当前位置:文档之家› 飞纳台式扫描电镜在锂电行业的应用

飞纳台式扫描电镜在锂电行业的应用

飞纳台式扫描电镜在锂电行业的应用
飞纳台式扫描电镜在锂电行业的应用

飞纳台式扫描电镜在锂电行业的应用

随着近几年扫描电镜台式化,桌面化,电镜的操作维护也越来越简便,材料研发及品质控制方面,扫描电镜的使用率越来越高。

锂电材料供应厂家在材料出厂后,材料各项指标如何,可以通过扫描电镜等仪器检测,是否在合理的波动范围内,应当有清晰的报告,并详细地告知电池厂。电池厂可配备扫描电镜、激光粒度分析仪等齐全的检测设备,建立材料分析数据库,形成自己的评价体系,从而有足够能力选择及鉴别适合电池生产的材料。如此,双方都能在锂电材料上把好关,创造出最佳的经济效益。

锂离子电池的四大关键材料为正极材料、负极材料、电解液以及隔膜:

锂电正极材料——三元材料(测试电镜型号:飞纳电镜能谱一体机Phenom ProX)

钴酸锂电池的正极材料是钴酸锂LiCoO2,三元材料则是镍钴锰酸锂

Li(NiCoMn)O2,三元复合正极材料前驱体产品,是以镍盐、钴盐、锰盐为原料,里面镍钴锰的比例可以根据实际需要调整,三元材料做正极的电池相对于钴酸锂电池安全性高。

10 000倍50 000倍

镍钴锰氢氧化物——未喷金镍钴锰氢氧化物——喷金

碳负极材料(测试电镜型号:飞纳电镜能谱一体机Phenom ProX)

目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球,石油焦,碳纤维、热解树脂碳等。

20 000倍 5 000倍

隔膜材料(测试电镜型号:飞纳电镜能谱一体机Phenom ProX)

隔膜的主要功能是隔离正负极并阻止电子穿过,同时能允许离子通过,从而完成在充放电过程中锂离子在正负极之间的快速传输。隔膜性能的优劣直接影响着电池内阻、放电容量、循环使用寿命以及电池安全性能的好坏。隔膜越薄、孔隙率越高,电池的内阻越小,高倍率放电性能就越好。锂离子电池隔膜是一种多孔型塑料薄膜,种类包括织造膜、非织造膜(无纺布)、微孔膜、碾压膜等几类,因此成膜的孔隙率,孔洞直径及拉伸情况对产品质量至关重要。

10 000倍10 000倍

2015 年是锂电行业爆发的一年,在国内GDP 增速回落、产业结构转型的大环境下,锂电产业链的整体爆发,资本竞相涌入,使其成为2015 年风口上最瞩目的行业。与此同时,在政策的强力推动和使用环境改善的背景下,2016 年将迎来电动汽车发展的爆发期。尤其是新能源汽车的普及,必将持续带动锂电池整个产业链的大发展。

激光在皮肤科的应用

激光在皮肤科的应用 王金良 近20年来,激光领域取得了突破性的进展,使原来一些没法治疗的皮肤病得到了有效的治疗,如太田痣、文身,多毛症,鲜红斑痣等。作为一个皮肤科医师,有必要了解皮肤激光的原理、应用。 一、激光基础理论 1 激光的产生原理: 在大部分情况下,原子核外的电子处于稳定的低能量状态—E1,吸收能量后,处于高能级E2,当一个外来光子所带的能量正好为某一对能级之差E2-E1,则这电子可以在此外来光子的诱发下从高能级E2向低能级E1跃迁。同时释放出2个具有相同波长、位相、相同方向的光子,如果处于高能级E2状态的电子足够多,这2个电子诱发4个具有相同波长、位相、相同方向的光子……,最后产生大量的一致性的光子流,这就是激光。 2 激光的特点:频率相同(单色性),发射方向、偏振方向以及光波的相位都完全一样(方向性、相干性)、能量高。 3 激光特点的临床意义: 单色性:选择吸收的必要条件(但不是充分条件) 方向性:平行光方便治疗;易于聚焦成很小的一点,有很高的能量密度,起到治疗作用;易于耦合通过光纤传导,方便治疗。 4 激光器的结构: 一般包括三个部分: 激光工作介质——决定了激光的波长,是激光分类的基础。 激励源——提供能量。 谐振腔——是光子反复反射,激发。 5 激光的分类 按工作介质的不同来分类: 固体激光器:Nd:YAG, 气体激光器:CO2激光 半导体激光器:Smoothbeam 液体激光器:染料激光。 根据激光输出方式分类: 连续激光(半连续激光)普通CO2激光,Nd:YAG, 脉冲激光:脉冲染料激光。 6 美容激光与传统激光的区别 美容激光基于选择性激光热分解理论,激光仅仅作用于要破坏的组织结构、细胞或色素颗粒,使之发生不可逆的损伤,而对其他组织细胞无破坏或破坏很小,这样就能在治疗疾病的同时,不会留下疤痕。而传统激光:一般为连续波激光,烧灼作用,类似酒精喷灯,无选择性。 7 选择性激光热分解理论:通过调整以下3个激光参数即可达到选择性激光分解的目的: 激光的波长:要治疗的病变组织的性质,决定激光的波长,例如鲜红斑痣,需通过加热红细胞继而破坏内皮细胞,血红蛋白最易吸收的532、585nm的光,但是为了增加穿透性、减少表皮黑色素的吸收、现在多用595nm激光。 激光的脉冲宽度:脉冲以几个纳秒到几十毫秒不等,这取决于要作用的靶颗粒的大小,目的是将激光的能量局限在要清除的组织内,即脉冲宽度不大于靶组织(颗粒)的热驰豫时间。 合适的能量密度:只有合适的能量才能达到清楚相应靶细胞而不损伤正常组织的目的。 目前,为了进一步加强激光的选择性,对以上传统的选择性激光分解理论进行了扩展。 靶组织本身无色素,但其周围有色素的组织结构,需要延长脉宽,有意使热量扩散,以破

激光技术在先进制造业中的几例应用

激光技术在先进制造业中的几例应用 XXX 【摘要】本文综合介绍了激光快速成型、激光焊接、激光切割、激光打孔等技术的原理、特点、应用现状以及发展趋势。借此论述了激光技术在先进制造业中的重要地位。 1引言 激光具有高亮度性、高方向性、高单色性、高相干性,这些特性是其它普通光源望尘莫及的。1960年美国休斯实验室的T.H.Mainman用直径6mm,长45mm的红宝石固体工作物质,成功地产生了波长为0.6493μm的脉冲激光这是世界第一台激光发生器,它受到科研领域的高度重视。激光技术推动了许多领域的迅速发展,应用范围越来越广,尤其在加工领域中的应用。激光加工是激光应用最有发展前途的领域之一,现在已开发出20多种激光加工技术。激光加工系指激光束作用于物体的表面而引起物体形状的改变或物体性能的改变的加工过程。激光加工已成为一种新型的高能束流激光加工技术,广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用,为材料加工工艺提供,是当代具有代表性的先进制造技术。从激光加工技术在制造领域中取得的经验来看,激光加工的潜力是巨大的。 2 激光快速成型 2.1激光快速成型技术简介 80年代后期发展起来的快速成型技术(RPT,Rapid Prototyping Technology)是基于分层技术、堆积成型,直接根据CAD模型快速生产样件或零件的先进制造成组技术总称。RP技术不同于传统的去除成型、拼合成型及受迫成型等加工方法,它是利用材料累加法直接制造塑料、陶瓷、金属及各种复合材料零件。 激光快速成型技术,以激光作为加工能源的激光快速成型是快速成型技术的重要组成部分,它集成了CAD技术、数控技术、激光技术和材料科学等现代科技成果。激光快速成型(Laser Rapid Prototyping,LRP)原理是用CAD生成的三维实体模型,通过分层软件分层,每个薄层断面的二维数据用于驱动控制激光光束,扫射液体,粉末或薄片材料,加工出要求形状的薄层,逐层累积形成实体模型。快速制造出的模型或样件可直接用于新产品设计验证、功能验证、工程分析、市场订货及企业决策等,缩短新产品开发周期,降低研发成本,提高企业竞争力。以此为基础进一步发展的快速模具工装制造(Quick Tooling)技术,快速精铸技术(Quick Casting),快速金属粉末烧结技术(Quick Powder Sintering)等,可实现零件的快速成品。 2.2激光快速成型技术主要特点 (1)制造速度快、成本低,节省时间和节约成本,为传统制造方法注入新的活力,而且可实现自由制造(Free Form Fabrication),产品制造过程以及产品造价几乎与产品的批量和复杂

S4800扫描电镜操作说明书

冷场发射扫描电子显微镜S4800操作说明(普通用户) 燕山大学材料学院材料管A104(场发射,钨灯丝) 编写人:李月晴吕益飞 普通用户在熟练操作1个月后,如无不良记录,可申请高级用户培训。 高倍调清晰:局部放大(Red) →聚焦Focus→消像散 一、日常开机 1,开启冷却循环水电源。 2,按下Display开关至,PC自动开机进入用户界面并自动运行PC_SEM程序,以空口令登入。 3,打开信号采集开关,位置打到1,为打开。 4,打开电源插排的开关。 5,打开装有EDS软件的主机电源。 6,记录仪器运行参数(右下角Mainte),即钨灯丝真空度。如:IP1:0.0×10-8Pa;IP2:0.0×10-8Pa; IP3:9.6×10-7Pa。PeG-1,<1×10-3;PeG-2,<1×10+2。 注意:PeG≤1×10-3Pa时才能加高压测量。记录的参数:①点Flashing时会显示:In2(Ie)Flashing时电流最大值,如32.9μA;②加上高压后会显示,V ext=3.4kV。 二、轰击(点flashing,即在阴极加额外电压) 目的:高温去除针尖表面吸附的气体 1,最好在每天开始观察样品前一时做flashing; 2,选择flashing intensity为2 ; 3,若flashing运行时Ie小于20μA,则反复执行直至Ie值超过20μA且不再增加。 4,若flashing后超过8个小时仍继续使用,重新执行flshing 。 三、加液氮 容积不要超过1L,能维持4~6h。 四、样品制备及装入 样品制备简单,对样品要求较低,只要能放进样品室,都可进行观察。 1,化学上和物理上稳定的干燥固体,表面清洁,在真空中及在电子束轰击下不挥发或变形,无放射性和腐蚀性。 2,样品必须导电,非导电样品,可在表面喷镀金膜。 3,带有磁性的样品,由于物镜有强磁性,制样必须非常小心,防止在强磁场中样品被吸入

扫描电镜在细胞生物学中的历史与应用

扫描电镜在细胞生物学中的历史与应用 发布者:飞纳电镜 第一张真核细胞的电子显微镜图像诞生于1945年,Ruska家族不仅开发了电子显微镜(EM),而且还在传染病源(如细菌和病毒)的成像领域开创了先河。1949年,人们将细胞镶嵌在聚合物中,切成薄片,最终获得了细胞内部结构。 在早期的研究中,研究者们的焦点集中在细胞器上,其中线粒体和内质网被研究得非常透彻。脑组织的细胞结构也开始使用透射电子显微镜(TEM)来观察。在使用透射电子显微镜(TEM)来进行研究期间,扫描电子显微镜(SEM)才刚刚开始成为观察样品表面形貌的工具,直到20世纪60年代和70年代才被正式运用[1]。这篇博客提供了一些最近在细胞生物学应用研究中涉及到扫描电镜(SEM)的案例。 图1:电子显微镜在细胞生物学研究中的应用史

图2:飞纳电镜下的丝状伪足 图3:飞纳电镜下的细胞

如何使用扫描电镜(SEM)观察高尔基体基质蛋白对斑马鱼纤毛功能的影响 Bergen等人[2]给出了一个很好的例子。他们在研究中使用高尔基体基质蛋白,并使用扫描电镜观察其对斑马鱼纤毛功能的影响。通过扫描电镜对嗅觉神经上皮细胞纤毛成像分析,可以证明它在两种形态下的不同。 为了能够用二次电子探测器对纤毛进行成像,他们必须将样品固定在多聚甲醛中,然后逐级脱水,再使用临界点干燥仪进行干燥,最后进行喷金处理。 从图像中可以看出在体内的再生表型和短干扰DNA的转染,会导致光滑的纤毛变成球状纤毛。因此,它们可以显示出最大的高尔基体基质蛋白—巨蛋白,在纤毛生成和纤毛长度的控制中起着重要作用。 如何使用扫描电镜(SEM)观察经过碳纳米管处理后人类巨噬细胞的功能 另一个案例延伸到人体的免疫机能。Sweeney等人[3]观察了经过碳纳米管处理后人类巨噬细胞的功能变化。肺泡巨噬细胞能够清除肺泡空间的外来物质(微生物或粒子),是免疫细胞防御的第一道防线。 在用扫描电镜观察巨噬细胞之前,先用乙醇对细胞脱水,然后,在喷金前使用专用的容器进行封存。扫描电镜(SEM)图像能够证明未经处理的巨噬细胞表面有少量的丝状伪足和一些膜的皱褶,而处理过的巨噬细胞被激活,表面平滑并有大量的丝状伪足。 此外,大量的巨噬细胞在尝试吞噬作用的部位被观察到。得出的结论是,长的碳纳米管会影响巨噬细胞的功能。长的碳纳米管不仅激活了它们的生物活性,还降低了吞噬细菌的能力。这一结果与短碳纳米管的观测结果相反。 希望这两个例子能说明如何用SEM有效地对细胞生物学进行观察。

激光切割机适合应用在哪些行业

激光切割机适合应用在哪些行业 在激光切割机行业,金属激光切割机在工业制造中占有不少得的分量,对于大多数金属材料来说,无论它们是怎样的硬度,都能够进行无边形切割。今天我们来细数一下激光切割机在各行各业中的实践应用。 钣金加工行业 随着钣金加工工艺的飞速开展,国内的加工工艺也是一日千里,传统的钣金切割设备(剪床、冲床、火焰切割、等离子切割、高压水切割等等),虽然在市场上占有相当大的市场份额,如今,已经满足不了现在的工艺要求;激光切割是钣金加工的一次工艺反动,是钣金加工中的“加工中心”,激光切割柔性化水平高,切割速度快,消费效率高,产品消费周期短,为客户博得了普遍的市场。激光切割无切削力,加工无变形;无刀具磨损,资料顺应性好;不论是简单还是复杂零件,都能够用激光一次精细快速成形切割;其切缝窄,切割质量好、自动化水平高,操作烦琐,劳动强度低,没有污染;可完成切割自动排样、套料,进步了资料应用率,消费本钱低,经济效益好。激光切割机在未来钣金加工的应用是必然的趋势。 农业机械行业 农业不断的发展,各种农用机械也不断更新。农机产品类型趋于多样化与专业化,按照加工功率、加工对象分类、加工类型分为几十种。这些产品的升级与更新也对农机产品的制造提供的新要求。激光切割机先进的激光加工技术、绘图系统和数控技术,加快了农机产品的制造发展,提高经济效益。降低了农机产品的制作成本。 激光加工逐渐成为农机设备加工生产的重要手段,推动农机行业的迅速发展,实现不同产业的双赢互惠发展。 广告制作行业 对于广告制作行业,一般加工的产品有着金属跟非金属材质,因此,激光切割机的一种多行业应用技术给广告加工提供了很大的优势,对于广告传统的加工设备,采用的是一般加工广告字体等素材,由于加工精度,切割表面的不理想,导致返工概率相当的人,对于广告行业来讲是一种成本的浪费,大幅度的降低了工作效率。 然而采用激光切割机设备进行加工,能够有效的解决这一类型的问题,采用的是高精度的激光切割技术,切割表面,有着纯的辅助气体进行加工,能够完美的体现。另外激光切割机设备还能够进行一些复杂图形的加工,在传统技术部能完成的加工都能够完成,替广告公司壮大了加工产品,提高了市场,侧面的微企业增加了额外的利润,无需要进行二次返工,一次完成的操作留守了客户的心思,稳定了客户资源。 服装制造行业 作为我国经济的重要组成部分,未来服装行业将是激光切割设备推广和发展的重要下游市场。而目前服装行业大部分采取的仍是手工裁剪模式,只有少部分高端工厂采用电脑控制机械裁床进行自动化裁剪。 厨具制作行业 在厨具加工行业中,油烟机和燃具使用大量钣金面板,使用传统加工方式工作效率低、模具消耗大,使用成本高,制约这新产品开发。 激光切割机设备的出现,解决了一直困扰着厨具厂家的难题。使用激光切割机对面板进行加工试样,快速开发新产品,激光加工设备的切割速度极快,大大提高了加工效率。同时,激光加工设备切割精细度极高,提升了油烟机和燃具的成品率。对于一些异型成型的产品,激光切割机更是有着得天独厚的优势。 激光切割机打破了传统手工和电剪速度慢和难以排版,充分解决了效率达不到和浪费材料的难题。切割速度快,操作简单,只需把所要裁剪的图形及尺寸输入到电脑,机械就会把整张的材料裁剪成您所需要的成品,不用刀具、不需要模具,利用激光实现非接触式加工,简便快速。

扫描电镜简述

J I A N G S U U N I V E R S I T Y 冶金工程专业硕士研究生结课论文论文题目:扫描电镜SEM分析技术综述 课程名称:Modern Material Analytic Technology 专业班级: 2015级硕士研究生 学生姓名 学号:2211505072 学院名称:材料科学与工程学院 学期: 2015-2016第一学期 完成时间: 2015年11月 30 日

扫描电镜SEM分析技术综述 摘要 扫描电子显微镜(如下图所示),简称为扫描电镜,英文缩写为SEM(Scanning Electron Microscope)。它是用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的二次电子、背散射电子等对样品表面或断口形貌进行观察和分析。现在SEM都与能谱(EDS)组合,可以进行成分分析。所以,SEM也是显微结构分析的主要仪器,已广泛用于材料、冶金、矿物、生物学等领域。 本文主要对扫描电镜SEM进行简单介绍,分别从扫描电镜发展的历史沿革;工作原理;设备构造及功能;在冶金及金属材料分析中的应用情况;未来发展方向等几个方面来对扫描电镜分析技术进行综述。 关键词: 扫描电子显微镜二次电子背散射电子 EDS 成分分析 扫描电子显微镜

目录 一扫描电镜 (4) 1.1 近代扫描电镜的发展 (4) 1.1.1场发射扫描电镜 (4) 1.1.2 分析型扫描电镜及其附件 (5) 1.2 现代扫描电镜的发展 (6) 1.2.1低电压扫描电镜 (6) 1.2.2 低真空扫描电镜 (6) 1.2.3环境扫描电镜ESEM (7) 1.3 扫描电镜工作原理设备构造及其功能 (7) 1.3.1扫描电镜工作原理 (8) 1.3.2 扫描电镜的主要结构及功能 (9) 1.4 扫描电镜性能 (11) 1.5扫描电镜在冶金及金属材料分析中的应用 (12) 二结论 (14) 三参考文献 (14)

激光在医学中的应用

激光在医学中的应用 骆旺达 (北京工业大学应用数理学院612班15061230) 摘要: 目的:了解激光的基本特性及激光仪器在医学中的作用。 方法:通过分析激光4个基本特性,对其在医学中的应用进行分类总结。 内容:进行传统医学与激光医学的对比,探讨激光在医学上的应用。 结果:通过对比分析,了解激光为何能在医学中发展。 结论:激光已被广泛应用于基础医学研究及医疗诊断、治疗。 关键词: 激光;激光医学仪器应用;激光特性;激光针灸 引言 激光(laser)是受激辐射光放大的简称。1964年经钱学森教授建议而得此名,它是20世纪最重大的科技成就之一。激光医学是激光技术与医学相结合的一们新兴的边缘学科。上世纪60年代,激光问世不久,就与医学结合起来。激光技术从临床诊断、治疗到基础医学研究被广泛应用。目前激光医学已基本上发展成为一门体系完整、相对独立的学科。在医学科学中起着越来越重要的作用. 激光有4个特性: 1)方向性好。普通光源表面所辐射出来的每列光,是向四面八方发散的;而激光束的发散角是很小的,与普通光束相比差10倍~10000倍,是理想的平行光束。利用激光方向性好的特点,经聚焦后可获得不同尺寸的光斑,分别用做普通手术刀和微手术刀;还可以进一步压缩光斑到1um,直接对DNA等生物大分子进行切割或对接。 2)高亮度,强度大。激光的方向性好,其能量可以在时间及空间上高度集中起来,使激光的亮度达到普通光的1×1012倍1×1019倍,强度可达1×1017W/cm2,在医学上用其独特的优点,可以对肿瘤及其他病变组织进行照射治疗,可使病变组织立即汽化而消失或做组织的切割及组织焊接。 3)单色性好。一般的激光器只发射单一波长的激光,是世界上最好的单色光源,给医学研究和临床诊断增加了新的手段。 4)相干性好。激光器发出的激光,具有相对固定的位相差,使得激光的相干性非常好。激光全息技术已广泛地应用在牙科、眼科和肿瘤科,来观察和分析细胞及其生物组织的形态。 激光仪器在医学上的应用:

激光在生活中的应用

激光在生活中的应用摘要:本文介绍了几种激光的发展以及现阶段达到的成果等,以及在生活中的应用,如在医学生的应用、工业上的应用、在军事上的应用等。 关键词:激光焊接激光切割激光打孔加工微型仪器激光玻璃激光传感器激光冷却激光美容激光去除面部黑痣激光除皱激光切除肿瘤激光雷达激光测距仪激光制导激光侦察对抗激光武器 大家对于激光这个词并不陌生。激光唱机、激光视盘所提供的听觉享受,全息照片给与我们的三维视觉效果,以及“死光”武器、星球大战计划都是人们津津乐道的话题。但激光到底是什么东西?它是怎样产生的?它又有什么样的性质?这恐怕就没有多少人了解了。下面,我们一起来全面的了解一下激光。 一:什么是激光 激光镭射最初的中文名叫做“雷射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词头一个字母组成的缩写词。意思是“通过受激辐射光扩大”。激光镭射的英文全名已经完全表达了制造激光的主要过程,激光的原理早在1916年已被著名的美国物理学家爱因斯坦发现。1964年按照我国著名科学家钱学森建议将“光受激辐射”改称“激光”。 二:激光的基本特性:

1. 受激吸收(简称吸收) 处于较低能级的粒子在受到外界的激发(即与其他的粒子发生了有能量交换的相互作用,如与光子发生非弹性碰撞),吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。 2. 自发辐射 粒子受到激发而进入的激发态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率,自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。 3. 受激辐射、激光 1917年爱因斯坦从理论上指出:除自发辐射外, 处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率。 4、定向发光 普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。天文学家相信,外星人或许正使用闪烁的激光作为一种宇宙灯塔来尝试与地球进行联系。 5、亮度极高 在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为0.02勒克斯(光照度的单位),颜色鲜红,激光光斑肉眼可见。若用功率最强的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。激光亮度极高的主要原因是定向发光。大量光子集中在一个极小的空间范围内射出,能量密度自然极高。激光的亮度与阳光之间的比值是百万级的,而且它是人类创造的。 6、颜色极纯 光的颜色由光的波长(或频率)决定。一定的波长对应一定的颜色。太阳辐射出的可见光段的波长分布范围约在0.76微米至0.4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。发射单种颜色光的光源称为单色光源,它发射的光波波长单一。比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。单色光源的光波波长虽然单一,但仍有一定的分布范围。如氖灯只发射红光,单色性很好,被誉为单色性之冠,波长分布的范围仍有0.00001纳米,因此氖灯发出的红光,若仔细辨认仍包含有几十种红色。由此可见,光辐射的波长分布区间越窄,单色性越好。 7、能量极大 光子的能量是用E=hv来计算的,其中h为普朗克常量,v为频率。由此可知,频率越高,能量越高。激光频率范围3.846×10^(14)Hz到7.895×10^(14)Hz。

FEI (飞利浦)旗下Phenom飞纳台式扫描电镜手册

FEI 公司旗下Phenom-World BV 荣誉出品 PHENOM TM G2 飞纳台式扫描电子显微镜第二代数秒之内,遍览微观世界 飞纳将带给您令人惊叹的高质量图片和前所未有的便捷操作,详情请咨询Phenom World BV中国公司:复纳科学仪器(上海)有限公司

数 秒之内,遍览微观世界 >>> 数秒之内,遍览微观世界 现在,Phenom-World B.V.向您隆重介绍第二代Phenom(飞纳)台式扫描电镜:Phenom G2和电镜能谱一体化的Phenom proX。 Phenom(飞纳) G2和proX 采用全新的硬件及软件架构,在继承了前代快速成像、简单易用等优点的同时,为您提供更加卓越的图像质量和精确的元素分析功能。 FEI 公司旗下Phenom-World BV 荣誉出品 01 自2007年美国FEI 公司发布第一代Phenom(飞纳)台式扫描电镜以来,Phenom(飞纳)因其卓越的图像质量、30秒超快成像速度、简单易用的操作界面以及接近光学显微镜的超值价格,成为诸多科学家及工业研究人员的首选显微成像工具。 2009年,为了进一步促进Phenom(飞纳)台式扫描电镜的研发,FEI 公司与国际知名的NTS-Group 公司、Sioux 嵌入式系统公司合作,成立Phenom-World B.V.公司,专门从事新一代Phenom(飞纳)的研发生产。

https://www.doczj.com/doc/71441064.html, >>> Phenom G2包含两款: 专业版 G2 pro 标准版 G2 pure 主要参数: 产品主要特点: ◎高质量的图像◎30s 快速成像 ◎操作简便,结合控制旋钮和触摸显示器便可获得 高倍SEM 图像 ◎长寿命/高亮度/低色差CeB6灯丝(1500 h)◎自动灯丝对中,自动聚焦◎图像亮度、对比度自动调节 ◎光学与低倍电子双重导航,想看哪里点哪里◎直接观测绝缘体,无需喷金◎兼得样品表面形貌与成份信息◎防震设计,对放置环境无特殊要求 ◎丰富的拓展模块:全景图像拼合、3D 粗糙度重 建、纤维测量系统...... ◎多功能样品杯选件:控温样品杯(-25~50℃)、 自动倾斜/旋转样品杯、降低荷电效应样品杯 ...... 02 20-120x (G2 pro)20x (G2 pure) 80-45,000x (G2 pro)70-17,000x (G2 pure)<25nm (G2 pro)<30nm (G2 pure) 5 kV <30s 四分割背散射电子探测器台式电脑大小 普通实验室或办公室、厂房 光学显微镜: 电子显微镜: 分 辨 率: 加速电压:成像时间:探 测 器:主机体积:放置环境:

8.第八章激光在医学中的应用

第8章 激光在医学中的应用 激光医学是激光技术和医学相结合的一门新兴的边缘学科。1960年,Maiman 发明第一台红宝石激光器,1961年,Campbell 首先将红宝石激光用于眼科的治疗,从此开始了激光在医学临床的应用。1963年,Goldman 将其应用于皮肤科学。同时,值得关注的是二氧化碳激光器的作为光学手术刀的出现,逐渐在医学临床的各学科确立了自己的地位。1970年,Nath 发明了光导纤维,到1973年通过内镜技术成功地将激光导入动物的胃肠道,自此实现了无创导入技术的飞速发展。1976年,Hofstetter 首先将激光用于泌尿外科。随着血卟啉及其衍生物在1960年被发现,Diamond 在1972年首先将这种物质用于光动力学治疗。在医学领域中,激光的应用范围非常广泛,不仅在临床上激光作为一种技术手段,被各临床学科用于疾病的诊断和治疗,而且在基础医学中的细胞水平的操作和生物学领域中激光技术也占有重要地位。另外,还可以利用激光显微加工技术制造医用微型仪器。再者,利用全息的生物体信息的记录及医疗信息光通信等与信息工程有关的领域,从广义来讲,也属于激光在医学中的应用。本章主要对医学临床,重点是激光对诊断和治疗领域中的应用进行论述。 由于诊断和治疗在本质上都是利用激光与生物体的相互作用,因此,有必要首先对这些基础进行介绍。在8.1节中归纳介绍了生物体的光学特性、激光对生物体的作用、激光在生物体中的应用特点等内容;然后在8.2节中通过典型的治疗应用实例,介绍了激光在外科、皮肤科、整形外科、眼科、泌尿外科、耳鼻喉科等领域中的治疗和光动力学治疗等;在8.3节中重点围绕诊断中的应用,介绍了生物体光谱测量、激光计算机断层摄影(光学CT )、激光显微镜等。在8.4节中,对激光在医学中的应用的激光装置与激光转播路线的开发动向进行介绍。最后8.5节对激光医学的前景作了展望。 8.1 激光与生物体的相互作用 8.1.1 生物体的光学特性 假设生物体中入射的单色平行光强度为0I ,若生物体是均匀的吸收物质,根据1.5节证明的(1-89)式,入射深度为x 处的光强度I 可用下述关系式表示 ()x a I I 00exp -= (8-1) 其中0a 为吸收系数(参见图8.1)。但是,由于生物体对光是很强的散射体,因此生物体内光的衰减不仅由于吸收,而且取决于散射的影响。在不能忽略散射的条件下,上式可用衰减

激光技术在现代制造业中的应用

激光技术在现代制造业中的应用

激光技术在现代制造业中的应用 激光:激光的最初的中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词头一个字母组成的缩写词。意思是"通过受激发射光扩大"。激光的英文全名已经完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。 激光加工技术的原理和特点:激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光束作为一种特种加工能源(热源),和传统的加工用热源相比,具有一系列特点〔“〕。激光束易于传输,其时间特征和空间分布容易控制;经过聚焦后,可以得到细的光斑,具有极高的功率密度;可以加热熔化以至汽化任何材料,可以局部区域的精细的快速加工;加工过程输入工件的热量小,热影响区和热变形小;加工效率高;容易实现自动化。激光加工有热加工[3]和“冷加工”两种。现在大量用于激光加工的COZ和YAG激光为红外光,它们辐射在金属或非金属工件上,基于热效应,使工件升温、熔化或汽化,以完成各种加工,称其为热加工。准分子激光激光器输出紫外光,它有可有对聚合物等非金属材料进行基于化学作用的剥蚀加工,这种“冷加工”技术正在开发,并有可能在电子工业中得到较大程度的应用。但是,激光加工的主流还是基于热效应的加工。 1激光在切割方面的应用 激光切割是利用激光束聚焦形成高功率密度的光斑照射工件,材料吸收光能,温度急剧升高,将材料快速加热至熔化或气化温度,再用喷射气体吹化,以此分割材料。在这一过程中,当激光照射工件表面时,一部分光被工件吸收,另一部分光被工件反射。吸收部分转化为热能,使工件表面温度急剧升高,材料熔化或气化,同时,产生黑洞效应,使材料对光的吸收率提高,迅速加热熔化或气化切割区材料。此时吹氧可以助燃,并提供大量的热能,使切割速度提高等。切割宜用连续输出激光器。激光切割是激光加工应用最广泛的一项技术。它有很多特点:激光可切割特硬、特脆及特软材料、高熔点的难加工材料;切缝宽度很窄;切割表面光洁;切割表面热影响层浅,表面应力小;切割速度快,热影响区小;无机械变形、无刀具磨损,容易实现自动化生产。适合加工板材。在工业机械生产制造中,激光技术国家实验室和武汉法利莱联合研制的W AL C4020宽幅面数控激光切割机可以达到上述要求,除此之外,它还有直线电动机驱动、专有光束质量调整系统、自动聚焦、打孔切割双流量控制系统等结构,这些技术的创新使W AL C4020宽幅面数控激光切割机的切割技术性能超过同类产品,达到国际先进水平。 2激光在焊接方面的应用 激光焊接是把激光聚焦成很细的高能量密度光束照射到工件上,使工件受热熔化,然后冷却使工件得到焊接。激光焊结熔深大,速度快,效率高;激光焊烧区窄,热影响区很小,工件变形也很小,同时,焊缝小,可实现精密焊接;焊接结构均匀,品粒很小,气孔少,夹杂缺陷少,在机械性能、抗蚀性能和电磁学性能上优于常规焊接方法。目前,激光深熔焊接在粉末冶金材料加工领域中的应用也越来越多。激光焊接能量密度高,对高熔点、高导热率和物理特性相差很大的金属焊接特别有利。目前,汽车行业将不同材质的薄钢板实施激光拼接焊后冲压成型,激光拼接焊取代了电焊。同时,通过光纤传输的多路激光束进行多点或多组件焊接越来越普及。在远离装配区的位置装置一台中心激光器(Y AG),激光器产生的光束经由一根柔性的

深入了解扫描电镜扫描电镜(SEM)电子透镜的介绍

深入了解扫描电镜:扫描电镜(SEM)电子透镜的介绍 发布者:飞纳电镜 扫描电镜(SEM)利用电子束对样品进行纳米级分辨率的图像分析。灯丝释放出电子,形成平行的电子束。然后,电子束通过透镜聚焦于样品表面。电子透镜是如何工作的?存在哪几种电子透镜?电子透镜是如何聚焦电子的?在这个博客中,我们将回答这些问题,并对电子透镜的工作原理给出一个大致的解释。 扫描电镜:电子、电子束和电子透镜 在上一篇博客中,我们简短地介绍了扫描电镜(SEM)是如何工作的。电子从灯丝中释放出来,然后平行于电子透镜。你可以在这里阅读更多关于CeB6灯丝和钨灯丝的比较。 电子束穿过镜筒——由一组透镜组成,透镜把电子束聚焦到样品表面上。电子显微镜透镜可以是静电的,也可以是有磁性的,这取决于它们是用静电场还是磁场来聚焦电子束。为了更好地理解这些透镜的工作原理,让我们回过头来看看电子是如何在静电场中偏转的。[1,2] 导向板 电子是带负电的粒子,在高能量的镜筒中穿行。使这些粒子偏转的一种方法是让它们通过由两个板块在电势+U和-U上产生的电场,如图1a所示。 在电场的影响下,电子的偏转角度取决于电子能量,板块之间的电场以及板块的长度。 电子的速度越快或能量越强,偏转角度就会越小。电场越高,板块越长,偏转角度越大。一个由两种不同电位板组成的装置称为导向板。 为了得到一个静电透镜,可以考虑反射导向板,这样,在光轴上运动的电子可以聚焦在同一点上,如图1b所示。

电场只存在于电子开始进入和结束电子行程的过程,我们如何能得到像图1b所示的透镜效应?这个问题的答案在于,只要有透镜效应,电子束的能量就会产生改变,这意味着电子要么加速要么减速。这可以通过在电子束周围的不同电势来完成。 图1:(a)电子束导向板和(b)静电透镜。 静电透镜 静电透镜由金属板组成,与高电压相连接,电子穿过电子透镜。单孔透镜在高电压下由一个单一的金属板组成。 单孔透镜不仅可以终止加速场还能产生加速场。在第一个例子中,透镜是正极的,这意味着电子束汇聚,如图2a所示,而在第二种情况下,透镜是负极的,这意味着电子束发散,如图2b所示。 双孔透镜由两个金属板组成,对准孔径,有不同的电位。图2c显示了一个加速的双孔透镜,其中两个板块之间的电场位于顶板上。 进入这个透镜的电子会感觉到一个强大的磁场,使它们靠近光轴。当它们穿过第二个板块时,电子会感觉到反向的力推动它们向透镜移动。总的来说,这是一个正极透镜,电子束聚焦在第二个板块之下的平面上。 一个三孔径的Einzel透镜由三个有对齐孔径的板组成,它们可以有相同的直径,也可以有不同的直径。在电子光学中,Einzel透镜通常被用于在透镜的入口和出口处,具有相等的电子电位。

激光技术在医学临床上的应用

激光技术在医学临床上的应用 ——物理技术在医学上的应用 【摘要】:应用是高新技术发展的一个重要推动力.本文从激光的基本特性出发,以激光与人体相互作用产生的热效应为根据,综合论述了激光在医学临床上的两种主要应用方式:激光凝固疗法和激光汽化疗法. 【关键词】:应用激光医学临床激光技术激光汽化激光凝固疗法【引言】:激光是物质受激辐射产生的一种相干光,具有单色性好,高亮度,辐射方向性强等特点。这些特点使激光非常适合于疾病的诊断、监测和高精度定位治疗。1963年Goldm an等人用激光有效地治疗了皮肤病,从而揭开了激光医疗技术革命的序幕。随着各种新型激光器的研制与开发,激光技术在医疗领域的应用越来越广,形成了别具特色的激光疗法。激光疗法具有非接触、无侵袭等传统方法无可比拟的优点。激光用来治疗疾病时,就是利用激光高能量密度辐射对人体组织所产生的生物效应,这些生物效应主要包括: 光热效应、光压效应、光化效应、生物刺激效应、强电磁场效应等。本文从激光的生物效应机理以及临床应用方面阐述激光技术在医学上的若干应用。

一、临床应用 1. 激光诱导荧光光谱诊断 近年来,激光诱导荧光技术在诊断恶性肿瘤方面的应用价值,已引起国内外肿瘤专家的关注。这种方法有利于在肿瘤早期找出其存在的部位,实现肿瘤的早期诊断与治疗。目前,人们利用激光诱导荧光法诊断肿瘤组织主要有两种方法: a. 外加光敏物质诊断 根据荧光物质与肿瘤组织有比较强的亲和力的原理,在病人静脉注射或口服光敏剂后一段时间(一般为48~72h)接受激光照射,根据记录下来的荧光光谱特性曲线,便可以确定肿瘤的部位。但这种方法常受到其他组织荧光和自体荧光的干扰,容易引起误诊,所以这种非自身的激光诱导荧光从医学的角度来看尚待改进,医学界正致力于寻求更为有效且无副作用的染色药物。 b. 自体荧光光谱诊断 该方法不用外源性荧光物质,利用人体组织在激光激励下产生的荧光,进行光谱特征分析,可以将肿瘤组织与正常组织区分开来。以荧光强度比为参数诊断胃癌在实验和临床上已获得成功。该方法能够避免注射或口服光敏药物所带来的副作用,不会损伤病变组织的生物状态和正常细胞的生理功能,因而是一种无侵袭诊断技术。同时该方法快捷、无损伤,避免了活检需长时间等待病理分析结果的缺点,它将会成为早期肿瘤诊断的一种重要手段。

激光在材料加工中的应用

激光技术在材料制备与加工中的应用 激光技术发展概述 激光最大的应用领域之一就是材料加工,,主要是1kW级到10kW级CO2激光器和百瓦到千瓦级YAG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理及微加工等,激光器已成为一种不可缺少的工业工具,CO2、Nd:YAG和准分子激光器是当前用于材料加工的三种主要激光器。半导体激光技术的迅速发展使得二极管激光器、二极管泵浦全固态激光器、光纤激光器和超短脉冲激光器在工业应用中有了光明的前景。除了材料加工外,医用激光器是国外第二大应用。激材料加工用激光器常采用气体激光器和固体激光器两类,如表1所示。 表 1用于材料加工的激光光束的基本特征 类别激光名称波长光子能量能量范围激活介质工作方式 气体激光器CO2激光器10.6μm0.117ev 1~105W CO2连续、脉冲XeCl激光器308μm 4.03ev 1~102W XeCl 脉冲XeF激光器351μm 3.53ev 1~102W XeF 脉冲ArF激光器193μm 6.42ev 1~102W ArF 脉冲KrF激光器248μm 5.00ev 1~102W KrF 脉冲 固体激光器YAG激光器 1.06μm 1.17ev 1~103W Nd3+连续、脉冲激光是一种亮度高、方向性好、单色性好的相干光。由于激光发散角小和单色性好,理论上可通过一系列装置把激光聚焦成直径与光的波长相近的极小光斑,在焦点处达到很高的能量密度(焦点处的功率密度可达107~1011w/cm2),其光热效应产生极高的高温,在此温度下任何坚硬或难加工的材料都将瞬时急剧熔化和气化,并产生强烈的冲击波,使熔化的物质爆炸式地喷射出去。激光加工是将激光束照射到工件的表面,利用激光束与物质相互作用的特性,以激光的高能量来切除、熔化材料以及改变物体表面性能,实现对材料的切割、焊接、表面处理、打孔及微加工等的一系列的加工,是一门涉及到光、机、电、材料及检测等多门学科的综合技术。与传统加工方法相比,采用激光加工具有如下特点: (1)激光加工为无接触加工,且激光束的能量高及移动速度可调,工艺集成性好,同一台机床可完成切割、打孔、焊接、表面处理等多种加工; (2)适应性强,激光可对多种金属、非金属材料进行加工,特别是高硬度、高熔点、高强度及脆性材料; (3)激光加工过程中激光头与工件表面不接触,不存在加工工具磨损问题,工件不受应力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音,还可以通过透明介质对密闭容器内的工件进行各种加工; (4)激光束易于导向、聚焦实现各方向的变换,极易与数控系统配合对复杂工件进行加工,实现加工的高度自动化和达到很高的加工精度,是一种极为灵活的加工方法;(5)激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工。 (6)加工效率高,加工质量好、精度高,经济效益好,可降低材料的加工费用。

激光在生活中的应用

激光在生活中的应用 摘要:本文介绍了几种激光的发展以及现阶段达到的成果等,以及在生活中的应用,如在医学生的应用、工业上的应用、在军事上的应用等。 关键词:激光焊接激光切割激光打孔加工微型仪器激光玻璃激光传感器激光冷却激光美容激光去除面部黑痣激光除皱激光切除肿瘤激光雷达激光测距仪激光制导激光侦察对抗激光武器 大家对于激光这个词并不陌生。激光唱机、激光视盘所提供的听觉享受,全息照片给与我们的三维视觉效果,以及“死光”武器、星球大战计划都是人们津津乐道的话题。但激光到底是什么东西?它是怎样产生的?它又有什么样的性质?这恐怕就没有多少人了解了。下面,我们一起来全面的了解一下激光。 一:什么是激光 激光镭射最初的中文名叫做“雷射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词头一个字母组成的缩写词。意思是“通过受激辐射光扩大”。激光镭射的英文全名已经完全表达了制造激光的主要过程,激光的原理早在1916年已被著名的美国物理学家爱因斯坦发现。1964年按照我国著名科学家钱学森建议将“光受激辐射”改称“激光”。 二:激光的基本特性: 1. 受激吸收(简称吸收)

处于较低能级的粒子在受到外界的激发(即与其他的粒子发生了有能量交换的相互作用,如与光子发生非弹性碰撞),吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。 2. 自发辐射 粒子受到激发而进入的激发态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率,自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。 3. 受激辐射、激光 1917年爱因斯坦从理论上指出:除自发辐射外, 处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率。 4、定向发光 普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。天文学家相信,外星人或许正使用闪烁的激光作为一种宇宙灯塔来尝试与地球进行联系。 5、亮度极高 在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为0.02勒克斯(光照度的单位),颜色鲜红,激光光斑肉眼可见。若用功率最强的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。激光亮度极高的主要原因是定向发光。大量光子集中在一个极小的空间范围内射出,能量密度自然极高。激光的亮度与阳光之间的比值是百万级的,而且它是人类创造的。 6、颜色极纯 光的颜色由光的波长(或频率)决定。一定的波长对应一定的颜色。太阳辐射出的可见光段的波长分布范围约在0.76微米至0.4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。发射单种颜色光的光源称为单色光源,它发射的光波波长单一。比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。单色光源的光波波长虽然单一,但仍有一定的分布范围。如氖灯只发射红光,单色性很好,被誉为单色性之冠,波长分布的范围仍有0.00001纳米,因此氖灯发出的红光,若仔细辨认仍包含有几十种红色。由此可见,光辐射的波长分布区间越窄,单色性越好。 7、能量极大 光子的能量是用E=hv来计算的,其中h为普朗克常量,v为频率。由此可知,频率越高,能量越高。激光频率范围3.846×10^(14)Hz到7.895×10^(14)Hz。

扫描电镜实验报告要求

扫描电镜实验报告要求 第一部分:实验预习报告 一、实验目的、意义 1、了解扫描电镜的基本结构与原理 2、掌握扫描电镜样品的准备与制备方法 3、掌握扫描电镜的基本操作并上机操作拍摄二次电子像 4、了解扫描电镜图片的分析与描述方法 二、实验基本原理与方法 1、扫描电镜的基本结构构造 2、扫描电镜的工作原理 3、扫描电镜成像原理 三、主要仪器设备及耗材 1、JSM-5610 LV扫描电镜 2、JFC-1600离子溅射仪(样品喷涂导电层用) 3、银导电胶、双面胶(制样用) 4、粉末样品、块状样品 四、实验方案与技术路线 1、介绍扫描电镜的基本情况与最新进展(场发射扫描电镜、环境扫描电镜的特点及应用) 2、结合具体仪器介绍扫描电镜的构造与工作原理; 3、重点介绍扫描电镜样品的准备与制备方法,并要求每位同学动手制样,掌握扫描电镜样 品的准备与制备方法; 4、了解扫描电镜的操作过程,掌握二次电子像的观察过程,要求每位同学上机操作,并在 2-4个样品上拍摄2-4张二次电子像图片,要求图片清晰有代表性; 5、仔细观察和分析现场给出的200多张图片,并对某类或某几张自己感兴趣的图片进行描 述(要求总字数150字以上)。 第二部分:实验过程记录 一、实验原始记录 按实验过程进行记录: 1、样品的准备与制备过程 2、仪器操作过程与照片的拍摄过程。 第三部分:结果与分析 一、实验结果与分析 1、现场没描述照片的同学,对“附件二、扫描电镜图片”进行微观形态描述(要求:写清 楚图片或样品名称,不需要打印照片,描述图片张数自己确定,总字数要达到150字以上); 2、将2-4张自己拍摄的照片打印并粘贴到实验报告上,写上样品名称。 3、总结对扫描电镜实验课的体会。

相关主题
文本预览
相关文档 最新文档