选)■产品通过CE认证■符合EN50530/Sandia/CGC-GF004标准 原理图:

可编程直流负载(2) ■采用触摸屏+PLC方式进行控制,具有本控与PC控制两种方式,提供相应上位机操作软件。 ■采用不锈钢合金电阻制造 ■可根据功率检测要求,可以按键组合投放,设定放电功率。 ■检测各种发电设备以及放电设备的工作效率、满负载运行最大输出功率及带载能力。 ■模拟各类复杂工作环境,功率的突加突卸,检测放电设备的实际带载能力和效率 ■采用精准的高精度负载材质能真正模拟实际负载的带载力和负载微变适应能力 ■急停和温度保护,超载,短路,过温设备自动切断 ■上限下限电压设定,根据能量自动降至范围电压点(限程控机) ■温度保护设定,温度0~100°可以设定,同时检测实时温度情况 ■可编程界面0~30组功率电流任意设置,最小执行操作时间1ms可循环999999次(限程控机) ■负载的最小分辨率为1W,可精确模拟发电或产品通断能力 ■可以将测量数据上传到电脑并实现对检测过程数据的过程过程记录存储功能(限程控机) ■具有面板操作或远程控制两种操作方式(限程控机) ■具有过温保护功能和温度设定以及温度监测 ■可定制不同时间常数负载 ■应用于发电机、UPS、开关、熔断器、电器附件、变压器、温升试验、低压电气的出厂检验、生产调试、模拟恶劣负载环境、科研开发、军工等精确测试场所 ■采按钮控制或开关切换(触摸屏控制含RS232通讯接口) ■可测量电压、电流、功率

光伏发电的MATLAB仿真

一、实验过程记录 1.画出实验接线图 图1 实验接线图 图2 光伏电池板图3 实验接线实物图 2.实验过程记录与分析 (1)给出实验的详细步骤 ○1 实验前根据指导书要求完成预习报告 ○2 按预习报告设计的实习步骤,利用MATLAB建立光伏数学模型,如下图4所示。

图4 光伏电池模型其中PV Array模块里子模块如下图5所示。 图5 PV Array模型其中Iph,Uoc,Io,Vt子模块如下图6-9所示。 图6Iph子模块

图7Uoc子模块 图8 Io子模块 图9Vt子模块 ○3 在光伏电池建模的基础上,输入实际光伏电池参数值,研究不同光照强度下、不同温度下光伏电池的I-V、P-V特性曲线,并得出结论。 ○4 设计光伏电池测试平台,在不同光照、温度情况下测试光伏电池输出电压、输出电流值,对实测数据进行处理并加以分析,记录实际光伏电池的I-V、P-V 特性曲线,与仿真结果进行对比,得出有意义的结论。 ○5 确定电力变换电路拓扑结构,设计电路中的相关参数值,通过MATLAB搭 建电路并仿真分析,搭建电路如图10所示。

图10离网型光伏发电系统 ○6 确定系统MPPT控制策略,建立MPPT模块仿真模型,并仿真分析。 系统联调,调节离网型光伏发电系统的电路和控制参数值,仿真并分析最大功率跟踪控制效果。 (2)记录实验数据 m2 表1当T=290K时S=1305W/时的测试数据 I(A)0 1.03 1.25 2.65 3.79 5.97 6.287.867.98 U(V)27.326.226252421.516 1.10 P(W)026.98632.566.2590.96128.35100.488.6460 m2 表2当T=287K时S=1305W/时的测试数据 I(A)01 1.5 2.6 3.93 6.0 6.688.048.12 U(V)27.626.225.825.123.921.620.510 P(W)026.238.765.2693.93129.6136.948.040 m2 表3当T=287K时S=1278W/时的测试数据 I(A)0 1.04 1.49 2.25 3.66 6.06 6.737.98.06 U(V)26.826.22625.424.321.913.40.50 P(W)027.24838.7457.1588.94132.7190.18 3.950

电力系统建模及仿真课程设计

某某大学 《电力系统建模及仿真课程设计》总结报告 题目:基于MATLAB的电力系统短路故障仿真于分析 姓名 学号 院系 班级 指导教师

摘要:本次课程设计是结合《电力系统分析》的理论教学进行的一个实践课程。 电力系统短路故障,故障电流中必定有零序分量存在,零序分量可以用来判断故障的类型,故障的地点等,零序分量作为电力系统继电保护的一个重要分析量。运用Matlab电力系统仿真程序SimPowerSystems工具箱构建设计要求所给的电力系统模型,并在此基础上对电力系统多中故障进行仿真,仿真波形与理论分析结果相符,说明用Matlab对电力系统故障分析的有效性。实际中无法对故障进行实验,所以进行仿真实验可达到效果。 关键词:电力系统;仿真;短路故障;Matlab;SimPowerSystems Abstract: The course design is a combination of power system analysis of the theoretical teaching, practical courses. Power system short-circuit fault, the fault current must be zero sequence component exists, and zero-sequence component can be used to determine the fault type, fault location, the zero-sequence component as a critical analysis of power system protection. SimPowerSystems Toolbox building design requirements to the power system model using Matlab power system simulation program, and on this basis, the power system fault simulation, the simulation waveforms with the theoretical analysis results match, indicating that the power system fault analysis using Matlab effectiveness. Practice can not fault the experiment, the simulation can achieve the desired effect. Keywords: power system; simulation; failure; Matlab; SimPowerSystems - 1 - 目录 一、引言 ............................................ - 3 -

关于编制太阳能光伏发电自动跟踪系统项目可行性研究报告编制说明

太阳能光伏发电自动跟踪系统项 目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司 编制时间:https://www.doczj.com/doc/6e10712569.html, 高级工程师:高建

关于编制太阳能光伏发电自动跟踪系统项 目可行性研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (8) 2.1项目提出背景 (8) 2.2本次建设项目发起缘由 (8) 2.3项目建设必要性分析 (8) 2.3.1促进我国太阳能光伏发电自动跟踪系统产业快速发展的需要 (9) 2.3.2加快当地高新技术产业发展的重要举措 (9) 2.3.3满足我国的工业发展需求的需要 (9) 2.3.4符合现行产业政策及清洁生产要求 (9) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (10) 2.3.6增加就业带动相关产业链发展的需要 (10) 2.3.7促进项目建设地经济发展进程的的需要 (11) 2.4项目可行性分析 (11) 2.4.1政策可行性 (11) 2.4.2市场可行性 (11) 2.4.3技术可行性 (12) 2.4.4管理可行性 (12) 2.4.5财务可行性 (13) 2.5太阳能光伏发电自动跟踪系统项目发展概况 (13)

基于MATLAB的光伏电池通用数学模型

本文由qpadm贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 25 卷第 4 期 2009 年 4 月 电 力 For personal use only in study and research; not for commercial use 科 学 与 For personal use only in study and research; not for commercial use 工 程 Vol.25, No.4 Apr., 2009 11 For personal use only in study and research; not for commercial use Electric Power Science and Engineering 基于 MATLAB 的光伏电池通用数学模型 王长江 For personal use only in study and research; not for commercial use (华北电力大学电气与电子工程学院,北京 102206)摘要:针对光伏电池输出特性具有强烈的非线性,根据太阳能电池的直流物理模型,利用 MATLAB 建立了太阳能光伏阵列通用的仿真模型。利用此模型,模拟任意环境、太阳辐射强度、电池板参数、电池板串并联方式下的光伏阵列 I-V 特性。模型内部参数经过优化,较好地反应了电池实际特性。模型带有最大功率点跟踪功能,能很好地实现光伏发电系统最佳工作点的跟踪。关键词:光伏电池;MPPT;I-V 特性中图分类号:TM615 文献标识码:A 引 言 1 光伏电池特性 随着化石能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源 [1] 。光伏阵列由多个单体太阳能电池进行串并联封装而成,是光伏发电的能源供给中心,其 I V 特性曲线随日照强度和太阳能电池温度变化,即 I=f ( V, S, T ) 。目前而厂家通常仅为用户提供标准测试的短路电流 I sc 、开路电压 Voc、最大功率点电流 I m 、最大功率点电压 V m 值,所以如何根据已有的标准测试数据来仿真光伏阵列在不同日照、温度下的 I V,P V 特性曲线,在光伏发电系统分析研究中显得至关重要 [2] 。文献 [ 3~4 ] 介绍了一些光伏发电相关的仿真模型,但这些模型都需要已知一些特定参数,使得分析研究有一些困难。文献 [ 5 ] 介绍了经优化的光伏电池模型,但不能任意改变原始参数。文献 [ 6 ] 给出了光伏电池的原理模型,但参数选用典型值,会造成较大的误差。本文考虑工程应用因素,基于太阳能电池的物理模型,建立了适用于任何条件下的工程用光伏电池仿真模型。

PSCAD的电力系统仿真大作业3

仿真计算 1、在PSCAD中建立典型的同步发电机模型,对同步发电机出口三相短路进行仿真研究。要求: (1)运行“同步发电机短路”模型,截取定子三相短路电流波形,并对波形进行分析,验证与理论分析中包含的各种分量是否一致; 图一同步发电机短路模型

图二、定子三相短路电流 定子三相短路电流中含有直流分量和交流分量,其中周期分量会衰减。三相短路电流直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路电阻和等值电感决定,大约在0.2s。交流分量也按指数规律衰减,它包括两个衰减时间常数,分为次暂态过程、暂态过程和稳态过程。 (2)修改电抗参数Xd(Xd’,X’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析; 图一是Xd`=0.314 p.u,Xd``=0.280 p.u情况下的定子电流波形;图二是Xd`=0.514 p.u, Xd``=0.280 p.u情况下的定子电流波形。显然,随着Xd`的增大定子的电流在减少。

图三、定子三相短路电流 (3)修改时间常数Td(Td’,T’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析。 参数Td’=6.55s ,Td”=0.039s时定子电流如图一所示;当参数变为Td’=3.55s ,Td”=0.039s是定子电流如图三所示,显然

图四、定子三相短路电流 2、利用暂态仿真软件对下面的简单电网进行建模,对模型中各元件参数进行详细说明,并进行短路计算。将故障点的电流电压波形及线路M端的电流电压波形、相量图粘贴到课程报告上。 要求:

(1)短路类型为①三相故障;②A相接地;③BC两相故障。 (2)两端系统电势夹角取15o δ=。 (3)故障点设置为线路MN中点(25km处)。 (4)仿真结果包括M、N两侧和短路点处的三相电压、电流的瞬时值波形和短路发生后时刻的三相电压、电流相量图。 三、课程学习心得 通过本课程的学习,你有哪些体会和心得,请写出来。可以从以下几个方面考虑,但不局限于这些方面:通过课程你学到了哪些知识;学会了哪些方法;对电力系统的认识;对课程的建议等。 课程的开始复习了一下简单的电力系统稳态分析部分,然后就进行了课程的重点就是电力系统的暂态分析,其中包括PARK变换、标么值下的磁链方程和电压方程、同步发电机各种电势的表达式、发电机阻抗的概述、(次)暂态电抗和(次)暂态电势、发电机三相短路电流、对称分量法、叠加定理、电力系统简单故障分析。学习了几种电力系统分析中的方法,例如分析同步发电机短路时PARK变换将静止三相坐标系的量转化为旋转坐标系dq0的量,还有分析不对称故障时对称分量法转化到相对简单的对称故障分析中。

自动跟踪太阳能光伏发电系统方案

自动跟踪太阳能光伏发电系统方案 方案需求 ?光伏发电管理急需精细化,降本增效。 ?传统光伏支架未能最大化利用太阳能,无法跟踪光照。 ?光伏板依靠本地维护人员巡检管理,人工成本高,且存在漏检现象。 方案介绍 宇飞太阳能自主研发的自动跟踪太阳能光伏发电系统,是一种能随着太阳角度变化,按照一定的算法,控制太阳能板转动,增加有效受光面积,从而增加电厂发电量带来更高收益的自动化控制系统,可以理解为“向日葵”。 自动跟踪太阳能光伏发电系统其实是一套负反馈控制系统,工控机采集角度传感器信息后,根据当前角度与目标角度的差异,下发控制指令驱动电机带动推拉杆运动使太阳能板旋转,直至采集回来的当前角度与目标角度吻合。 系统组成 自动跟踪太阳能光伏发电系统由:太阳能跟踪支架,太阳能组件,带监控模块的MPPT控制器,蓄电池,逆变器及连接线缆组成。 太阳能跟踪支架规格参数

1、立柱直径:φ220mm 2、立柱高度:650mm 3、安装容量:最大6块450W 4、光伏板倾角:25度角度固定 5、抗风能力:14级,带细钢丝绳斜拉结构; 6、材料:不锈钢材料 7、旋转精度:1度 8、旋转速率:12分钟旋转半圈 9、旋转角度:220度, 10、提高发电量:天气晴好情况下,冬季提高发电量15%;春秋季提高30%;夏季提高45%;综合全年提高25-35%(不同地区发电量提高有区别) 11、控制器电源:12V由光伏板输出供电(或者提供集中12V 直流供电) 12、控制方式:将光伏板固定好,并将追日控制器接好电源线后,天气晴朗条件下旋转立柱自动带着光伏板跟踪太阳;在天阴时,自动转入时控控制状态,每隔5分钟自动旋转1度; 13、而且每个旋转立柱内部都有同步控制系统,确保每台旋转立柱每次旋转的角度完全一致,光伏板以最强光强功率发电。晚上天黑,自动回东。 14、由多个旋转立柱组成的各种规模的光伏电站,由于旋转立柱的东限位位置全部一致,旋转立柱内置机械同步装置,可以确

光伏组件与阵列设计

1.1 引言 太阳电池是将太直接转换为电能的最基本元件,一个单体太阳能电池的单片为一个PN结,工作电压约为0.5V,工作电流约为20-25mA/cm2, 一般不能单独作为电源使用。因而需根据使用要求将若干单体电池进行适当的连接并经过封装后,组成一个可以单独对外供电的最小单元即组件(太阳能电池板)。其功率一般为几瓦至几十瓦,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。 当应用领域需要较高的电压和电流,而单个组件不能满足要求时,可把多个组件通过串连或并联进行连接,以获得所需要的电压和电流,从而使得用户获取电力。根据负荷需要,将若干组件按一定方式组装在固定的机械结构上,形成直流发电的单元,即为太阳能电池阵列,也称为光伏阵列或太阳能电池方阵。一个光伏阵列包含两个或两个以上的光伏组件,具体需要多少个组件及如何连接组件与所需电压(电流)及各个组件的参数有关。 太阳能电池片并、串联组成太阳能电池组件;太阳能电池组件并、串联构成太阳能电池阵列。 1.2 光伏组件 1.2.1组件概述 光伏组件(俗称太阳能电池板)是将性能一致或相近的光伏电池片(整片的两种规格125*125mm、156*156mm),或由激光机切割开的不同规格的太阳能电池,按一定的排列串、并联后封装而成。由于单片太阳能电池片的电流和电压都很小,把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。电池串联的片数越多电压越高,面积越大或并联的片数越多则电流越大。如一个组件上串联太阳能电池片的数量是36片,这意味着这个太阳能组件大约能产生17伏的电压。 1.2.2电池的连接与失配 失配的影响:失配损失是由于电池或者组件的互联引起的,这些电池或者组件没有相同的特性或者经历了不同的条件。在PV组件和方阵中,在某种条件下失配问题是一个严重的问题,因为一个组件在最差情况的输出是由其中的具有最低输出的太阳电池决定。例如,当一个太阳电池被遮挡而组件中的其它的太阳电池并没有被遮挡时,一个处于“良好”状态的太阳电池产生的功率可以被低性能的太阳电池耗散,而不是提供给负载。这可以导致非常高的局部电力耗散,并且由此而产生的局部加热可以引起组件不可恢复的损伤。 太阳能电池在串、并联成电池组件时,由于每片太阳能电池电性能不可能绝对一致,这就使得串、并联后的输出总功率往往小于各个单体太阳能电池输出功率之和,称作太阳能电池的失配。在太阳能组件的制造以及组建安装为阵列的过程中,失配问题总会存在,并或多或少的影响太阳能电池的性能。这是因为:1,

基于MATLABsimulink的船舶电力系统建模与故障仿真【开题报告】

开题报告 电气工程及其自动化 基于MATLAB/simulink的船舶电力系统建模与故障仿真 一、综述本课题国内外研究动态,说明选题的依据和意义 1、本课题国内外研究动态 船舶电力系统是一个独立的、小型的完整电力系统,主要由电源设备、配电系统和负载组成。船舶电站是船上重要的辅助动力装置,供给辅助机械及全船所需电力。它是船舶电力系统的重要组成部分,是产生连续供应全船电能的设备。船舶电站是由原动机、发电机和附属设备(组合成发电机组)及配电板组成的。最近几年,船舶电站采用电子技术、计算机控制技术,实现船舶电站自动化和船舶电站的全自动控制,实现无人值班机舱。船舶自动化技术正朝着微机监控、全面电气、综合自动化方向发展。船舶电站运行的可靠性、经济性及其自动化程度对保证船舶的安全运营具有极其重要的意义。 国外的某些造船业发达的国家在二十世纪中叶就着手船舶电力系统领域的探索,在船舶电力系统稳态、暂态过程等方面进行了细致的研究。近些年来,挪威挪控公司困.R.co咖l)、英国船商公司(TRANSS)、德国西门子公司(SIEMENS)、-日本三菱公司(MITSUBISHD等大公司开始进行船舶电力系统的建模与分析方面的研究工作。国内针对船舶电力系统的研究起步相对较晚,虽然取得了一定成果,但在理论先进性、系统完整性等方面还存在一定差距,这也在一定程度上导致了目前国产船电设备与世界主要造船国家船电设备存在一定差距、装船率偏低等一系列问题。 目前,国内外最常用的建模软件有四中:分别是:matlab、lingo、Mathematica 和SAS。MATLAB用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。Matlab开发效率高,自带很多数学计算函数,对矩阵支持好。Lingo可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统、和与其他应用程序的高级连接。SAS 是一个模块化、集成

光伏电池的仿真及其模型的应用研究

光伏电池的仿真及其模型的应用研究 Study on Simulation of Solar Cell and Its Application 陶海亮夏扬张宁扬州大学能源与动力工程学院,江苏扬州225127 不论是太阳能发电系统还是风光互补发电系统,熟悉光伏电池的输出特性是设计新能源发电系统的基础和前提。根据光伏电池输出特性关系式,利用MATLAB的Simulink模块搭建了参数和工况可调的光伏电池模型,并运用该模型建立了具有最大功率跟踪(MPPT)功能的光伏发电系统的仿真模型,通过仿真结果可以更好地把握光伏电池的特性,为发电系统的设计和优化打好基础。 光伏电池;数学模型;仿真;最大功率跟踪

当电池

率比较

@@[1]苏建徽,于世杰,赵为.硅太阳电池工程用数学模型[J].太阳能学报, 2001,22(4)@@[2]王阳元.绿色微纳电子学[M].北京:科学出版社,2010@@[3]林渭勋.现代电力电子技术[M]北京:机械工业出版社,2007 @@[4]李炜,朱新坚.光伏系统最大功率点跟踪控制仿真模型[J].计算机仿 真,2006,23(6) 2011-09-21 @@[1]黄柯棣,张金槐,李剑川,等.系统仿真技术[M].长沙:国防科技大学 出版社,1998 @@[2]Joseph Nalepka,Thomas Dube,Glenn Williams et al. Transi tioning to PC-Based Simulation-One Perspective[R],2005,A IAA-2002-4863@@[3]The Mathworks Inc. Target Language Compiler Reference Guide[M].2004 @@[4]刘德贵,费景高.动力学系统数字仿真算法[M].北京:科学出版社, 2000 2011-08-25

电力系统仿真作业(电子版)

电 力 系 统 仿 真 作 业 论 文 电控学院 电气0903 刘娟 0906060301

离散可编程三相电压源PLL和可变频率正序电压和功率测量 the Discrete 3-Phase Programmable Voltage Source PLL and Variable-Frequency Positive-Sequence Voltage and Power Measurements 线路图: 线路结构: 一个25KV,100MVA的短路等效电路网络给一个5MW,5Mvar的负载供电。电源的内部电压通过离散的三相可编程电压源装置来提供。三相电压电流测量装置用来检测三个负载电压和电流。 离散的三相PLL装置用来测量频率,也产生一个基于频率变化的系统电压信号。PLL用来驱动两个测量装置,并把变化的频率考虑在内。其中一个用来计算正序负载电压的标幺值,另外一个用来计算负载的有功和无功功率。这两个装置和PLL必须初始化,以保证初始处在稳态。 PLL和两个测量装置分别在Extras/Discrete in the Control Block 和 Extras/Discrete Measurements中可以找到。 整个系统(包括网络,PLL和测量装置)以50us的采集时间来离散。仿真时间4.0秒,仿真参数ode45(Dormand-Prince)。

基本原理: PLL的概念 PLL其实就是锁相环路,简称为锁相环。许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。锁相环路是一种反馈控制电路,简称锁相环(PLL)。目前锁相环主要有模拟锁相环,数字锁相环以及有记忆能力(微机控制的)锁相环。 PLL的特点 锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 PLL的组成 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如下图所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。

数字式光伏电池阵列模拟器的研制

数字式光伏电池阵列模拟器的研制 2011-03-17 16:30:18 来源:OFweek太阳能光伏网 介绍太阳能电池的工作原理及其数学模型的基础上,选择半桥变换器作为主电路拓扑,研制了一台光伏电池阵列模拟器。控制部分采用TMS320F2812 DSP作为模拟器控制电路的主控制器,将数字PI控制算法应用在数字式光伏电池阵列模拟器中。在闭环实验下,模拟器的静态工作点与所模拟的太阳能电池的输出特性相吻合,并能够动态模拟负载变化的工作情况。证明了所设计的模拟器能够用于光伏发电系统实验。 1 引言 太阳能作为一种新型的可再生资源受到越来越广泛的重视,但在光伏系统的研发过程中,太阳能电池阵列由于实验受到日照强度、环境温度的影响,导致实验成本过高,研发周期变长。光伏电池阵列模拟器可以大大缩短光伏系统的研究周期,提高研究效率及研究结果的可信性。 本文设计的光伏电池阵列模拟器以半桥电路为基础,基于DSP控制,并加入了PI控制改善系统动态性能和稳态精度。 2 太阳能电池的工作特性 太阳能电池在有光照条件下,光生电流会流过负载,从而产生负载电压。这时太阳能电池的等效电路如图1所示。其中,RS为串联电阻,Rsh为旁漏电阻,也称跨接电阻,它是由体内的缺陷或硅片边缘不清洁引起的。显然,旁路电流Ish 和二极管的正向电流ID (通过PN结总扩散电流)都要靠IL提供,剩余的led光电流经过RS,流出太阳能电池而进入负载。 根据文献资料[1],利用厂家提供的短路电流Isc,开路电压VOC,最大功率点处的电流Im和最大功率点处的电压Vm这四个参数可以得到太阳能电池板便于工程计算的模型:

这样,就把太阳能电池板的I-V特性曲线转换为简单的、便于工程计算的形式。 3 光伏电池阵列模拟器设计 模拟器的目的是要能模拟一定光照下,随负载变化的太阳能电池板的电特性,包括最大输出功率,输出I-V特性,以及不同日照下的变化。其应该完成以下三个方面的要求: (1) 系统能够按照光伏阵列的输出特性完成输出,当外电路负载一定时,系统能够在工作点上保持稳定的输出; (2) 当外接负载发生变化时,模拟器能够以合乎要求的速度变化到新工作点并能稳定在该点; (3) 能够输出要求的功率; 本文设计的光伏阵列模拟器的系统结构框图如图2所示,整个系统主要由功率电路和采集控制电路两部分构成。功率电路采用半桥拓扑,用以完成直流变换,经整流滤波后,产生合适的输出电压。检测电路实时采集输出电压、电流,并送给DSP控制电路。DSP依据采集到的值,产生合适的占空比信号控制半桥两个IGBT开关。隔离驱动电路用于驱动IGBT开关,并实现与控制电路的隔离。如果想要模拟一条新的太阳能电池板I-V曲线,只需在软件中重新设定该曲线的和,这四个参数就可以了。 由于半桥母线电压为100V,单个管子承受耐压应该在100V以上,系统最大输出电流为3.5A。综合以上因素后,我们选择Infinion公司生产的IGBT单管IKW40N120T2,其耐压1200V,可通过的均值电流40A,且该单管价格便宜,开通、关断时间极短,开通压降只有1.7V,因此,开关损耗较小,是较理想的选择。 在本系统中,一共需要四路采集,分别是半桥高低端电压采集,输出电压电流采集。这四路信号都要设定过压或过流保护。采集电流信号使用电流传感器,采集电压信号使用电阻分压的形式。本设计的采集电路使用差分信号传输,并基于三级采集电路设计:首先使用全差分放大器LTC1992进行单端到差分信号的转换;然后使用模拟线性光耦HCPL7840进行信号隔离;最后使用仪用运放INA121将信号进行适当放大。 4 控制算法实现 4.1 寻找负载工作点的算法设计 光伏模拟器主要是跟踪负载的工作点,使得模拟器在不同负载情况下的输出能满足光伏阵列的输出特性。静态工作点的确定是模拟器的关键,如何在一特定负载下快速寻找到期望工作点,并使电源工作在这个点上。当负载变化,或是环境条件变化时,又如何找到新的工作点,并快速且精确的控制电源运行在这个工作点上,是模拟器控制算法所要解决的核心问题。 当负载电阻确定后,想要确定工作点处的电压电流,需要代入式(1)进行计算,但公式复杂,且涉及指数运算,在程序实现上十分麻烦,而且也会影响系统响应的速度。从我们研究太阳能电池的输出I-V特性曲线可以看到,在短路电流点附近,电池板接近恒流,输出I-V曲线在这一段接近一条直线;在开路电压点附近,电池板接近恒压,输出I-V曲线在这一段也接近一条直线。所以我们用四条直线来对电池板输出I-V曲线进行拟合,如图3所示。

基于Matlab的电力系统自动重合闸建模与仿真讲解

实践课程设计报告 课程名称:Matlab上机 题目:基于MATLAB的电力系统自动重合闸 所在学院: 学科专业: 学号: 学生姓名: 指导教师: 二零一五年四

摘要 分析了单相自动重合闸的工作特性,并利用MATLAB软件搭建了220kv电力系统的自动重合闸的仿真模型,模拟系统发生单相接地、三相相间短路故障,断路器跳闸后自动重合闸的工作过程。 关键词:电力系统自动重合闸MATLAB 短路故障

目录 1 引言 (1) 2 模型中主要模块的选择和参数 (2) 2.1同步发电机模块 (2) 2.2 变压器模块 (2) 2.3 输电线路模块 (3) 2.3.1 150km线路模块 (3) 2.3.2 100km线路模块 (4) 2.1 电源模块 (5) 2.3 负载模块 (6) 2.3.1 三相串联RLC负载Load1 (6) 2.3.2 三相串联RLC负载Load4 (7) 2.4 断路器模块 (8) 2.5 测量模块 (9) 2.6 显示模块 (9) 2.7 其他模块 (9) 2.8 仿真参数设置 (10) 3 仿真结果及波形分析 (10) 3.1 线路单相重合闸 (10) 3.2 线路三相重合闸 (12) 总结 (13) 参考文献 (14)

基于Matlab的电力系统自动重合闸 1 引言 随着技术的发展,电力系统的规模越来越复杂。从实际条件与安全角度考虑,不太可能进行电力系统科研实验,因而电力系统数字仿真成为了电力系统研究、规划和设计的重要手段。电力系统仿真软件如BPA,EMTP,PSCAD/ EMTDC ,NETOMAC,PSASP,MATLAB等,正向着多功能,具有更高的可移植性方向发展。其中在MATLAB 中,电力系统模型可以在Simulink环境下直接搭建,Simulink电力系统元件库中有多种多样的电气模块,电力系统大多数元件都包含。其中,可以直接调用。电力系统大部分故障是瞬时性故障,因此采用自动重合闸后,电力系统发生瞬时性故障时供电的连续性、系统的稳定性得到很大的提高。此外,自动重合闸有效纠正由于断路器或继电保护误动作引起的误跳闸。 本文以MATLAB为工具,对简单系统的线路单相重合闸和线路三相重合闸进行分析与研究。 1.1 仿真模型的设计和实现 电力系统正常运行时可以认为是三相对称的,即电压、电流对称,且具有正弦波形。下图为理想情况下220kv电力系统的模型。 图 1 220kv电力系统模型

关于太阳能电池阵模拟器的设计

关于太阳能电池阵模拟器的设计 1 引言 太阳能(Solar Energy),一般是指太阳光的辐射能量,在现代一般用作发电。自地球形成生物就主要以太阳提供的热和光生存,而自古人类也懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。但在化石燃料减少下,才有意把太阳能进一步发展。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。目前,在航天电源领域内,绝大多数卫星电源均使用太阳能电池作为其动力核心。卫星电源的性能直接影响到卫星的性能和工作寿命,对卫星的正常运行和使用也有重大的影响。因此,为了提高电源系统的性能和可靠性,对卫星电源系统进行仿真和测试评估具有十分重要的意义。 卫星的空间工作条件恶劣且复杂,温度范围大,日照条件变化迅速,且太阳能电池方阵处于高能粒子辐射下,在地面上无法采用实际的太阳能电池方阵来再现卫星在空间轨道中的工作状态,因此需要采用太阳能电池模拟器(Solar Array Simulator,简称SAS)来模拟太阳能电池阵在空间的工作状况。SAS是卫星电源模拟器的重要组成部分,其主要任务是真实地遵循太阳能电池方阵在各种复杂空间条件下的实际输出特性曲线,在卫星的地面测试阶段代替太阳能电池方阵为卫星上的各分系统供电。 2 太阳能电池的数学模型 根据太阳能电池原理和图1 所示的实际测量结果建立了多种模型,用于太阳能电池的测试和应用研究。事实证明,这些模型具有足够的工程精度。 2.1 单指数模型 图2 示出太阳能电池的等效电路。 Iph 取决于太阳能电池各工作区的半导体材料性质和电池几何结构参数以及入射光强、表面反射率、前后表面复合速度、材料吸收系数等。由于器件的瞬时响应时间相比于绝大多数光伏系统的时间常数显得微不足道,因此分析中可忽略结电容。设定图中所示的电压、电流为正方向,由固体物理理论和全电路欧姆定律即可推出目前常用的单指数形式的太阳能电池模型: 式中 I0———二极管反向饱和电流 q———电子电荷 I———电池的输出电流 K———波尔兹曼常数 T———绝对温度 A———二极管品质因子(曲线因子),一般A=1~2: 2.2 双指数模型 在单指数模型中,在不同的电压范围内,决定IVD 的因素也不同。当电压较高时,IVD 主要由电中性区的注入电流决定;当电压较低时,IVD 主要由空间电荷区的复合电流决定。为了提高模型精度,可以综合考虑这两种情况,在等效电路中用两个参数不同的二极管来产生这两个电流,。

太阳能电池建模matlab

1.太阳能电池建模 1.1太阳能电池的等效电路图 1.2太阳能电池模型仿真图 sc I 为短路电流,oc U 为开路电压,mp I 、mp U 为最大功率点电流和电压,则当太阳能电池电 压为U ,其对应点电流为I :

21=1-(1))r oc U c U sc I I c e I -+?( 其中 21(1)m p oc U m p c U sc I c e I - =-, 2( 1)ln(1)m p m p oc sc U I c U I =--, ()r ref s U U T T R I β=+-+?, ()()ref sc ref I S T T I S S α?=-+-。 ref S 、ref T —太阳辐射和太阳能电池温度参考值,一般取为1kW/m 2 、25℃;α—在参考 日照下,电流变化温度系数(A mps /℃);β—在参考温度下,电压变化温度系数(V/℃);s R —太阳能电池的串联电阻(Ω),它由下面式子决定: ref m ref oc ref m ref sc ref m ref p ref s p s I V V I I A N N R N N R ,,,,,,/1ln ???? ??+-??? ? ??-== , 3 -+-= Lref cref Isc s ocref V cref ref I T N V T A oc μεμ。 其中,ε为材料带能,eV 12.1=ε。 r e f m I ,,ref m V ,:参考条件下,光伏阵列最大功率点电流跟电压; r e f sc I ,,ref oc V ,:参考条件下,光伏阵列短路电流与开路电压; sc I μ,oc V μ:参考条件下,光伏阵列短路电流与开路电压温度系数; s N :光伏阵列各模块的单元串联数; N :光伏阵列模块的串联数; p N :光伏阵列模块的并联数; cref T :参考条件下,光伏电池温度,一般设定为25℃。

相关主题
文本预览
相关文档 最新文档