当前位置:文档之家› 非正弦周期信号

非正弦周期信号

非正弦周期信号
非正弦周期信号

第十三章非正弦周期电流电路和信号的频谱

重点:

1. 非正弦周期电流电路的电流、电压的有效值、平均值;

2. 非正弦周期电流电路的平均功率

3. 非正弦周期电流电路的计算方法

难点:

1. 叠加定理在非正弦周期电流电路中的应用

2. 非正弦周期电流电路功率的计算

与其它章节的联系:

叠加定理

RLC串联谐振

RLC并联谐振

数学知识:傅里叶分析

§13.1 非正弦周期信号

生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。

非正弦周期交流信号的特点:

1) 不是正弦波

2) 按周期规律变化,满足:(k=0,1,2…..)

式中T 为周期。图 13.1 为一些典型的非正弦周期信号。

图13.1(a)半波整流波形(b)锯齿波(c)方波

本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。

§13.2 周期函数分解为傅里叶级数

电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式:

也可表示成:

以上两种表示式中系数之间关系为:

上述系数可按下列公式计算:

(k=1,2,3……)求出a0、a k、b k便可得到原函数f(t) 的展开式。

注意:非正弦周期电流、电压信号分解成傅里叶级数

的关键在于求出系数a0、ak、bk ,可以利用函数的某种

对称性判断它包含哪些谐波分量及不包含哪些谐波分量,

可使系数的确定简化,给计算和分析将带来很大的方便。图 13.2

如以下几种周期函数值得注意: (1) 偶函数

波形对称与纵轴如图 13.2 所示, 满足:

(2) 奇函数

波形对称与原点如图 13.3 所示,

满足: (3) 奇谐波函数

波形镜对称如图 13.4

所示,满足:

(4) 若函数是偶函数又是镜对称时,则只含有奇次的余弦相,

(5) 若函数是奇函数又是镜对称时,则只含有奇次的正弦相,

图 13.3

图 13.4

实际中所遇到的周期函数可能较复杂,不易看出对称性,但是如果将波形作一定的

平移,或视为几个典型波形的合成,则也能使计算各次谐波的系数简化。

例13-1

把图示周期性方波电流分解成傅里叶级数。

例 13-1 图

解:周期性方波电流在一个周期内的函数表示式为:

各次谐波分量的系数为:

( K 为奇数)

因此,的傅里叶级数展开式为:

即,周期性方波可以看成是直流分量与一次谐波、三次谐波、五次谐波等的叠加,如下图所示。

例13-2 给定函数f (t )的部分波形如图所示。为使

f (t )的傅里叶级数中只包含如下的分量:(1)正弦分

量;(2)余弦分量;(3)正弦偶次分量;(4)余弦奇次分量。试画出f (t )的波形。

例 13-1 图

解:

(1)f (t )的傅里叶级数中只包含正弦分量,说明f (t )为奇函数,对原点对称,可用下图波形表示。

(2) f (t )的傅里叶级数中只包含余弦分量,说明f (t )为偶函数,对坐标纵轴对称,可用下图波形表示。

(3) f

(t )的傅里叶级数中只包含正弦偶次分量,可用下图波形表示。

(4) f (t )的傅里叶级数中只包含余弦奇次分

量,可用下图波形表示。

§13.3有效值、平均值和平均功率

1. 三角函数的性质

1)正弦、余弦函数在一个周期内的积分为0 ,即:

2)sin2、cos2在一个周期内的积分为π ,即:

3)三角函数的正交性如下式所示:

2. 非正弦周期函数的有效值

设非正弦周期电流可以分解为傅里叶级数:

代入有效值的定义式中有:

利用上述三角函数的性质,上式中i 的展开式平方后将含有下列各项:

这样可以求得i 的有效值为:

由此得到结论:周期函数的有效值为直流分量及各次谐波分量有效值平方和的方根。此结论可以推广用于其他非正弦周期量。

3. 非正弦周期函数的平均值

设非正弦周期电流可以分解为傅里叶级数:

则其平均值定义为:

即:非正弦周期电流的平均值等于此电流绝对值的平均值。按上式可求得正弦电流的平均值为:

注意:

1)测量非正弦周期电流或电压的有效值要用电磁系或电动系仪表,测量非正弦周期量的平均值要用磁电系仪表。

2)非正弦周期量的有效值和平均值没有固定的比例关系,它们随着波形不同而不同。

4. 非正弦周期交流电路的平均功率

设任意一端口电路的非正弦周期电流和电压可以分解为傅里叶级数:

则一端口的平均功率为:

代入电压、电流表示式并利用三角函数的性质,得:

式中

由此得出结论:非正弦周期电流电路的平均功率=直流分量的功率+各次谐波的平均功率

§13.4非正弦周期交流电路的计算

根据以上讨论可得非正弦周期电流电路的计算步骤如下:

(1)把给定电源的非正弦周期电流或电压作傅里叶级数分解,将非正弦周期量展开成若干频率的谐波信号;

(2)利用直流和正弦交流电路的计算方法,对直流和各次谐波激励分别计算其响应;

(3)将以上计算结果转换为瞬时值迭加。

注意:

1)交流各次谐波电路计算可应用相量法,

2)对不同的频率,感抗与容抗是不同的。对直流 C 相当于开路、L 相于短路。对k 次谐波有:

例13-3 电路如图(a)所示,电流源为图(b)所示的方波信号。求输出电压u0,

已知:

例13-3图(a)例13-3图(b)

解:计算步骤如下:

(1)由例13-1知方波信号的展开式为:

代入已知数据

得直流分量基波最大值

三次谐波最大值五次谐波最大值

角频率为:

因此,电流源各频率的谐波分量表示式为:

(2)对各次频率的谐波分量单独计算

(a)直流分量I

S0

单独作用时:

把电容断路,电感短路,电路如图(c)

所示,计算得:

(b)

基波单独作用时,

电路如图(a)所示。算得容抗和感抗为

例13-3图(c)

所以阻抗为:

因此

(c) 三次谐波单独作用时,,计算得容抗和感抗为:

阻抗为:

(d) 五次谐波单独作用时,,计算得容抗和感抗为:

阻抗为:

(3) 把各次谐波分量计算结果的瞬时值迭加:

例13-4 图(a)所示电路中各表读数 (有效值) 及电路吸收的功率。

例 13-4 图(a)

解:(1)当直流分量u0=30V作用于电路时,L1、L2短路,C1、C2开路,电路如图(b)所示

例 13-4 图(b)

所以

(2) 基波u1=120cos1000t V

L1、C1对基波发生并联谐振。所以,基波电压加于L1、C1并联电路两端,故

(3) 二次谐波u2=60cos(2000t+π/4)V 作用于电路,有

L2、C2对二次谐波发生并联谐振。所以,电压加于L2、C2并联电路两端,故

所以电流表A1=1A A2=

A3=

电压表 V1=

V2=

例13-5 图(a)所示电路中,已知电源u(t) 是周期函数,波形如图(b)所示,L=1/2πH ,C=125/πμF。求:理想变压器原边电流i1(t)及输出电压u2的有效值。

例 13-5 图(a )

例 13-5 图(b )

解:由图(b )知

当直流分量 u 0

=12V 作用于电路时,电容开路、电感短路,有:

作用于电路时,有:

图(a)的原边等效电路如图(c)所示。电容和电感发生并联谐振,电源电流为零,因此:

例 13-5 图(c )

例13-6 求图示电路中 a 、b 两端电压有效值U ab 、电流 i 及功率表的读数。已知:

例13-6图

解:电压有效值

一次谐波作用时:

三次谐波作用时:

所以

功率表读数为

注意:同频率的电压电流构成有功功率。

例13-7 已知图(a)电路中

L=0.1H,C3=1μF,电容C1中只有基波电流,电

容C3中只有三次谐波电流,求C1、C2和各支路

电流。

例 13-7 图

解:C1中只有基波电流,说明L 和C2对三次谐波发生并联谐振。所以:

C3中只有三次谐波电流,说明L、C1、C2对一次谐波发生串联谐振。所以:

个次谐波分量单独作用时的电路如图(b)、(c)、(d)所示。由图可计算得:

(b)直流作用(c)一次谐波作用(d)三次谐波作用

非正弦周期信号剖析

第十三章非正弦周期电流电路和信号的频谱 重点: 1. 非正弦周期电流电路的电流、电压的有效值、平均值; 2. 非正弦周期电流电路的平均功率 3. 非正弦周期电流电路的计算方法 难点: 1. 叠加定理在非正弦周期电流电路中的应用 2. 非正弦周期电流电路功率的计算 章与其它章节的联系: 三相电路可以看成是三个同频率正弦电源作用下的正弦电流电路,对它的计算,第九章正弦电流电路中所阐述的方法完全适用。 §13.1 非正弦周期信号 生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。 非正弦周期交流信号的特点: 1) 不是正弦波 2) 按周期规律变化,满足:(k=0,1,2…..) 式中T 为周期。图 13.1 为一些典型的非正弦周期信号。 图13.1(a)半波整流波形(b)锯齿波(c)方波 本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量

单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。

§13.2 周期函数分解为付里叶级数 电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式: 也可表示成: 以上两种表示式中系数之间关系为: 上述系数可按下列公式计算: (k=1,2,3……)求出a0、a k、b k便可得到原函数f(t) 的展开式。 注意:非正弦周期电流、电压信号分解成傅里叶级数 的关键在于求出系数a0、ak、bk ,可以利用函数的某种 对称性判断它包含哪些谐波分量及不包含哪些谐波分量, 可使系数的确定简化,给计算和分析将带来很大的方便。图 13.2

检测正弦信号相位差算法的研究(精)

检测正弦信号相位差算法的研究 程捷 (中国计量学院信息工程系, 杭州310034 摘要本文基于最小二乘原理和FFT 的选频特性, 讨论了二种测量正弦信号相位差的方法。该算法适用于短信号序列的相位测量。实验结果表明这二种算法具有数据处理量少, 准确度高的特点。关键词相位检测FFT 最小二乘法 一、引言 有直读法, 本文基于最小二乘原理和快速傅里叶变换(FFT 的选频特性, 提出了用最小二乘法和FFT 检测正弦信号相位差的算法。影响算法的主要因素是采样点数。利用最小二乘法数据处理量少, 准确度高, 而利用FFT 来检测相位差, 算法过程简捷。 二、算法的理论分析 11最小二乘相位测量的算法 假设有两正弦信号v 1(t 、v 2(t 被采样频率f s 采样, 得到一组M 个采样点。待处理的信号如下式所示: v 1(t =V 1sin (Ξt +Υ1 v 2(t =V 2sin (Ξt +Υ2 (1 展开上式可得 v 1(t =C 0sin Ξt +C 1co s Ξt v 2(t =D 0sin Ξt +D 1co s Ξt (2 其中: C 0=V 1co s Υ1, C 1=V 1sin Υ1 D 0=V 2co s Υ2, D 1=V 2sin Υ2故有 V

1C 2 +C 21 , Υ1=arc tg C 0 +〔1-sgn (C 0 2 V 2 D 20+D 2 1, 2tg D 0 2 (3 , C j 、D j 参数(j =0, 1 。为此, 需要应用最小二乘法。根据C j 、D j 参 数总的测量残差平方和最小, 用求偏导数的方法得到C j 、D j 参数的最小二乘估计。 假设信号频率为f =50H z , 采样频率为f s , 选取一定量的采样数据(取决于周期数K 的值 , 则M =I N T (Kf s f =I N T (KN , 这里, I N T 表示取整。采样间隔为?=1 f s , 对连续的 正弦信号按一定的时间间隔?进行采样, 得到 v i (n ? (i =1, 2, ; n =1, 2, …M 。对v 1(t 计算出各采样点值v 1(t 0 , v 1(t 1 , …, v 1(t M -1 , 可得到 v 1(t 的测量残差为: v i =C 0sin Ξt i +C 1co s Ξt i -v 1(t i i =0, 1, …, M -1 (4

对正弦信号的采样频谱分析.doc

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计 课程名称:课程设计2 设计题目:对正弦信号的抽样频谱分析院系:电子与信息工程学院 班级:0805203 设计者:褚天琦 学号:1080520314 指导教师:郑薇 设计时间:2011-10-15 哈尔滨工业大学

一、题目要求: 给定采样频率fs,两个正弦信号相加,两信号幅度不同、频率不同。要求给定正弦信号频率的选择与采样频率成整数关系和非整数关系两种情况,信号持续时间选择多种情况分别进行频谱分析。 二、题目原理与分析: 本题目要对正弦信号进行抽样,并使用fft对采样信号进行频谱分析。因此首先对连续正弦信号进行离散处理。实际操作中通过对连续信号间隔相同的抽样周期取值来达到离散化的目的。根据抽样定理,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。设抽样周期为TS(抽样角频率为ωS),则 可见抽样后的频谱是原信号频谱的周期性重复,当信号带宽小于奈奎斯特频率的二分之一时不会产生频谱混叠现象。 因此,我们对采样频率的选择采取fs>2fo,fs=2fo,fs<2fo三种情况进行分析。对信号采样后,使用fft函数对其进行频谱分析。为了使频谱图像更加清楚,更能准确反映实际情况并接近理想情况,我们采用512点fft。取512点fft不仅可以加快计算速度,而且可以使频谱图更加精确。若取的点数较少,则会造成频谱较大的失真。 三、实验程序: 本实验采用matlab编写程序,实验中取原信号为 ft=sin(2πfXt)+2sin(10πfXt),取频率f=1kHz,实验程序如下: f=1000;fs=20000;Um=1; N=512;T=1/fs; t=0:1/fs:0.01; ft=Um*sin(2*pi*f*t)+2*Um*sin(10*pi*f*t); subplot(3,1,1); plot(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft'); title('抽样信号的连续形式'); subplot(3,1,2); stem(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft');

50Hz非正弦周期信号的分解与合成实验报告

硬件实验 实验一50H z非正弦周期信号的分解与合成 一、实验目的 1. 理解并掌握信号分解与合成的原理。 2. 观测50Hz非正弦周期信号的频谱,并与其傅立叶级数展开式中各项的频率与系数比较。 3. 观测基波和其谐波的合成。 二、实验设备 1.信号与系统实验箱:TKSS-C型; 2.双踪示波器。 三、实验原理 1.一个非正弦周期函数,只要符合狄里赫利条件,可以用一系列频率成整数倍的正弦函数来表示,其中,与非正弦具有相同频率的成分称为基波或一次谐波,其它成分根据其频率为基波频率的2、3、4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.一个非正弦周期波也可以分解为无限个不同频率的谐波成分,相反,不同频率的谐波可以合成一个非正弦周期波。 3.一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1,方波频谱图如图1.1表示 图1-1 方波频谱图 图1.1 方波的频谱图 下面是各种不同波形的傅立叶级数表达式 方波 三角波 正弦整流半波 正弦整流全波

矩形波 (1)方波 (2)三角波 (3)半波 (4)全波 (5)矩形波 实验装置的结构如图1.2所示 图1.2信号分解与合成实验装置结构框图, 图中,LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。1BPF ~6BPF 为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。 四、预习要求 在做实验前必须认真复习教材中关于周期性信号傅立叶级数分解的有关内容。 五、实验内容及步骤 1.调节函数信号发生器,使其输出50Hz 的方波信号,并将其接至信号分解实验模块BPF 的输入端,然后细调函数信号发生器的输出频率,使该模块的基波50Hz 成分BPF 的输出幅度为最大。 2.将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值,并列表记录之。 )7sin 7 15sin 513sin 31(sin 4)(???++++=t t t t u t u m ωωωωπ)5sin 251 3sin 91(sin 8)(2???++-=t t t U t u m ωωωπ)3cos 3sin 312cos 2sin 21cos (sin 2)(???++++=t T t T t T U T U t u m m ωτπωτπωτππτ2111()(sin cos 2cos 4)24315 m U u t t t t πωωωπ=+--+???)6cos 351 4cos 1512cos 3121(4)(???+---=t t t U t u m ωωωπ

迭代法正弦信号频率估计

频率估计的相位加权平均算法及其迭代方法 在信号处理领域,估计复高斯白噪声环境中的单频复正弦信号的频率是一个十分重要的问题,其应用十分广泛。如在系统频率同步时,利用导频进行频偏估计等。 根据最大似然(ML )准则,解决该问题的最优方法是搜索周期图的谱峰位置,但是,即使采用FFT 快速算法,这种最大似然估计方法仍然具有非常大的运算量。因此,在文献[12]-[16]中提出了一些运算量相对较低的简化算法。要评价这些简化算法的估计性能,信噪比门限是一个重要的指标。某一算法的信噪比门限指的是该算法估计结果的均方误差开始离开CRB (Cramer-Rao bound )时的信噪比值。 文献[12]-[16]提出的方法中,WPA 方法[12]具有最低的运算量,但是其存在信噪比门限随所估计的复正弦信号频率的增大而升高的问题。为了克服这个问题,文献[16]提出了WNLP 方法,该方法可使得信噪比门限在整个[,)ππ-的估计范围内保持不变,但WNLP 方法的信噪比门限较高,当所估计的复正弦信号频率较低时,WNLP 方法的信噪比门限将高于WPA 方法。因此,本文提出了一种基于WPA 方法的迭代方法。该迭代方法不仅能在整个[,)ππ-的估计范围内保持其信噪比门限不变,而且其信噪比门限远低于WNLP 方法的信噪比门限。 .1 相位加权平均法 叠加复高斯白噪声的复正弦信号为: ()()0j n n s n Ae z ωθ+=+ 式中,0,1,2,,1n N =- 。 采样时刻序列表示采样周期的整数倍。主要关心的参量是频率0ω。n z 表示测量噪声。 记加权系数为:

22312212n N n N p N N ??????--?? ?????????=-?????????????? 。 频率的估计为: 11n n n n n x x x x ++=∠-∠=∠ , 2 010N n n n t p x x ?-+==∠∑ 。 式中2 01N n t p -==∑;0?是无偏估计。其中n 为相邻2点的相位差。Kay 提出的频率估 计算法在高信噪比下达到CR 门限。 在较高信噪比SNR > 6dB 时,估计误差可以达到CRB. Kay 方法理论上可以计算的频率范围为(),ππ-,其主要缺点是低信噪比情况下性能较差, 其门限信噪比还会随着待估频率的增大而增大. Kim 等人在Kay 方法的基础上, 针对Kay 方法的高信噪比门限问题,提出了前置矩形滤波器的思路,通过这一预处理, 极大地改善了信噪比门限这一问题,且只增加了少量的计算量, 然而Kim 方法的不足在于其频率估计范围极大地减小. 当前置滤波器为长度为M 的矩形滤波器时, 频率估计器可以获得()1010log M 的增益,但是其频率估计范围仅为(),M M ππ-,这种方法是以减小频率估计范围为代价来达到使频率估计方法适应于低信噪比情况。 另一方面,从最大谱峰搜索这一思路出发FITZ 首先推导出一种快速测频方法,如下式, ()()() (){} 016arg 121J N m m N n R m J J ω=≈-++∑

实现正弦信号的采样与重构课程设计报告

东华理工大雪软件学院课程设计报告 课程设计题目:实现正弦信号的采样与重构 学生姓名:陈俊 学号:08113203 专业:信息工程 班级:081132 指导教师:李金萍 2011 年 1 月 6日

目录 实验目的 (2) 实验原理 (2) MATLAB简介 (3) 实验步骤 (5) 程序代码 (6) 实验效果图 (9) 心得体会 (10) 参考文献 (10) 附录 (11)

一、试验目的 1、了解信号的采样方法与过程以及信号恢复的方法。 2、通过实验前对MATLAB软件的学习,更好的掌握MATLAB 软件的使用 3、验证采样定理。 二、试验原理 1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。采样信号x s(t)可以看成连续信号x (t)和一组开关函数s(t)的乘积。s(t)是一组周期性窄脉冲,如图2-5-1,T s称为采样周期,其倒数f s=1/T s 称采样频率。 图2-5-1 矩形采样信号 对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。平移的频率等于采样频率f s及其谐波频率2f s、3f s……。当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x规律衰减。采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。 2、采样信号在一定条件下可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。

三、MATLAB简介 软件的功能特点: 在科学研究和工程应用中,往往要进行大量的数学计算,其中包括矩阵运算。这些运算一般来说难以用手工精确和快捷地进行,而要借助计算机编制相应的程序做近似计算。 Matlab就解决这些问题。Matlab语言有如下特点: 1.编程效率高 它是一种面向科学与工程计算的高级语言,允许用数学形式的语言编写程序,且比Basic、Fortran和C等语言更加接近我们书写计算公式的思维方式,用Matlab编写程序犹如在演算纸上排列出公式与求解问题。因此,Matlab语言也可通俗地称为演算纸式科学算法语言由于它编写简单,所以编程效率高,易学易懂。 2.用户使用方便 Matlab语言是一种解释执行的语言,它灵活、方便,其调试程序手段丰富,调试速度快,需要学习时间少。人们用任何一种语言编写程序和调试程序一般都要经过四个步骤:编辑、编译、连接以及执行和调试。各个步骤之间是顺序关系,编程的过程就是在它们之间作瀑布型的循环。具体地说,Matlab运行时,如直接在命令行输入Mailab语句(命令),包括调用M文件的语句,每输入一条语句,就立即对其进行处理,完成绩译、连接和运行的全过程。又如,将Matlab源程序编辑为M文件,由于Mat1ab 磁盘文件也是M文件,所以编辑后的源文件就可直接运行,而不需进行编译和连接。在运行M文件时,如果有错,计算机屏幕上会给出详细的出锗信息,用户经修改后再执行,直到正确为止。 所以可以说,Mat1ab语言不仅是一种语言,广义上讲是一种该语言开发系统,即语言调试系统。

非正弦周期信号的分解与合成

实验五50H z非正弦周期信号的分解与合成 班级:信工 姓名:xx 学号:xxxxxxxxx 一、实验目的 1. 理解并掌握信号分解与合成的原理。 2. 观测50Hz非正弦周期信号的频谱,并与其傅立叶级数展开式中各项的频率与系数比较。 3. 观测基波和其谐波的合成。 二、实验设备 1.信号与系统实验箱:TKSS-C型; 2.双踪示波器。 三、实验原理 1.一个非正弦周期函数,只要符合狄里赫利条件,可以用一系列频率成整数倍的正弦函数来表示,其中,与非正弦具有相同频率的成分称为基波或一次谐波,其它成分根据其频率为基波频率的2、3、4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.一个非正弦周期波也可以分解为无限个不同频率的谐波成分,相反,不同频率的谐波可以合成一个非正弦周期波。 3.一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1,方波频谱图如图1.1表示 四、实验内容及步骤 实验内容: 1、调节函数信号发生器,使其输出50Hz的方波信号,并将其接至信号分解实验模块BPF的输入端,然后细调函数信号发生器的输出频率,使该模块的基波50Hz成分BPF的输出幅度为最大。 2、将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值,并列表记录之。 3、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。 4、在3的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。 5、分别将50Hz单相正弦半波、全波、矩形波和三角波的输出信号接至50HZ电信号分解与合成模块输入端、观测基波及各次谐波的频率和幅度,记录之。 6、将50Hz单相正弦半波、全波、矩形波、三角波的基波和谐波分量接至加法器的相

基于LabVIEW的正弦信号频率与相位测量

基于LabVIEW 的正弦信号频率与相位测量 1. 前言 信号频率与相位的测量具有重要的实际意义。本文调研了频率与相位的多种测量算法,并借助LabVIEW 编程实现。在此基础上,对各种算法进行了比较研究,且提出了行之有效的改进措施。 2. 采样定理与误差分析 2.1 采样定理 时域信号()f t 的频谱若只占据有限频率区间m m ωω(-,),则信号可以用等间隔的采样值唯一表示,而最低采样频率为m 2f 。采样定理表明:信号最大变化速度决定了信号所包含的最高频率分量,要使采样信号能够不失真地反映原信号,必须满足在最高频率分量的一个周期内至少采样两个点。 2.2 误差分析 对连续周期信号()a x t 进行采样得离散序列()d x n ,如果满足采样定理,则离散序列 ()d x n 的傅里叶级数()dg X k 是连续信号()a x t 的傅里叶级数1()ag X k ω的周期延拓,否则会 出现两种形式的误差。 2.2.1 泄漏误差 在连续信号()a x t 一个周期1T 内采样1N 个点,如果正好满足11s N T T =(s T 为采样间隔),则是完整周期采样,采样结果()d x n 仍为周期序列,周期为1N 。基于()d x n 一个周期1N 个点计算离散傅里叶级数()dg X k ,由()dg X k 可以准确得到连续信号()a x t 的傅里叶级数 1()ag X k ω。如果在连续信号()a x t 的M 个周期时间内采样整数1N 个点,即11s N T MT =, 也是完整周期采样。在此情况下,采样结果()d x n 仍为周期序列,周期为1N ,但()d x n 的一个周期对应于()a x t 的M 个周期,由离散序列()d x n 仍然可以准确得到连续信号()a x t 的

正弦信号的采样与恢复

***************** 实践教学 ******************* 计算机与通信学院 2013年春季学期 信号处理课程设计 题目:正弦信号的采样与恢复 专业班级: 姓名: 学号: 指导教师: 成绩:

摘要 通过对信号取样定理与信号恢复知识认识的学习,了解到数字信号处理的理论之后,了解到数字信号处理技术相对于模拟信号处理技术有许多优点,因此人们希望将模拟信号经过采样和量化编码形成数字信号,在采用数字信号处理技术进行处理。数字信号处理是一门理论与实践紧密结合的课程,而本课程设计是对正弦信号进行采样与恢复,通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中的多个周期中的一个周期频谱,并显示恢复后的时域连续信号,采用MATLAB软件进行一些仿真和设计,并对所得到的MA TLAB图形进行分析和比较。最后总结。 关键字:采样、恢复、 MATLAB、仿真

目录 前言 (1) 一、设计任务 (2) 二、低通滤波器 (3) 1、概念 (3) 2、工作原理 (3) 3、特点 (3) 三、设计原理 (4) 1、采样定理的原理 (4) 2、信号的恢复 (4) 四、设计流程图 (6) 五、设计内容与步骤 (7) 1、正弦信号的采样 (7) 1.1连续信号y=sin(t)和其对应的频谱 (7) 1.2 对连续信号y=sin(t)进行抽样并产生其频谱 (7) 2、通过低通滤波恢复原连续信号 (10) 总结 (13) 参考文献 (14) 致谢 (15) 附录 (16)

前言 随着信息科学和计算机技术的迅速发展,数字信号处理的理论与应用得到飞跃的发展,形成了一门及其重要的学科。数字信号处理是一门理论与实践紧密结合的课程。做大量的习题和上机实验,有助于进一步理解和巩固理论知识,还有助于提高分析和解决实际问题的能力。过去用其他算法语言,实验程序复杂,在有限的实验课时内所做的实验内容少。MA TLAB 强大的运算和图形显示功能,可使数字信号处理上机实验效率大大提高。特别是它的频谱分析和滤波器分析与设计功能很强,使数字信号处理工作变得十分简单、直观。这样一来,使复杂的数字滤波器分析与设计的繁杂计算问题,变得容易接受,以实现的见到问题。 本实验设计的题目是:信号的采样与恢复、采样定理的仿真。通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中多个周期中的一个周期频谱,并显示恢复后的时域连续信号。实验中,原连续信号的频谱由于无法实现真正的连续,所以通过扩大采样点的数目来代替,理论上当采样点数无穷多的时候即可实现连续,基于此尽可能增加采样点数并以此来产生连续信号的频谱。信号采样过程中,通过采样点的不同控制采样频率实现大于或小于二倍最高连续信号的频率,从而可以很好的验证采样定理。信号恢复,滤波器的参数需要很好的设置,以实现将抽样后的信号进行滤波恢复原连续信号。 由于自己能力有限,此次课程设计肯定有很多不足,但在老师的帮助下,自己得到了很大的提升。使本课程设计进一步得到了完善。

信号系统非正弦周期信号的分解与合成实验报告

非正弦周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅利叶级数各项的频率与 系数作比较。 2.观测基波和其谐波的合成。 二、实验设备 1、THBCC-1型信号与系统 控制理论及计算机控制技术实验平台 2、PC 机(含“THBCC-1”软件) 三、实验原理 1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦 具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、?、 n 等倍数分别称二次、三次、四次、?、n 次谐波,其幅度将随谐波次数的增加而减小,直 至无穷小。不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 2.实验装置的结构图 3、各次不同波形及其傅氏级数表达式 方波 ) 7sin 7 15sin 5 13sin 3 1(sin 4)( +ω+ ω+ ω+ ωπ = t t t t A t f ,其中的T π= ω2 三角波

) 7 cos 49 1 5 sin 25 1 3 sin 9 1 (sin 8 ) ( 2 + ω - ω + ω - ω π =t t t t A t f ,其中的T π = ω 2 半波 半波的傅立叶频谱 正弦整流全波 正弦全波整流形波的傅立叶频谱 ) 8 cos 63 1 6 cos 35 1 4 cos 15 1 2 cos 3 1 2 1 ( 4 ) ( - ω - ω - ω - ω - π =t t t A t f ,其中T π = ω 2矩形波 矩形波形波的傅立叶频谱 四、实验内容及步骤

非正弦周期量

课题12 — 1非正弦周期量的产生 12 — 2非正弦周期量的谐波分析 12 — 3非正弦周期量的有效值和平均功率 时间:12月27日 教学目标1.了解非正弦周期电流的产生及应用。 2.了解一个非正弦周期量可以分解为直流分量和一系列频率不同的正弦分量。 3.掌握非正弦周期电流、电压的有效值和平均功率的概念及计算。教学重点有效值和平均值的计算。 教学难点有效值和平均值的计算。 第一节非正弦周期量的产生 一、不按正弦规律变化的交流电称为非正弦交流电 二、非正弦交流电产生的原因 1.电路中存在非线性元件,如整流。 2.由几个不同频率的正弦交流电叠加。 3.非正弦的特殊信号源。 第二节非正弦周期量的谐波分析 一、谐波分析 一个非正弦的周期信号可看作是由一些不同频率的正弦波信号叠加的结果,这一过程称为谐波分析。

二、非正弦波的基波(一次谐波) 二次谐波:谐波分量的频率是基波的2倍。 零次谐波:直流分量叫零次谐波。 三、谐波分析 对已知波形的信号,求出它所包含的各次谐波分量的振幅和初相角,并写出各次谐波分量的表达式。分析表12-1。 第三节 非正弦周期量的有效值和平均功率 一、有效值 如果一个非正弦周期电流流经电阻R 时,电阻上消耗的功率和一个直流电流I 流经同一电阻R 时,所消耗的功率相同,那么这个直流电流的数值I 就叫该非正弦周期电流的有效值。 电压、电流的有效值 U = 222120U U U ++ I = 222120I I I ++ 二、平均功率 1.只有电阻才消耗功率,电感和电容不消耗功率。 2.平均功率就是各次谐波所产生的平均功率之和,即 P = U 0 I 0 + U 1 I 1 cos ?1 + U 2 I 2 cos ?2 + ??? 课堂练习 习题(《电工基础》第2版周绍敏主编) 2.选择题(1)~(5)。 4.计算题(4)。 课堂小结 1.非正弦周期电流的概念;非正弦周期量的谐波分析法。 2.非正弦周期电流、电压有效值的计算公式。 3.电路消耗的平均功率的计算。 布置作业 习题(《电工基础》第2版周绍敏主编) 2.选择题(1)~(5)。 4.问答与计算题(4)。

噪声中正弦信号的经典法频谱分析

实验报告 一、实验名称 噪声中正弦信号的经典法频谱分析 二、实验目的 通过对噪声中正弦信号的经典法频谱分析,来理解和掌握经典谱估计的知识,以及学会应用经典谱估计的方法。 三、基本原理 1.周期图法:又称直接法。把随机信号)(n x 的N 点观察数据)(n x N 视为一能量有限信号,直接取)(n x N 的傅里叶变换,得)(jw N e X ,然后再取其幅值的平方,并除以N ,作为对)(n x 真 实的功率谱)(jw e P 的估计,以)(?jw PER e P 表示用周期图法估计出的功率谱,则2)(1)(?w X N w P n PER =。 2.自相关法:又称为间接法功BT 法。先由)(n x N 估计出自相关函数)(?m r ,然后对)(?m r 求傅里叶变换得到)(n x N 的功率谱,记之为)(?w P BT ,并以此作为对)(w P 的估计,即1,)(?)(?-≤=--=∑N M e m r w P jwm M M m BT 。 3.Bartlett 法:对L 个具有相同的均值μ和方差2σ的独立随机变量1X ,2X ,…,L X ,新随机变量L X X X X L /)(21+++= 的均值也是μ,但方差是L /2σ,减小了L 倍。由此得 到改善)(?w P PER 方差特性的一个有效方法。它将采样数据)(n x N 分成L 段,每段的长度都是M ,即N=LM ,第i 段数据加矩形窗后,变为L i e n x M w x M n jwn i N I PER ≤≤=∑-=-1,)(1)(?2 10 。把)(?w P PER 对应相加,再取平均,得到平均周期图2 1110 )(1)(?1)(∑∑∑==-=-==L i L i M n jwn i N i PER PER e n x ML w P L w P 。 4.Welch 法:它是对Bartlett 法的改进。改进之一是,在对)(n x N 分段时,可允许每一段的数据有部分的交叠。改进之二是,每一段的数据窗口可以不是矩形窗口,例如使用汉宁窗或汉明窗,记之为)(2n d 。这样可以改善由于矩形窗边瓣较大所产生的谱失真。然后按Bartlett

实验一 非正弦周期信号的分解与合成

实验一非正弦周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅里叶级数各项的频率与系数作比较; 2.观测基波和其谐波的合成。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台 2.PC 机(安装“THBCC-1”软件) 3.双踪慢扫描示波器1台(选配) 三、实验原理 1.任何电信号都是由各种不同频率、幅值和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波的频率为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅值相对大小是不同的。将被测方波信号加到分别调谐于其基波和各次奇谐波频率的电路上。从每一带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是50Hz 的方波。 2.实验装置的结构图 图4-1实验结构图 图4-1中LPF 为低通滤波器,可分解出非正弦周期信号的直流分量。BPF 1~BPF 6为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。 3.各种不同波形及其傅氏级数表达式 方波: ?? ? ??++++ sin7ωt 71sin5ωt 51sin3ωt 31sin ωt π4Um U(t)= 三角波: ?? ? ??-+- sin5ωt 251sin3ωt 91sin ωt π8Um U(t)=2 半波 ??? ??+--+ cos4ωt 151cos ωt 31sin ωt 4π21π2Um U(t)= 全波 ?? ? ??+--- cos6ωt 351cos4ωt 151cos2ωt 3121π4Um U(t)= 矩形波 ?? ? ??++++ cos3ωt T 3τπsin 31cos2ωt T 2τπsin 21cos ωt T τπsin π2Um T τUm U(t)= 四、实验内容及步骤

正弦信号整周期采样

正xx信号整周期采样的fft变换 2010-01-28 10:53 fs=1; N=100;%频率分辨率为fs/N= 0.01Hz,下面信号的频率 0.05是 0.01的整数倍,即为整周期采样 n=0:N-1; t=n/fs; f0= 0.05;%设定xx信号频率 x=cos(2*pi*f0*t);%生成正弦信号%FFT是余弦类变换,最后得到的初始相位是余弦信号的初时相位,在这里为0。如果信号 figure (1); %为x=sin(2*pi*f0*t);则初时相位应该是-90度而非0度。 subplot (311); plot(t,x);%作余弦信号的时域波形 xlabel('t'); ylabel('y'); title('xx信号时域波形');

grid; %进行FFT变换并做频谱图 y=fft(x,N);%进行fft变换 mag=abs(y)*2/N;%求幅值乘上后面的2/N得到正确幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换subplot (312); stem(f(1:N/2),mag(1:N/2));%做频谱图 xlabel('频率(Hz)'); ylabel('幅值'); title('xx信号幅频谱图'); grid; phase=angle(y);%求幅值乘上后面的2/N得到正确幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换subplot (313); stem(f(1:N/2),phase(1:N/2));%做频谱图 xlabel('频率(Hz)'); ylabel('相位'); title('xx信号相频谱图'); grid;

第十二章(非正弦周期电流电路)习题解答

第十二章(非正弦周期电流电路)习题解答 一、选择题 1. 在图12—1所示电路中,已知)]cos(2512[1t u s ω+=V , )240cos(2502+ω=t u s V 。设电压表指示有效值,则电压表的读数为 B V 。 A .12; B .13; C. 解:设u 如图12—1所示,根据KVL 得 )240cos(25)cos(2512021+ω+ω+=+=t t u u u s s } 即 )120cos(25)cos(25120 -ω+ω+=t t u =)60cos(25120 -ω+t 根据 2 )1(2 )0(U U U += 得1351222=+=U A 2.在图12—2所示的电路中,已知)100cos(2t u s = V , )]60100cos(243[0-+=t i s A ,则s u 发出的平均功率为 A W 。 A .2; B .4; C .5 解:由平均功率的计算公式得 ~ )600cos(0 )1()1()0()0(++=I U I U P =2)60cos(41300 =?+?W 3.欲测一周期性非正弦量的有效值,应用 A 仪表。 A .电磁系; B .整流系; C .磁电系 4.在图12—3所示的电路中,Ω=20R ,Ω=ω5L , Ω=ω451 C , )]3cos(100)cos(276100[t t u s ω+ω+=V ,现欲使电流i 中含有尽可大的基波分量,Z 应 是 C 元件。 A .电阻; B .电感; C .电容

解:由图12—3可见,此电路对基波的阻抗为~ j45 j5 45 5 20 j 1 j j 1 j - ? + + = ω + ω ω ? ω + + =Z C L C L Z R Z i = 8 45 j 20+ +Z 欲使电流i中含有尽可大的基波分量就是要使i Z的模最小,因此Z应为电容。 二、填空题 1.图12—4所示电路处于稳态。已知Ω =50 R,Ω = ω5 L,Ω = ω 45 1 C , )] 3 cos( 100 200 [t u s ω + =V,则电压表的读数为V,电流表的读数为4 A 。 解:由题目所给的条件可知,L、C并联电路对三次谐波谐振,L对直流相当于短路。因此,电压表的读数为7. 70 2 100 =V,而电流表的读数为4 50 200 =A。 2.图12—5所示电路中,当) cos( 2 200? + ω =t u V时,测得10 = I A;当 )] 3 cos( 2 ) cos( 2 [ 2 2 1 1 ? + ω + ? + ω =t U t U u V时,测得200 = U V,6 = I A。则 83 . 105 1 = U V,71 . 169 2 = U V。 ; 解:由题意得

非正弦函数有效值

第十二章电路定理 一、教学基本要求 1、了解周期函数分解为傅里叶级数的方法和信号频谱的概念。 2、理解周期量的有效值、平均值的概念,掌握周期量有效值的计算方法。 3、掌握非正弦周期电流电路的谐波分析法和平均功率的计算,了解滤波器 的概念。 二、教学重点与难点 教学重点: 1、非正弦周期电流电路的电流、电压的有效值、平均值; 2、非正弦周期电流电路的平均功率 3、非正弦周期电流电路的计算方法 叠加定理、戴维宁定理和诺顿定理。 教学难点: 1、叠加定理在非正弦周期电流电路中的应用 2、非正弦周期电流电路功率的计算 三、本章与其它章节的联系: 本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。非正弦周期信号可以分解为直流量和一系列不同频率正弦量之和,每一信号单独作用下的响应,与直流电路及交流电路的求解方法相同,再应用叠加定理求解,是前面内容的综合。 四、学时安排总学时:4 五、教学内容 §12.1 非正弦周期信号 生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。 非正弦周期交流信号的特点: 1) 不是正弦波

2) 按周期规律变化,满足:(k=0,1,2…..) 式中T 为周期。图 12.1 为一些典型的非正弦周期信号。 (a)半波整流波形(b)锯齿波(c)方波 图12.1 本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。 §12.2周期函数分解为付里叶级数 电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式: 也可表示成: 以上两种表示式中系数之间关系为: 上述系数可按下列公式计算:

电工基础——非正弦周期性电路

第六章非正弦周期性电路 学习目标: 1 .了解非正弦周期量的产生 2 .熟悉掌握非正弦周期交流信号的分解方法 3 .掌握非正弦周期交流信号的平均值、有效值、平均功率的计算 4 .熟悉非正弦周期交流电路的分析和计算 重点:非正弦周期交流信号的平均值、有效值、平均功率的计算 难点:非正弦周期交流信号的分解方法 一、非正弦周期量的产生 1 .基本概念:若电路中的电压电流不按正弦规律变化,但还是按照周期性变化的电路称为非正弦周 期性电路。 2 .常见的非正弦周期性波形,如图 6-1 所示。 图 6-1 常见的非正弦周期性波形

3 .非正弦周期量的产生: ( 1 )实验室的信号发生器产生非正弦信号; ( 2 )电子技术中的非线性元件的作用; ( 3 )非电量电测技术中的非正弦信号; ( 4 )各种语音、图象信号等。 二、非正弦周期交流信号的分解 图 6-2 1 .按照傅里叶级数展开法,任何一个满足狄里赫利 (Dirichlet) 条件的非正弦周期信号( 函数 ) 都可以分解为一个恒定分量与无穷多个频率为非正弦周期信号频率的整数倍、不同幅值的正弦分量的和,如图 6- 2 所示,即周期函数 ,称为直流分量 ,

,称为第 K 次谐波分量的振幅。,称为第 K 次谐波分量的初相角。例 6-1 :周期性方波的分解:,分解波形如图 6-3 所示。 图 6-3 方波波形的分解 例 6-2 :锯齿波信号的分解 例 6-3 :三角波信号的分解 三、有效值、平均值、功率 1 .有效值:

( 1 )周期量有效值的定义: 注意:对于非正弦周期信号,其最大值与有效值之间并无关系。 ( 2 )非正弦周期量: 函数 则有效值为: 利用三角函数的正交性得: 同理非正弦周期电流的有效值为: 结论:周期函数的有效值为直流分量及各次谐波分量有效值平方和的方根。 2 .平均值: 非正弦周期性函数的平均值为直流分量: 显然正弦周期性函数的平均值为 0 3 .功率: 如图 6-4 所示,所示一端口 N 的端口电压u ( t ) 和电流i ( t ) 的关联参考方向下,一端 口电路吸收的瞬时功率和平均功率为 图 6-4

非正弦周期信号的分解与合成实验报告(打印版)

非正弦周期信号的分解与合成实验报告 姓名:超哥学号:09050202xx 班级:电气09 实验指导老师:仇芝成绩:__________ 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅利叶级数各项的频率与 系数作比较。 2.观测基波和其谐波的合成。 二、实验设备 1、THBCC-1型信号与系统控制理论及计算机控制技术实验平台 2、PC机(含“THBCC-1”软件) 3、双踪慢扫描示波器 三、实验原理 1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦 具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、?、n 等倍数分别称二次、三次、四次、?、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 2.实验装置的结构图 3.一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一各个 频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式如下。

四、实验内容及步骤 1.将50Hz 信号源接至信号分解实验模块BPF 的输入端。 2.将各带通滤波器的输出(注意各种不同信号所包含的频谱)分别接至示波器,观测各次谐波的频率和幅值,画出波形并列表记录频率和幅值。 3.将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。 4.在步骤3 的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。 5.分别将50Hz 单相正弦半波、全波、矩形波和三角波的输出信号(因实验时间有限,在上述信号中选择了方波)接至50HZ 电信号分解与合成模块输入端、观测基波及各次谐波的频率和幅度,列表记录之。 6.将50Hz 单相正弦半波、全波、矩形波、三角波的基波和谐波分量别接至加法器的相应的输入端,观测求和器的输出波形,并记录之。 五、实验数据或曲线 1.根椐实验测量所得的数据,在同一坐标纸上绘制方波及其分解后所得的基波和各次谐波的波形,画出其频谱图。 (1)方波和基波

实验非正弦周期电路仿真完整版

实验非正弦周期电路仿 真 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

非正弦周期电路的研究 一、 实验目的: 1、充分理解非正弦周期电路的谐波分析法,了解非正弦周期函数的傅里叶分 析法。 2、熟练掌握非正弦周期电流电路的计算。 二、 实验原理: 在实际问题中,电路中可能会产生非正弦量,即电路中的电压和电流随时 间作非正弦周期性变化,它可能由以下原因导致:电路中有两个以上不同频率的正弦电源同时作用;电路中含有二极管等非线性元件;电路输入的信号不是正弦信号。 利用数学手段可以将工程中常遇到的非正弦周期信号分解成无限多个不同 频率的正弦波,设()f t 为一满足狄里赫利条件的非正弦周期信号,其周期为T ,角频率为2T πω=,则()f t 的傅里叶级数展开式的一般形式为: 上式还和合并为:()01cos()km k k f t A A k t ω?∞ ==++∑ 式中:0A ——()f t 的直流分量或恒定分量,也称零次谐波。 11cos()m A t ω?+——频率和()f t 相同,称为基波或一次谐波。 cos()km k A k t ω?+——频率为基波频率的k 倍,称为k 次谐波。 反之同理,我们可以利用几个不同频率(频率之间为倍数关系)的电源制 造一个非正弦周期性信号。 在对非正弦周期电路进行分析时和利用电路的叠加原理,即逐个分析电路 信号的各次谐波,最后再将各次谐波信号合成,这样就把非正弦电路分解成了多个正弦电路分析。 合成时,非正弦周期电流i 的有效值为: 同理,222220123...k U U U U U U =+++++ (1)如下右图所示电路,计算电源电压及干路上电流的有效值,设输入 电源为:()()100sin31440cos62810sin 94220s u t t t t =-++

相关主题
文本预览
相关文档 最新文档