当前位置:文档之家› 采煤机械液压系统故障监测诊断技术的现状和发展正式版

采煤机械液压系统故障监测诊断技术的现状和发展正式版

采煤机械液压系统故障监测诊断技术的现状和发展正式版
采煤机械液压系统故障监测诊断技术的现状和发展正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal.

采煤机械液压系统故障监测诊断技术的现状和发展

正式版

采煤机械液压系统故障监测诊断技术的现状和发展正式版

下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。

采煤工程机械液压系统故障监测诊断

技术是随着液压设备自动化和复杂化的发

展而发展的,具有一定的发展前景和发展

途径,能够紧跟时代的潮流,进行适当的

诊断和监测,保证工程机械液压系统的正

常运行。

工程机械液压系统故障监测诊断技术

是随着液压设备自动化和复杂化的发展而

发展的,是将医疗诊断中的思想推广到了

工程当中的技术。工程机械液压系统具有

响应快、精确度高和功率大等优点,被广

泛地运用在冶金和制造领域。但是需要注

意的是工程机械液压系统比较容易出现一些隐蔽性极强的故障,并受到了很多方面的影响,维修人员应当加强自身能力的培养,更加专业的进行检测和维修。因为工程机械液压系统一旦出现了故障会严重影响整个环节的运行,严重时甚至会威胁到他人的生命安全,维修人员肩负着重要的维护责任。

采煤工程机械液压系统故障监测诊断技术的研究现状

在现在的采煤机械液压系统中存在着一些问题,需要通过使用一些检测方法发现问题的根源,然后才能够进行维修和改善。

1.1主观诊断法

主观诊断法是比较简单的一种诊断方法,主要是依靠一些比较简单的仪器和维修人员的个人经验,对故障发生的原因进行判断,并确定故障发生的部位。这种诊断方法对维修人员的个人要求比较高,要求他们掌握着丰富的故障机理知识并具有相当丰富的实战经验。在采煤机械系统中一般会采用“听”“看”“摸”“测”四种方法,通过对采煤机械系统运作的声音,尤其是机修齿轮转动的声音进行仔细的听辨,能够根据声音的改变进行相应的检查研究。其次便是看,通过眼睛对采煤机械所处的环境进行观测,联系不同环境对机械的影响,能够进行相应的分析,获得一定的结论。然后是触摸机械和测电流

电压进行诊断,能够通过采煤机械的机体的温度进行问题的检测,也可以通过观察电流和电压的方式进行检测。

1.2基于模型诊断法

采煤机液压系统控制具有比较多的功能,能够进行输送机升降、摆动,割头机升降以及产办升降和支护部位的伸缩。这些功能都构成了一个相对独立的液压回路,想要具体的分析是哪一部分出现了问题就需要构建相应的模型,通过对模型的研究和诊断来判断采煤机械内部系统存在的问题。

基于模型诊断法具有一定的实际操作意义,也能够获得一些显著的成果,但是,由于现代工程机械液压系统过于复

杂,受到的影响因素太多,并不是每一个地方都可以进行数据测量和分析的,这样就让最终建模的效果不理想,也不够全面,容易丢失一些重要的部分。

1.3智能诊断法

工程机械液压系统故障监测诊断技术中的智能诊断法是人工智能技术在工程机械液压系统故障监测诊断中的具体运用,是计算机技术和诊断技术相互结合的结果。能够快速的从采煤机械液压系统中获取信息并对信息进行整理和分析,成功的识别故障对象。

智能技术具有比较高端的科学依据,能够结合各种比较高科技的技术进行数据分析和故障分析,获得比较精确的结果。

具体方式主要有从预测角度运用神经网络进行动态模型检测、利用神经网络非线性跟踪能力对故障进行诊断、建立比较强大的专家系统等。这些方式充分利用了网络的方便性和科学性,加强了工程机械液压系统故障监测诊断技术的科学性和智能性,能够更好地额对故障进行分析和检测,同样能够进行及时的处理和改进。

采煤工程机械液压系统故障监测诊断技术的发展

随着科学技术的快速发展,对采煤机械液压系统故障的监测诊断也会不断的发展,总体来说主要有以下趋势和发展前景:

2.1多种技术方法相结合

影响采煤工程机械液压系统的因素有很多,具有多样性和复杂性,想要获得一个比较完整精确的诊断结果,就必须将各种技术结合起来,共同发展,相互促进。在建设工程机械液压系统故障分析系统时,来,通过不同的表达方法,将信息更快更准确的传递出来,能够让维修技术人员更加方便的获取系统内部的信息。

2.2理论知识和实践经验相结合

为了提高工程机械液压系统故障分析检测系统的智能化,在研发这一系统的时候越来越重视理论知识和实际经验的结合。通过对研究对象结构、功能和特点等知识的理解,使用不同的表达方式,构成不同类型的知识宝库,让不同的实践经验

和相应的知识点结合起来,在每个固定的系统中构件相应的子系统,并建立一个起到关联作用的中心系统。在这个中心系统当中对整个检测系统的数据进行分析和整合,并进行理论知识和实际操作之间的转换,让整个诊断过程更加的可靠,也让最终的解决办法能够更加的具有实际操作性。

2.3多种故障诊断方法的混合

将多种诊断方法混合在一起已经变成了工程机械液压系统故障监测诊断系统的发展趋势。一般会将专家系统和神经网络系统相结合,或者将模糊逻辑、专家系统和神经网络相结合,综合各种诊断方法中的优点,让智能故障检测更加的具有说服

力和准确性。

2.4虚拟技术的不断发展和使用

虚拟技术是计算机技术的又一重大发展,具有多感知性、交互性和自主性,并具有一般多媒体技术的优点,同时又有了技术上质的飞越和提高,能够准确的预测故障发生过程和原因,进行早期的预防和改善。同时,要将整个数据库和人工智能结合起来,扩大数据库的储存量,利用虚拟技术对故障对象进行全面的分析和诊断,能够深入的了解故障发生的原因,进行及时的恢复和维修。

采煤工程机械液压系统故障监测诊断技术是在不断发展和完善当中的,利用现有的研究成果,不断的进行推进和改善,

加强采煤机械系统中故障监测系统的智能性和科学性,让检测结果更加的准确和实用。同时,采煤工程机械液压系统故障监测诊断技术具有自身的发展规律和方向,想要研究这方面的技术一定要把握好这一规律和方向,加强采煤机械维修和护理的科学性和有用性。。

——此位置可填写公司或团队名字——

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

液压系统故障诊断技术的现状与发展趋势

液压系统故障诊断技术的现状与发展趋势 发表时间:2019-05-19T14:53:35.567Z 来源:《防护工程》2019年第1期作者: 1曹晓宁 2马海舰 3赵静思 [导读] 就会出现系统诊断开展难度较大的尴尬局面,因此对液压系统故障诊断技术及其应用展开研究,具有一定现实意义。1天津格特斯检测设备技术开发有限公司天津 300380;2天津格特斯检测设备技术开发有限公司天津 300380;3天津格特斯检测设备技术开发有限公司天津 300380 摘要:现阶段,随着社会的发展,我国的科学技术的发展也有了很大的进步。液压系统重量轻、功率强、运行平稳,而且还能够采取大范围的无极调速,因此被普遍运用到了机械设备当中,同时液压系统一般都运用于控制和自动化这两种系统当中,并且液压系统还可以当做传输动力设备来运用。液压系统的运行能力以及安全性,能够对关键系统形成决定性的影响,要是液压系统出现问题,那么关键系统就会发生停滞的情况,从而让企业的经济收益受到影响,因此相关工作人员一定要掌握合理的液压系统故障诊断技术,从而让液压系统得到安全的运行。 关键词:液压系统;故障诊断技术;现状;发展趋势 引言 液压系统会通过对自身作用力的运用,对压强作用力进行增强。整体液压系统由液压油、动力元件以及执行元件等几部分内容组成,主要分为液压控制系统以及液压传动系统两类。由于其构成零件种类相对较为复杂,且安装位置较为隐蔽,所以一旦系统出现故障,就会出现系统诊断开展难度较大的尴尬局面,因此对液压系统故障诊断技术及其应用展开研究,具有一定现实意义。 1现状 早在上世纪60年代的的时候,我国就已经开始对液压系统故障诊断技术进行研究,主要是利用测量系统的流量、振动等参数,和处理与系统对应的信号,来给液压系统采取诊断。此项技术到了上世纪八十年代以后,因为液压系统具有很多的类型,而且结构也比较的繁杂,导致诊断技术无法给液压系统采取完善的诊断,这给液压系统故障诊断技术的发展造成了很大的影响。根据这些问题,我国的相关专家在经过了长时间的研究和改进以后,让诊断技术的水平得到了一定程度的提高,不但能够确保液压故障诊断的完善性,另外也能够给故障信息进行保存,这样的话就可以让液压系统得到更加完善的运维管理,从而进一步加强了液压系统的工作效率。 2液压系统故障诊断技术应用分析 2.1仪表测量技术 该项技术主要会通过对测试仪的运用,完成对系统故障的诊断。此设备主要由流量计、压力表以及安全阀等部件所组成,在具体测试过程中,技术人员会通过串联的方式将测试仪接连在相应回路之中,并会通过断开原主油路的方式,确保压力油可以经由测试仪流回到油箱之中,以便利用逐渐加载的方式完成相应诊断。所以该测试仪能够同时完成对系统监测点的流量以及压力测试工作,可以对执行元件、动力元件以及控制元件的工况与性能进行明确,以确保可以在短时间内完成故障位置查找。 2.2智能诊断技术 智能诊断技术种类相对较多,现阶段较为常用的技术主要有以下几种:1)专家系统。该项技术主要用于复杂系统诊断,是以信号处理以及传感技术为依托研发得到的。在具体应用过程中,技术人员会将故障现象经由用户接口输入到电脑终端,而电脑会按照数据库内信息对现象产生原因进行推理与分析,进而找出故障原因并会提供相应预防措施与维修方案,以供技术人员进行使用[2]。2)人工神经网络。此种诊断技术有效利用了神经网络所具有的计算、非线性以及自学习等方面能力,能够对系统故障进行准确判断,诊断效果较为理想。就某一角度而言,此项技术主要分为知识处理以及模式识别两种,其中在实施模式识别诊断时,会将神经网络作为分类器完成相应系统故障识别。 2.3四觉诊断技术 所谓“四觉”,就是利用嗅觉、触觉等较为直观的方式对系统故障进行获取。此种方式相对较为简单,技术人员会通过用手直接触摸的方式,明确液压泵表面是否存在过热问题或管路以及元件振动情况;会通过仔细观察的方式,对油温计、测点压力表以及真空表等设备数值合理性进行检查,以便及时发生异常数值,并准确找到数据产生原因等。与其他诊断技术相比,此种技术受技术人员自身能力以及感觉灵敏度的影响相对较大,只能作为定性判断,还需要展开后续检测,才可以查明故障产生真正原因。 3液压故障诊断技术的发展趋势 3.1经验知识和原理知识要紧密融合 若想加强液压故障智能诊断系统的能力,有关工作者要在研究液压系统故障诊断系统期间,掌握有关的专业知识,另外,还要掌握液压系统的结构和主要功能,要是在研究液压系统故障诊断期间,不重视对某一方面的研究的话,那么就会降低诊断效果。所以,相关工作者要把专业知识和诊断技能有效的融合到一起,然后再把两者结合到故障诊断系统里,安排合理的分析形式,还要保证所有的分析形式都可以单独运行,如此一来就可以慢慢的把液压系统故障诊断的系统的性能进行加强,让它能够变成具备专家级知识的诊断系统。 3.2多种智能故障诊断方法的混合 目前,液压系统故障诊断系统都在朝着技术融合的方向发展,也就是说把多种技术融合到一起,构成混合诊断系统。在智能技术进行融合期间,包括把专家诊断系统与神经网络采取有机融合,然后在里面加进模糊逻辑等。混合智能诊断方式的发展方向,就是要把传统的诊断系统转化为混合系统,把专家传播的知识转化成系统自主学习以及分析的系统,把单纯的推理转换为混合推理系统等。智能液压系统诊断系统在自主学习和诊断等方面都取得了突破性进展,所以目前受到了普遍的青睐。 3.3虚拟现实技术会得到重视和应用 在多媒体技术之后,虚拟现实技术开始得到人们普遍的关注,此项技术的存在感、感知性等都比较强。从表面进行分析,虚拟现实技术以及多媒体技术具有很多共同特征,所以人们能够更快的接受虚拟现实技术,不过虚拟现实技术可以让人们使用计算机来对很多的信息可视化,其属于交互性技术方式,和传统的人机界面采取对比的话能够发现,虚拟现实技术具有更好的应用价值。

机械故障诊断技术课后复习资料

机械故障诊断技术 (第二版张建)课后答案 第一章 1、故障诊断的基础是建立在能量耗散的原理上的。 2、机械故障诊断的基本方法课按不同观点来分类,目前流行的分类方法有两种:一是按机械故障诊断方法的难易程度分类,可分为简易诊断法和精密诊断法;二是按机械故障诊断的测试手段来分类,主要分为直接观察法、振动噪声测定法、无损检测法、磨损残余物测定法、机器性能参数测定法。 3、设备运行过程中的盆浴曲线是指什么? 答:指设备维修工程中根据统计得出一般机械设备劣化进程的规律曲线(曲线的形状类似浴盆的剖面线) 4、机械故障诊断包括哪几个方面内容? 答:(1)运行状态的检测根据机械设备在运行时产生的信息判断设备是否运行正常,其目的是为了早期发现设备故障的苗头。 (2)设备运行状态的趋势预报在状态检测的基础上进一步对设备 运行状态的发展趋势进行预测,其目的是为了预知设备劣化的速度,以便生 产安排和维修计划提前做好准备。 (3)故障类型、程度、部位、原因的确定最重要的是设备类型的确定,它是在状态检测的基础上,确定当机器已经处于异常状态时所需进一步解决的问题,其目的是为了最后诊断决策提供依据。 5、请叙述机械设备的故障诊断技术的意义? 答:设备诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。机械设备的故障诊断可以保证整个企业的生产系统设备的运行,减少经济损失,还可以减少某些关键机床设备因故障存在而导致加工质量降低,保证整个机器产品质量。 6、劣化曲线沿横、纵轴分别分成的三个区间分别是什么,代表什么意义? 答:横轴包括1、磨合期 2、正常使用期 3、耗损期纵轴包括1、绿区(故障率最低,表示机器处于良好状态)2、黄区(故障率有抬高的趋势,表示机器

机械故障诊断考试题目

机械故障诊断考试--题库 (部分内容可变为填空题) 第一章: 1、试分析一般机械设备的劣化进程。 答:1)早期故障期 阶段特点:开始故障率高,随着运转时间的增加,故障率很快减小,且恒定。 早期故障率高的原因在于:设计疏忽,制造、安装的缺陷,操作使用差错。 2)偶发故障期 阶段特点:故障率恒定且最低,为产品的最佳工作期。 故障原因:主要是使用不当、操作失误或其它意外原因。 3)耗损故障期 阶段特点:故障率再度快速上升。 故障原因:零件的正常磨损、化学腐蚀、物理性质变化以及材料的疲劳等老化过程。 2、根据机械故障诊断测试手段的不同,机械故障诊断的方法有哪些? 答:1′直接观察法-传统的直接观察法如“听、摸、看、闻”是最早的诊断方法,并一直沿用到现在,在一些情况下仍然十分有效。 2′振动噪声测定法-机械设备在动态下(包括正常和异常状态)都会产生振动和噪声。进一步的研究还表明,振动和噪声的强弱及其包含的主要频率成分和故障的类型、程度、部位和原因等有着密切的联系。 3′无损检验-无损检验是一种从材料和产品的无损检验技术中发展起来的方法 4′磨损残余物测定法(污染诊断法 5′机器性能参数测定法-机器的性能参数主要包括显示机器主要功能的一些数据 3、设备维修制度有哪几种?试对各种制度进行简要说明。 答:1o事后维修 特点是“不坏不修,坏了才修”,现仍用于大批量的非重要设备。 2o预防维修(定期维修) 在规定时间基础上执行的周期性维修 3o预知维修 在状态监测的基础上,根据设备运行实际劣化的程度决定维修时间和规 模。预知维修既避免了“过剩维修”,又防止了“维修不足”;既减少了 材料消耗和维修工作量,又避免了因修理不当而引起的人为故障,从而 保证了设备的可靠性和使用有效性。 第二章: 1、什么是故障机理? 答:机械故障的内因,即导致故障的物理、化学或机械过程,称为故障机理。 2、什么是机械的可靠性?机械可靠性的数量指标有哪两个?他们之间互为什么关系?

机械故障诊断第1

《机械故障与诊断》 一、填空题(每空1分,共20分) 1、现代设备的发展方向主要分为、、、。 2、设备故障诊断是指在设备运行中或在基本的情况下,通过各种手段,掌握设备运行 状态,判定,并预测、预报设备未来的状态,从而找出对策的一门技术。 3、每隔一定时间对监测的设备进行测试和分析的诊断称为。 4、是目前所有故障诊断技术中应用最广泛最成功的诊断方法。 5、相关分析又称,用于描述信号在不同时刻的相互依赖关系,是提取信号中的常用手段。 6、信号的均方值反映了信号x(t)相对于的波动情况,表示信号的。 7、机械故障按发生的原因分、、。 8、功率谱是在中对信号能量或功率分布情况的描述,包括和。 9、时域平均要求采集两路信号,一是,另一是用作分段的。 二、判断题(每题2分,共20分) 1、通常设备的状态可分为正常状态、异常状态和故障状态。() 2、频域变换成时域可采用傅立叶变换。( ) 3、故障诊断技术真正作为一门学科是以振动等传感器的广泛应用为标志。( ) 4、设备处于正常状态表明设备不存在任何缺陷。() 5、设备故障所具有的性质应除开传播性。 ( ) 6、频率与角频率概念相同。 ( ) 7、定期维修周期是根据统计结果确定的,能防止设备损坏,是最好的方法。() 8、定期诊断是每隔一定的时间对监测的设备进行测试和分析。() 9、精密诊断主要依靠设备维修人员和操作工人进行。() 10、时域故障诊断的方法不包括概率分析法。( ) 三、选择题(每题2分,共20分) 1、设备故障诊断最初的发展阶段是 ( ) 。 A.感性阶段 B.量化阶段 C.诊断阶段 D.人工智能和网络化 2、传统的故障诊断方法不包括() A 振动诊断 B 温度诊断 C 专家系统 D 电参数诊断

机械故障诊断学试题及答案)

机械故障诊断学作业简答题部分 1.简述通常故障诊断中的一般过程? 机械设备状态信号的特征的获取;故障特征的提取;故障诊断;维修决策的形成 2.简述设备故障的基本特性。 3.什么是轴颈涡动力?并用图示说明轴颈涡动力的形成。 4.简述设备故障的基本特性。 5.简述突发性故障的特点。 不能通过事先的测试或监控预测到的,以及事先并无明显征兆亦无发展过程的随机故障。振动值突然升高,然后在一个较高的水平2,矢量域某一时刻发生突变,然后稳定。 6.请详细分析一下,转子不对中的故障特征有哪些? 1.故障的特征频率为基频的2倍; 2.由不对中故障产生的对转子的激励力随转速增大而增大。 3.激励力与不对中量成正比,随不对中量的增加,激励力呈线性增大。 7.请详细分析防止轴承发生油膜振荡的措施主要有哪些? 改进转子设计,尽量提高转子的第一阶临界转速; 改进轴承型式、轴瓦与轴颈配合的径向间隙、承载能力、长径比和润滑油粘度等因素,使失稳转速尽量提高。 8.设备维修制度有哪几种?试对各种制度进行简要说明。 1o事后维修 特点是“不坏不修,坏了才修”,现仍用于大批量的非重要设备。 2o预防维修(定期维修) 在规定时间基础上执行的周期性维修,对于保障人身和设备安全,充分发挥设备的完好率起到了积极作用。 3o预知维修 在状态监测的基础上,根据设备运行实际劣化的程度决定维修时间和规模。预知维修既避免了“过剩维修”,又防止了“维修不足”;既减少了材料消耗和维修工作量,又避免了因修理不当而引起的人为故障,从而保证了设备的可靠性和使用有效性。 9.监测与诊断系统应具备有哪些工作目标?监测与诊断系统的一般工作过程与步骤是怎

机械故障诊断技术的现状及发展趋势

机械故障诊断技术的现状及发展趋势 摘要:随着机械行业的不断发展,机械故障诊断的研究也不断提出新的要求,进20年来,国内外的故障诊断技术得到了突飞猛进的发展,对机械故障诊断的发展现状进行了详细的论述,并对其发展趋势进行了展望。 关键词:故障诊断;现状;发展趋势 引言 机械故障诊断技术作为一门新兴的科学,自二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段,现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究其重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本锣鼓后语国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研究的系统与实际情况相差甚远,往往是从高等院校或者科研部门开始,在进行到个别企业,而国外的发展则是从现场发现问题进而反应到高等院校或者科研单位,是的研究有的放矢。 记过近二十年的努力,我国自己开发的故障诊断系统已趋于成熟,在工业生产中得到了广泛应用。但一些新的方法和原理的出现,使得故障诊断技术的研究不断向前发展,正逐步走向准确、方便、及时的轨道上来。 1.故障诊断的含义及其现状 故障诊断技术是一门了解和掌握设备运行过程中的状态,进而确定其整体或者局部是否正常,以便早期发现故障、查明原因,并掌握故障发展趋势的技术。其目的是避免故障的发生,最大限度的提高机械地使用效率。 1.1设备诊断技术的研究内容主要包括以下三个环节: (1)特征信号的采集:这一过程属于准备阶段,主要用一些仪器测取被测仪器的有关特征值,如速度、湿度、噪音、压力、流量等。 现在信号的采集主要用传感器,在这一阶段的主要研究基于各种原理的传感技术,目标是能在各种环境中得到高可靠、高稳定的传感测试信号。国内传感器类型:电涡流传感器、速度传感器、加速度传感器和湿度传感器等;最近开发的传感技术有光导纤维、激光、声发射等。(2)信号的提取与处理:从采集到的信号中提取与设备故障有关的特征信息,与正常信息只进行对比,这一步就可以称之为状态检测。目前,小波分析在这方面得到广泛应用,尤其是在旋转机械的轴承故障诊断中。基于相空间重构的GMD数据处理方法也刚刚开始研究,此方法对处理一些复杂机械的非线性振动,从而进一步预测故障的发展趋势非常有效。(3)判断故障种类:从上一步的结果中运用各种经验和知识,对设备的状态进行识别,进而做出维修决策。这一步关键是研究系统参数识别和诊断中相关的实用技术,探讨多传感器优化配置问题,发展信息融合技术、模糊诊断、神经网络、小波变换、专家系统等在设备故障诊断中的应用。 1.2故障诊断及时的发展历程· 故障诊断技术的大致三个阶段: (1)事后维修阶段;(2)预防维修阶段;(3)预知维修阶段。现在基本处于预知维修阶段,预知维修的关键在于对设备运行状态进行连续监测或周期检测,提取特征信号,通过对历史数据的分析来预测设备的发展趋势。 1.3故障诊断的发展现状 目前,国内检测技术的研究主要集中在以下几个方面:

全国液压系统维修及故障诊断技术培训班

目录 第一章液压传动基本知识 (33) 一、液压传动的工作原理 (33) 二、液压传动工作特性 (33) 三、液压传动系统的组成 (44) 四、液压传动系统的图形符号 (55) 第二章常用液压元件 (55) 一、液压泵 (55) 二、液压缸 (88) 三、液压马达 (1010) 五、液压辅助元件 (1414) 第三章液压系统的使用维护与管理 (1616) 一、液压系统的安装与试压 (1616) 二、液压系统的正确使用 (1717) 三、液压系统的维护 (1717) 四、液压系统的点检管理 (1919) 五、运行中期液压设备的管理要点 (2121) 六、常用液压元件的维护与修理 (2121) 第四章工作介质的使用和管理 (2626) 一、工作介质的种类 (2626) 二、对工作介质的基本要求 (2727) 三、液压油液的基本性质 (2727) 四、工作介质的选用 (2828) 五、工作介质的储存保管 (3030) 六、液压系统的换油方式 (3030)

七、工作介质的取用 (3030) 八、工作介质变质的原因 (3131) 九、工作介质变质的控制 (3131) 十、工作介质的合理使用 (3232) 第五章液压系统的泄漏与密封....................... 错误!未定义书签。错误!未定义书签。 一、液压系统的泄漏............................. 错误!未定义书签。错误!未定义书签。 二、液压系统的密封............................. 错误!未定义书签。错误!未定义书签。第六章液压系统的污染控制......................... 错误!未定义书签。错误!未定义书签。 一、液压系统污染的原因......................... 错误!未定义书签。错误!未定义书签。 二、液压系统污染的类型及危害................... 错误!未定义书签。错误!未定义书签。 三、液压系统污染的控制......................... 错误!未定义书签。错误!未定义书签。 四、工作介质的污染度测定....................... 错误!未定义书签。错误!未定义书签。第七章液压系统故障诊断........................... 错误!未定义书签。错误!未定义书签。 一、液压系统故障的概念......................... 错误!未定义书签。错误!未定义书签。 二、液压系统故障分类........................... 错误!未定义书签。错误!未定义书签。 三、液压系统故障的特点......................... 错误!未定义书签。错误!未定义书签。 四、液压系统故障对设备及其工作的影响........... 错误!未定义书签。错误!未定义书签。 五、液压系统故障诊断的工作内容................. 错误!未定义书签。错误!未定义书签。 六、液压系统常见故障现象及其原因............... 错误!未定义书签。错误!未定义书签。 七、液压系统故障排除的步骤..................... 错误!未定义书签。错误!未定义书签。 八、液压系统故障诊断的层次和方法............... 错误!未定义书签。错误!未定义书签。 九、液压系统常见故障分析....................... 错误!未定义书签。错误!未定义书签。 十、现代液压故障诊断的技术途径................. 错误!未定义书签。错误!未定义书签。

机械故障诊断案例分析

六、诊断实例 例1:圆筒瓦油膜振荡故障的诊断 某气体压缩机运行期间,状态一直不稳定,大部分时间振值较小,但蒸汽透平时常有短时强振发生,有时透平前后两端测点在一周内发生了20余次振动报警现象,时间长者达半小时,短者仅1min左右。图1-7是透平1#轴承的频谱趋势,图1-8、图1-9分别是该测点振值较小时和强振时的时域波形和频谱图。经现场测试、数据分析,发现透平振动具有如下特点。 图1-7 1*轴承的测点频谱变化趋势 图1-8 测点振值较小时的波形与频谱

图1-9 测点强振时的波形和频谱 (1)正常时,机组各测点振动均以工频成分)幅值最大,同时存在着丰富的低次谐波成分,并有幅值较小但不稳定的(相当于×)成分存在,时域波形存在单边削顶现象,呈现动静件碰磨的特征。 (2)振动异常时,工频及其他低次谐波的幅值基本保持不变,但透平前后两端测点出现很大的×成分,其幅度大大超过了工频幅值,其能量占到通频能量的75%左右。 (3)分频成分随转速的改变而改变,与转速频率保持×左右的比例关系。 (4)将同一轴承两个方向的振动进行合成,得到提纯轴心轨迹。正常时,轴心轨迹稳定,强振时,轴心轨迹的重复性明显变差,说明机组在某些随机干扰因素的激励下,运行开始失稳。 (5)随着强振的发生,机组声响明显异常,有时油温也明显升高。 诊断意见:根据现场了解到,压缩机第一临界转速为3362r/min,透平的第一临界转速为8243r/min,根据上述振动特点,判断故障原因为油膜涡动。根据机组运行情况,建议降低负荷和转速,在加强监测的情况下,维持运行等待检修机会处理。 生产验证:机组一直平稳运行至当年大检修。检修中将轴瓦形式由原先的圆筒瓦更改为椭圆瓦后,以后运行一直正常。 例2:催化气压机油膜振荡 某压缩机组配置为汽轮机十齿轮箱+压缩机,压缩机技术参数如下: 工作转速:7500r/min出口压力:轴功率:1700kW 进口流量:220m3 /min 进口压力:转子第一临界转速:2960r/min 1986年7月,气压机在运行过程中轴振动突然报警,Bently 7200系列指示仪表打满量程,轴振动值和轴承座振动值明显增大,为确保安全,决定停机检查。

一般液压系统故障诊断方法

一般液压系统故障诊断方法 摘要:在生产现场,由于受生产计划和技术条件的制约,要求工程技术人员准确、简便和高效地诊断出液压设备的故障,并利用现有的信息和现场的技术条件,尽可能减少拆装工作量,节省维修工时和费用,用最简便的技术手段,在尽可能短的时间内,准确地找出故障部位和发生故障的原因并加以修理,使系统恢复正常运行,并力求今后不再发生同样故障。 引言 液压传动系统由于其独特的优点,即具有广泛的工艺适应性、优良的控制性能和较低廉的成本,在各个领域中获得愈来愈广泛的应用。但由于客观上元、辅件质量不稳定和主观上使用、维护不当,而且系统中各元件和工作液体都是在封闭油路内工作,不象机械设备那样直观,也不象电气设备那样可利用各种检测仪器方便地测量各种参数, 液压设备中,仅靠有限几个压力表、流量计等来指示系统某些部位的工作参数,其他参数难以测量,同时一般故障根源有许多种可能,这给液压系统故障诊断带来一定困难。 在生产现场,由于受生产计划和技术条件的制约,要求工程技术人员准确、简便和高效地诊断出液压设备的故障,并利用现有的信息和现场的技术条件,尽可能减少拆装工作量,节省维修工时和费用,用最简便的技术手段,在尽可能短的时间内,准确地找出故障部位和发生故障的原因并加以修理,使系统恢复正常运行,并力求今后不再发生同样故障。 一液压系统故障的特点 液压系统出现故障不同于机械故障和电气故障,它们易于解体观察进行判断,同时可以利用多个相应仪器仪表诊断;与机械电气相比,液压系统故障有其自身的特点,特点如下: ⒈故障的多样性液压设备出现的故障可能是多种多样的,而且在大多数情况下是几个故障同时出现的。例如,系统的压力不稳定就经常和噪声振动故障同时出现;同一故障引起的原因可能有多个,而且这些原因常常是互相交织在一起互相影响的。例如,当系统压力达不到系统要求时,其产生原因可能是泵引起的,也可能是溢流阀引起的,也可能是两者同时作用的结果。 液压系统中往往是同一原因,但因其程度的不同、系统的结构不同,以及与它配合的机械结构的不同,所引起的故障现象可能是多种多样的。如,同样是系统吸入空气,可能引起不同的故障,如爬行,振动等等。 ⒉故障的的复杂性液压系统压力达不到系统要求经常和动作故障联系在一起,甚至机械电气部分的弊病也会与液压系统的故障交织在一起,使得故障变得复杂,新设备的调试更是如此。 ⒊故障的偶然性与必然性液压系统中的故障有时是偶然发生的,有时是必然发生的。故障偶然发生的情况如:油液中的污物偶然卡死溢流阀换向阀的阀芯,使系统偶然失压或不能换向;电压的偶然变化,使电磁铁吸合不正常而引起电磁阀不能正常工作。这些故障不是经常发生,也没有一定的规律。 故障必然发生的情况是指那些持续不断经常发生,并且有一定规律的原因引起的故障。如油液粘度低引起的系统泄漏,液压泵内部间隙大内泄漏增加导致泵的容积效率下降等。 ⒋故障的分析判断难度性由于液压系统故障存在上述特点,所以当系统出现故障时,不一定马上就可以确定故障的部位和产生的原因。如果工程技术人员在液压故障的分析判断方面的技术水平比较高或着熟练掌握所在液压设备的情况等,就能对故障进行认真的检查,分析,判断并很快找出故障的部位及其原因并加以排除。但是如果工程技术人员对液压设备

机械故障诊断

工件位置检测方法 02010220 苏冠明工件位置的测定分为接触性和非接触性的测量方法两种。老师所要求的是非接触式的检测位置。非接触式传感器电感式传感器中的电涡流式传感器,磁电式传感器中的磁阻式传感器、霍尔式传感器、感应同步器,光电式传感器,特殊传感器中的微波传感器均为非接触式传感器。 各个非接触式传感器具体为 一电涡流式传感器 根据法拉第电磁感应定律,块状金属导体置于变化的磁场中,在磁场中作切割磁力运动时,导体内将产生呈漩涡状的感应电流,此现象叫电涡流效应。根据电涡流效应制成的传感器称为电涡流式传感器。电涡流式传感器最大的特点是能对位移、厚度、表而温度、速度、应力及材料损伤等进行非接触式连续测量,另外还具有体积小、灵敏度高和频率响应宽等特点,应用极其广泛。 如图所示为电涡流式转速传感器工作原理图。在软磁材料制成的输入轴上加工一键槽,在距输入表面4I处设置电涡流传感器,输入轴与被测旋转轴相连。当被测旋转轴转动时,输出轴的距离发生(吨tAd)的变化。由于电涡流效应,这种变化将导致振荡回路的品质因数变化,使传感器线圈电感随AJ的变化也发生变化,它将直接影响振荡器的电压幅值和振荡频率。出此,随着输入轴的旋转,从振荡器输出的信号中包含有与转数成正比的脉冲频率信号。该信号由检波器检出电压幅值的变化量,然后经整形电路输出脉冲频率信号,该信号经电路处理便可得到被测转速。 这种转速传感器可实现非接触式测量,抗污染能力很强,可安装在旋转轴附近长期对被测转速进行监视。最高测量转速可达600 000r/min。 二霍尔式传感器 霍尔式传感器也是一种磁电式传感器,它是利用霍尔元件基于霍尔效府原理而将被测量转换成电动势输出的一种传感器。由于霍尔元件在静止状态下具有感受磁场的独特能力,并且具有结构简单、休积小、噪声小、频率范围宽(从直流到微波)、动态范围大(输出电势变化范围可达1000:1)以及寿命长等特点,因此获得了广泛应用。 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于电流和磁场的方向上将产生电动势,这种物理现象称为霍尔效应。

《机电设备故障诊断与维修技术》试卷(附答案)

《机电设备故障诊断与维修技术》期末试题 一、名词解释(每题5分,共25分) 1.故障的定义及其两层含义: 2.热喷涂: 3.压电效应: 4.无损检测: 5.白口组织: 二、填空题(每空1 分,共20分) 1.润滑油的四大功效分别是:、 、。 2.磨损分为三个阶段、、 。 3. 温度的测量方式分为和。 4.预防性计划修理的类别主要有四种,分别是:、、、 。 5.解释粘结力产生的理论主要有5种:、 、、化学键和。 6.金属腐蚀按其作用和机理分为和电化学腐蚀。 7. 常用的电镀技术有、。 三、选择题(每题3分,共 30分) 1.下列哪一项不属于零件的机械修复()。 A.修理尺寸法 B.镶装零件法 C.焊接修复 D.热扣合法

2.下列那一项不属于非接触式温度传感器()。 A.红外测温仪 B.光学高温计 C.热电偶温度计 D.总辐射热流传感器 3.()是液压元件中最常见的变形。 A.应力断裂 B.腐蚀 C.疲劳 D.热变形 4.设备出现故障时表现出来的振动方式是()。 A.周期振动 B.非周期振动 C.宽带振动 D.窄带振动 5. ()时一种危险的失效形式。 A.断裂 B.磨损 C.变形 D.腐蚀 6.下列那一项不属于无损检测()。 A.渗透检测 B.X射线 C.磁粉探伤 D.铁谱分析 7. 下列那种形式不属于磨损的五种形式之一。() A.磨料磨损 B.断裂磨损 C.粘着磨损 D.疲劳磨损 8. 设备故障诊断的目的之一是在允许的条件下充分挖掘设备潜力,延长使用寿命,减低设备()的费用。 A.寿命周期 B.修理周期 C.能耗 D.设备闲置

9. 下列哪个阶段的耐磨寿命最长() A.磨合阶段 B.稳定磨合阶段 C.剧烈磨损阶段 D.报废阶段 10.下列不属于防止中、高碳钢零件补焊过程中产生裂纹的措施是()。 A.焊前预热 B.满足零件的工作条件 C.选用多层焊 D.焊后热处理 四、简答题(共 25分) 1.通过油样分析,能够获得哪三个方面的信息?(12分) 2.详述强固扣合法及其使用范围。(5分)试用图示方法表示强固扣合法。(5分)请写出金属扣合法的另外三种扣合方式。(3分)(共13分) 答案 一、名词解释 1.设备(系统)或零部件丧失了规定功能的状态。 两层含义:一是机械系统偏离正常功能。

液压系统故障诊断技术

液压系统故障诊断技术 军事交通学院王海兰齐继东王富强 摘要:介绍液压系统故障主观诊断技术、数学模型诊断技术和智能诊断技术,以及各种具体故障诊断方法的特点及应用,指出专家系统与神经网络的有机结合成为智能故障诊断技术的发展方向。 关键词:液压系统;故障诊断;信号处理与建模;专家系统;神经网络 Abstract:This paper covers subjective diagnosi s technology,mathematical model diagnosis technology and intelligent diag-nosis technology.Various diagnosis methods and their application in hydraulic systems are discussed.It i s concluded that fu ture in telligent diagnosis technology is combining of expert system,neural network and information technology. Keywords:hydraulic system;fault diagnosis;signal processing and modeling;e xpert syste m;neural network 液压设备的自动化程度越高、功能越多、结构越复杂,发生故障的几率随之增多,故障造成的危害和损失也越加严重。由于液压系统各元件在封闭的油路内工作,液压装置的损坏与失效,往往发生在内部,隐蔽性强。故障的症状与原因之间存在着重叠与交叉,因果关系复杂,再加上在运行过程中随机性因素的影响,能够正确而果断地判断出发生故障的部位,迅速排除故障尤为重要。 1液压故障的主观诊断技术 液压系统的故障有压力不足、流量不足、爬行、发热、噪声、振动、泄漏等。所谓主观诊断法,是指依靠简单的诊断仪器,凭借个人的实践经验,分析判断故障产生的原因和部位。常用的方法有: 四觉诊断法检修人员运用触觉、视觉、听觉和嗅觉来分析判断系统故障。 逻辑分析法(见图1)根据液压系统的基本原理,进行逻辑分析,减少怀疑对象,逐渐逼近,找出故障发生部位。 参数测量法通过测得液压系统回路中所需任意点处工作参数,将其与系统工作的正常值比较判断,可进行在线监测、定量预报和诊断潜在故障。图2所示为一种简单实用的检测回路[3]。检测回路与被检测回路并联,在被测点设置如图2所示的双球阀三通接头,用于对系统进行不拆卸检测。不需任何传感器,可同时检测系统中的压力、流量、温度3个参数,并立即诊断出故障所在的大致范围(泵源、控制传动部分或执行器部分)。增加参数检测点,如可在泵出口、执行元件进出口安装双球阀三通, 缩小故障发生区域。 图1故障逻辑分析基本步骤 此外,还有故障树分析、方框图分析、鱼刺分析法等,主观诊断法方便快捷,但由于人的感觉不同、判断能力和实践经验有差异,对客观情况的分析也不同,所以一般只用于对故障进行简单的定性。 2液压故障的数学模型诊断技术 数学模型诊断技术,首先用一定的数学手段描述系统某些可测量特征量在幅值、相位、频率及相关性上与故障源之间的联系,然后通过测量、分析、处理这些信号来判断故障源部位。这种方法实质上是以传感器技术和动态测试技术为手段,以信号处理和建模处理为基础的诊断技术。主要有:

数控机床维修试题库

1.数控机床:即NC机床,是装备有数控系统,采用数控技术控制的机床。 2.数控系统:采用数控技术实现数字控制的一整套装置和设备。 3.数控技术:用数字化的信号对机床运动及其加工过程进行自动控制的一种方法。 4.数控机床的优点有哪些 答案:⑴能完成很多普通机床难以加工,或者根本不能加工的复杂型面零件的加工; ⑵采用数控机床,可以提高零件的加工精度,稳定产品的质量; ⑶可以提高生产效率; ⑷具有柔性,只需更换程序,就可以适应不同品种及尺寸规格的零件的加工; ⑸大大减轻了工人的劳动强度。 5.我国数控系统开发研制经历了哪三个阶段 答案:我国在数控机床的主要装置系统的开发研制上,经过1981~1985年的技术引进、1986~1990年的消化吸收、1991~1996年开发自主版权的数控系统三个 阶段。 6.我国已建立起的具有自主版权的两个数控平台:以PC机为基础的总线式、模块化、 开放型单处理器平台和多处理器平台。 7.我国开发出的四个具有自主版权的基本系统:中华Ⅰ型、航天Ⅰ型、蓝天Ⅰ型、华 中Ⅰ型。(广东数控系统、南京数控系统、航天数控系统、华中数控系统) 8.1952年,Parsons公司与美国麻省理工学院(MIT)伺服机构研究所合作,研制出 世界上第一台数控机床——三坐标立式数控铣床,标志着数控技术的诞生。 9.数控系统外部电缆的连接中一项十分重要的内容是接地线,其连接方式为辐射式。 画出示意图。 10.我国供电制式是交流380V,三相;220V,单相,频率为50Hz。 11.数控机床安装、调试过程有那些工作内容 答案:机床的初就位和组装、数控系统的连接和调整、通电试车、机床精度和功能的调试、机床试运行。 12.数控机床安装调试时进行参数设定的目的是什么 答案:设定系统参数,包括设定PC(PLC)参数的目的,是当数控装置与机床连接时,能使机床具有最佳的工作性能。 13.机床通电操作的两种方式是什么在通电试车时为以防万一,应做好什么的准备 答案:机床通电操作可以是一次同时接通个部分电源全面供电,或各个部分分别供电,然后再作总供电试验。在数控系统与机床联机通电试车时,为了以防万 一,应在接通电源的同时,作好按压急停按钮的准备,一边随时切断电源。 14.机床自运行考验的时间,国家标准GB9061-88中规定,数控车床为16小时,加工 中心为32小时。都要求连续运转。 15.数控功能的检验,除了用手动操作或自动运行来检验数控功能的有无以外,更重要 的是检验其稳定性和可靠性。 16.机床性能主要包括主轴系统性能,进给系统性能,自动换刀系统、电气装置、安全 装置、润滑装置、气液装置及各附属装置等性能。 17.数控机床性能的检验与普通机床基本一样,主要是通过“耳闻目睹”和试运转来检 查。 18.数控功能检验的主要内容有哪些怎样检验 答案:数控功能检验的主要内容有: ⑴运动指令功能:检验快速移动指令和直线插补、圆弧插补指令的正确性; ⑵准备指令功能:检验坐标系选择、平面选择、暂停、刀具补偿等指令的准确性; ⑶操作功能:检验回原点、程序单段、主轴和进给倍率调整等功能的准确性; ⑷CRT显示功能:检验位置显示、程序显示及编辑修改等功能准确性。

挖掘机液压系统常见故障的诊断与排除

挖掘机液压系统常见故障的诊断与排除 来源:中国机械资讯网发布时间:2007-12-28 0:00:00 1.液压挖掘机的结构特点目前,在施工中使用的挖掘机多数为斗容1吨左右的单斗液压挖掘机, 它们多数采用双泵双回路全功率变量液压系统,其液压系统框图如图1所示, 所有的工作机构被分成两组,由操纵阀1、2分别控制,前泵、后泵分别作为操纵阀1、2的动力来源, 向它们提供压力油,主溢流阀1、2分别控制两组工作机构的最高工作压力,并且两者的调定值相等。 各工作机构的分液压油路中又装有过载阀(又名分路溢流阀),在机器受到意外冲击等情况下保护液压系统的安全。 各过载阀的调定压力一般也都比较接近。另外,许多挖掘机在斗杆缸、动臂缸共同或单独工作的情况下,操纵阀1、2合流, 同时对它们进行供油。 2 液压挖掘机的常见故障2. 1整机全部动作故障分析:由于是操纵阀1、2控制的所有动作均不正常,故障点应处于二者的公共部分,即操纵阀以前的部分。 根据液压系统框图,整机全部动作故障的原因有:(l)液压油不足,吸油油路不畅(如吸油滤芯堵塞), 油路吸空等造成液压泵吸油不足或吸不到油,使得整机全部动作发生故障。 (2)先导油路故障。此故障只存在于伺服操纵的挖掘机,对于机械式拉杆操纵的挖掘机则不存在。 先导油路故障会造成先导油压力不足,使得操纵系统失灵,从而表现为整机动作故障。 (3)液压泵与发动机之间的传动连接损坏。这样发动机不能带动液压泵,泵口也就没有压力油输出,使得整机不动作 。(4)前后液压泵均严重磨损或损坏,造成泵的输出流量、压力不足,从而引起整机动作迟缓无力或完全不动作。 (5) 液压泵的功率调节系统故障。在进行故障检查时,应按照先易后难,先外后内的原则进行检查,具体方法如下: 先检查液压油量。不足,加够Z检查吸油管是否破裂,接头是否有松动等类似现象,它们会造成油泵部分或严重吸空; 检查吸油滤芯是否有堵塞或吸扁等,如有应更换。再检查四油滤芯。如有大量金属粉末及颗粒,则为液压泵损坏,需检修。 其实,除液压泵损坏外,其它执行元件或轴承等损坏也会使得回油滤芯有大量金属粉末及颗粒, 但此处是讨论整机全部动作故障原因,因而忽略其它非公共部分元件。但有时液压泵因长期使用导致过度磨损,

液压系统维修及故障诊断技术。

全国液压系统维修及故障诊断技术培训班 目录 第一章液压传动基本知识 (1) 一、..................................................................... 液压传动的工作原理 1 二、液压传动工作特性 (2) 三、液压传动系统的组成 (2) 四、液压传动系统的图形符号 (3) 第二章常用液压元件 (3) 一、................................................................................. 液压泵 3 二、液压缸 (6) 三、液压马达 (8) 五、液压辅助元件 (13) 第三章液压系统的使用维护与管理 (15) 一、................................................................... 液压系统的安装与试压 15 二、液压系统的正确使用 (15) 三、液压系统的维护 (16) 四、液压系统的点检管理 (18) 五、运行中期液压设备的管理要点 (19) 六、常用液压元件的维护与修理 (20) 第四章工作介质的使用和管理 (25) 一、工作介质的种类 (25) 二、对工作介质的基本要求 (26) 三、液压油液的基本性质 (26) 四、工作介质的选用 (27) 五、工作介质的储存保管 (29) 六、液压系统的换油方式 (29) 1 中国机电装备维修与发行技术协会秦皇岛信和会展服务有限公司全国液压系统维修及故障诊断技术培训班

八、..................................................................... 工作介质变质的原因 30 九、工作介质变质的控制 (31)

液压系统常见故障诊断

标签:机械,cad,仪表仪器,机械设计,机械加工,机械工程师 液压系统常见故障的诊断及消除方法 液压系统常见故障的诊断及消除方法 5.1 常见故障的诊断方法 液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。 5.1.1 简易故障诊断法 简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下: 1)询问设备操作者,了解设备运行状况。其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐

一进行了解。 2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。 3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。 4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。 5.1.2 液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。所以认真学习液压基础知识掌握液压原理图是故障诊断与排除最有力的助手,也是其它故障分析法的基础。必须认真掌握。 5.1.3 其它分析法 液压系统发生故障时,往往不能立即找出故障发生的部位和根源,为了避免盲目性,人们必须根据液压系统原理进行逻辑分析或采用因果分析等方法逐一排除,最后找出发生故障的部位,这就是用逻辑分析的方法查找出故障。为了便于应用,故障诊断专家设计了逻辑流程图或其它图表对故障进行逻辑判断,为故障诊断提供了方便。

相关主题
文本预览
相关文档 最新文档