当前位置:文档之家› 浅析电网电压不稳定的原因及解决办法

浅析电网电压不稳定的原因及解决办法

浅析电网电压不稳定的原因及解决办法
浅析电网电压不稳定的原因及解决办法

浅析电网电压不稳定的原因及解决办法

【摘要】保障供电的稳定性是保障社会经济增长和满足用户需求的重要问题。本文分析了电压稳定性破坏的原因及危害,针对电压不稳定的原因,提出了具体解决措施。

【关键词】稳定性;电压;破坏;措施

随着我国经济建设的蓬勃发展,社会对电力资源的需求日益增长,用户对电力系统的要求也越来越高。供电的可靠性和稳定性已经成为保障经济增长和满足用户需求的重要问题。保障供电的稳定性也是改善内外部投资环境、满足人民日益增长的生活水平以及提升综合国力的重要体现。

1.电压稳定性破坏的原因

研究认为,电压崩溃日趋严重的主要原因有以下几点:一是由于经济上及其它方面(如环保)的考虑,发、输电设备使用的强度日益接近其极限值;二是并联电容无功补偿大量增加,因而当电压下降时,向电网提供的无功功率按电压平方下降;三是线路或设备的投切,引起电压失稳的可能性往往比功角稳定研究中所考虑的三相短路情况要大得多,然而人们长期以来只注意功角稳定的研究。

电力系统稳定问题的物理本质是系统中功率平衡问题,电力系统运行的前提是必须存在一个平衡点。电力系统的稳定问题,直观的讲也就是负荷母线上的节点功率平衡问题。当节点提供的无功功率与负荷消耗的无功功率之间能够达成此种平衡,且平衡点具有抑制扰动而维持负荷母线电压的能力,电力系统即是电压稳定的,反之倘若系统无法维持这种平衡,就会引起系统电压的不断下降,并最终导致电压崩溃。当有扰动发生的时候,会造成节点功率的不平衡,任何一个节点的功率不平衡将导致节点电压的相位和幅值发生改变。各节点电压和相位运动的结果若是能稳定在一个系统可以接受的新的状态,则系统是稳定的,若节点的电压和相角在扰动过后无法控制的发生不断的改变,则系统进入失稳状态。电力系统的电压稳定和系统的无功功率平衡有关,电压崩溃的根本原因是由于无功缺额造成的,扰动发生后,系统电压无法控制的持续下降,电力系统进入电压失稳状态。无论是来自动态元件的扰动还是来自网络部分的扰动,所破坏的平衡均归结为动态元件的物理平衡。电力系统的动力学行为仅受其动态元件的动力学行为及其相互关系的制约。

2.电压不稳定的危害

在现代工业用电中,一种电气设备出现故障就会导致流水线、甚至整个工厂作业的中断,造成难以想象的损失。对于普通用户,家用电器长时间在非额定电压或频率下工作,会严重影响电气设备的使用寿命。例如:长期在低于额定电压下工作的计算机,容易出现重启、程序紊乱、烧毁硬盘等情况。因此在比较重要的信息采集、数据检测分析工作点,都要装设在线式UPS以保证无间断供电。

3.电压不稳定的类型

电压不稳定主要表现在电压偏差和电压波动两个方面。电压偏差是在某一时段内,实际电压幅值“缓慢”变化而偏离了额定电压,偏差是稳态的,就是我们常说的电压偏高或偏低。电压偏差的大小,主要取决与电力系统的运行方式、线路阻抗及有功负荷和无功负荷的变化。电压偏差主要是用电设备所处的位置及运行的时间,如线路末端电压偏低,后夜电压偏高等。

为改善电压偏差,可采取以下措施:一是正确选择变压器的变压比和电压分

电源不稳定的因素及解决办法

电源不稳定的因素及解决办法 篇一:电源不稳定的因素及解决办法 电源不稳定的因素及解决办法 常亮 渤海船舶职业学院 摘要:主要探讨了目前我国在供电系统中电源不稳定的因数以及危害,并根据相关理论和实践经验,提出了一些自己的见解和有效解决办法。关键词:电力历史电源不稳定谐波 一、概述 随着我国经济建设的蓬勃发展,社会对电力资源的需求日益增长,用户对电力系统的要求也越来越高。供电的可靠性和稳定性已经成为保障经济增长和满足用户需求的重要问题。我国作为装机容量和年发电量均居世界第二位的电力大国,由于国土辽阔、动力资源与用电中心相距遥远、城乡家用电器设备的大量普及,对用户端电力电压的稳定性提出了更高的要求。保障供电的稳定性也是改善内外部投资环境、满足人民日益增长的生活水平以及提升综合国力的重要体现。 我国最早的电厂由英商旗昌洋行于1882年开办的,最初为粤恒电灯公司,后被官商合股收购。我国市电起初主要在殖民地使用,大部分为日本的殖民地,其中东北的电网最大,约占全国的50%。在不同地区,110V和220V市电都有使用的经历。至解放

前,我国还是多种电压和频率并存,主要是与发电设备的生产国制式有关。新中国成立后,统一了全国的电网电压标准为220V 50Hz。一方面是由于我国沿袭前苏联的制式;另一方面,因为我国国土幅员辽阔,供电半径要比美洲国家大,出于降低能耗,减少农村、山区用电成本的目的,我国采用的是比美洲发达国家更高的市电电压制度。 220V电压与110V电压相比的优点:1.传输耗能小,减少了能量损耗; 2.传输相同电量,在损耗相同的情况下,使用的导线横截面积要小一倍,节约了大量的金属资源; 3.相对减少了变压器的工作负荷,使变电压这一关键而又脆弱的节点有了更多的安全保障; 4.对偷盗电力设备的行为客观上产生了遏制。 二、影响电源稳定的因素 影响电源稳定的因素主要是两点:不稳定电压和谐波。本文着重从这两方面分析探讨。 (一)电压不稳定的危害 在现代工业用电中,一种电气设备出现故障就会导致流水线、甚至整个工厂作业的中断,造成难以想象的损失。对于普通用户,家用电器长时间在非额定电压或频率下工作,会严重影响电气设备的使用寿命。例如:长期在低于额定电压下工作的计算机,容易出现重启、程序紊乱、烧毁硬盘等情况。因此在比较重

浅谈电力系统电压稳定性

太原科技2009年第4期TAIYUAN S CI-TECH 浅谈电力系统电压稳定性 刘宝,李宝国 文章编号:1006-4877(2009)04-0035-02 最近30年来,世界各国的电力系统普遍进入大电网、高电压和大机组时代,巨量的电能需要通过长距离的高压输电线送到负荷中心,电力系统面临的压力越来越大,很多电力系统不得不运行在其稳定极限附近,极易发生失稳事故。这些事故损失是巨大的,引起人们对电压稳定问题的严重关注。可以说电压稳定问题目前已成为世界各国电力工业领域研究的热点。 1电力系统电压稳定的定义及分类 1.1电压稳定定义 电力系统电压稳定性是指给定一个初始运行条件,扰动后电力系统中所有母线维持稳定电压的能力。在发生电压失稳时,可能引起电网中某些母线上的电压下降或升高,从而导致系统中负荷丧失、传输线路跳闸、级联停电及发电机失去同步等。1.2电压稳定分类 目前,文献中可以见到与电压稳定的主要有静态电压稳定、暂态电压稳定、动态电压稳定、中长期电压稳定等,对它们的含义和范畴,至今还没有一个统一的定义。2004年,IEEE/CIGRE稳定定义联合工作组给出了电力系统电压稳定的分类:电力系统电压稳定分为小扰动电压稳定和大扰动电压稳定。 小扰动(或小信号)电压稳定是指电力系统受诸如负荷增加等小扰动后,系统所有母线维持稳定电压的能力。大扰动电压稳定是指电力系统遭受大干扰如系统故障,失去负荷,失去发电机或线路之后,系统所有母线保持稳定电压的能力。 2电力系统电压失稳的机理 对电力系统电压失稳机理的研究是十分重要的,合理解释和明确区分电压失稳现象,可以正确应对预想的事故。静态研究认为电压失稳原因是负荷超过了网络的最大传输极限,从而造成潮流方程无解。随着对电压稳定研究的进一步深入,越来越多的人们开始用非线性动力学系统的理论知识来解释电压失稳的机理。对于电压失稳机理,T.Van Custem提出:电压失稳产生于负荷动态地恢复其自身功率消耗的能力超出了传输网络和发电机系统所能达到的最大极限。把电压稳定问题仅当作静态问题的观念是不周全的;负荷是电压失稳的根源,因此,电压失稳这一现象也可称为负荷失稳,但负荷并不是电压失稳中唯一的角色;发电机不应视为理想的电压源,其模型(包括控制器)的准确性对准确的电压稳定分析十分重要。 3电压稳定性的分析方法 电力系统作为一个复杂的非线性动力系统,考虑其动态因素,数学上可用一组DAE(Differential Algebraic Equations)微分代数方程组来表示。微分方程组主要体现动态元件,代数方程组主要体现网络结构等约束条件。目前,电力系统电压稳定性的分析方法主要有:静态分析方法、动态分析方法、非线性动力学方法。 3.1静态电压稳定分析方法 潮流方程和扩展的潮流方程是静态分析方法的基本立足点。静态分析方法一般认为潮流方程的临界解就是电压稳定的极限静态方法,将一个复杂的微分代数方程组简化为简单的非线性代数方程实数,大体上可以归纳为:连续潮流法、特征值分析法、最大功率法等。 3.1.1连续潮流法 连续潮流法(CPFLOW)又称延拓法,连续潮流法使用包括有预估步和校正步的迭代方案找出随负荷参数变化的潮流解路径。连续潮流法跟踪负荷和发电机功率变化情况下电力系统的稳态行为,通 (辽宁工业大学,辽宁锦州121001) 摘要:介绍了电力系统电压稳定的定义和分类,提出了电压失稳机理和电压稳定的主要研究方法,反映出该领域的研究概貌和最新动向。 关键词:电力系统;电压稳定;静态;动态 中图分类号:TM712文献标志码:A 收稿日期:2009-01-05;修回日期:2009-02-05 作者简介:刘宝(1982-),男,山东滨州人。2006年9月就 读于辽宁工业大学,攻读硕士学位。 研究与探讨

电力系统过电压

电力系统过电压 一、单选题 1.一般地,电力系统的运行电压在正常情况下不会超过(B)。P215 A、额定线电压 B、允许最高工作电压 C、绝缘水平 D、额定相电压 2.电力系统过电压分成两大类(D)。P216 A、外部过电压和短路过电压 B、外部过电压和大气过电压 C、操作过电压和短路过电压 D、雷电过电压和内部过电压 3.外部过电压,与气象条件有关,又称为(B)。p216 A、气象过电压 B、大气过电压 C、污秽过电压 D、条件过电压 4.电力系统过电压分成两大类(B)。P216 A、外部过电压和短路过电压 B、内部过电压和大气过电压 C、操作过电压和短路过电压 D、雷电过电压和大气过电压 5.云中的水滴受强烈气流的摩擦产生电荷,而且小水滴带(B)。P216 A、正电 B、负电 C、静电 D、感应电 6.在两块异号电荷的雷云之间,当(D)达到一定值时,便发生云层之间放电。P216 A、电流 B、电压 C、距离 D、电场强度 7.雷电直接击中建筑物或其他物体,造成建筑物、电气设备及其他被击中的物体损坏,雷电的这种破坏形式称为(A)。 p216 A、直击雷 B、感应雷 C、雷电波侵入 D、雷电的折射与反射 8.雷电放电时,强大的雷电流由于静电感应和电磁感应会使周围的物体产生危险的过电压,造成设备损坏、人畜伤 亡。雷电的这种破坏形式称为(B)。P217 A、直击雷 B、感应雷 C、雷电波侵入 D、雷电的折射与反射 9.防雷设施及接地装置是(D)。P217 A、将导线与杆塔绝缘 B、将导线与与大地连接 C、将电流引入大地 D、将雷电流引入大地 10.安装在烟囱顶上的避雷针直径不应小于下列数值(D)。p217 A、10mm B、12mm C、16mm D、20mm 11.下列避雷针高度为h,其影响系数描述正确的是(A)。P218 A、h<30m时P=1 B、h>30m时P=1 C、h<30m时P=5.5/h D、以上都可以 12.为防止直接雷击架空线路,一般多采用(B)。P219 A、避雷针 B、避雷线 C、避雷器 D、消雷器 13.避雷线一般用截面不小于(D)镀锌钢绞线。P219 A、25mm2 B、50mm2 C、75mm2 D、35mm2 14.下列关于避雷线保护角描述正确的是(D)。P219? A、保护角越小,越容易出现绕击 B、山区的线路保护角可以适当放大 C、保护角大小与线路是否遭受雷击无关 D、多雷区的线路保护角适当缩小 15.电气设备附近遭受雷击,在设备的导体上感应出大量与雷云极性相反的束缚电荷,形成过电压,称为(B)。老书 P168 A、直接雷击过电压 B、感应雷过电压 C、雷电反击过电压 D、短路过电压 16.与FZ型避雷器残压相比,FS型避雷器具有(D)特点。老书P181 A、残压低 B、体积小 C、有均压电阻 D、残压高 17.阀型避雷器阀电阻片具有(A)特性。P221

ZPW-2000A轨道电路典型故障案例分析

ZPW-2000A轨道电路典型故障案例分析2010年4月26日,京九线德安至高塘中继站间13601G、13587G发生红轨故障,由于在故障处理过程中存在多方面的失误,故障延时达1小时57分,现将故障处理中存在的问题分析如下: 一、故障原因 由于13601G接收电缆回线与万科端子接触不良(4号端子),造成13601G 衰耗盒轨入电压只有98MV、无法驱动本区段接收盒工作,同时因13601G接收盒不能正常工作,无法将小轨道执行条件(XGJ、XGJH)送至13587G接收盒,导致13587G区段红轨。 二、故障处理环节分析 1、16:33时设备发生故障,驻站人员立即向段调度、车间监控员汇报,同时登记停用故障设备进行处理。 该程序正确没有问题。 2、16:33--16:45时,驻站人员室内接口柜测得发送端电压93.5V,接收端808MV,室内衰耗盒轨入电压98MV,轨出1电压90MV,轨出2电压12MV,由于没有在接口柜甩开负载测试接收电缆上的电压,无法进一步判断故障点在是室内还是在室外。 故障处理指导:应该在接口柜甩开负载测试接收电缆上的电压,一般情况下在电缆上测得电压大于7V,说明室外设备良好,故障点在室内,反之故障点在室外。 3 、17:05断开模拟电缆盘,在室内接收电缆上测得电缆电压为1.63V, 17:20时在室外人员在13601G测得发送端轨面电压2.1V,接收端轨面电压1.04V,接收端匹配变压器V1-V2间测得电压1V,E1-E2间测得电压10.5V。此时现场故

障指挥处理人员对各部电气特向参数不熟,在故障处理时参数测试数据基本完整的情况下,未能判断出故障部位。 故障处理指导:由于故障人员一是对匹配变压器变压比是1:9这个关键特性没有掌握,误认为室内接收电缆上1.63V是正常电压;二是对ZPW-2000A轨道电路送电端匹配变压器是降压后送到轨面(9:1),受电端是升压(1:9)送回室内基本传输方式不清楚,当在送电端匹配变压器E1、E2间测得有10.5V时,室内接收电缆在腾空状态时也应该是10.5V电压,当出现明显不一致时应该明确断定是电缆通道问题,立即启动电缆应急预案,恢复设备使用。

过电压产生的危害及防止措施

编号: 中国农业大学现代远程教育 毕业论文(设计) 论文题目:过电压产生的危害及防止措施 学生 指导教师 专业 层次 批次 学号 学习中心 工作单位 年月 中国农业大学网络教育学院制

目录 摘要 (3) 前言 (4) 1过电压的基本概念 (4) 1.1过电压的定义 (4) 1.2过电压的分类 (4) 2过电压的危害 (5) 2.1雷击过电压的危害 (5) 2.2操作过电压的危害 (6) 2.3暂态过电压 (7) 3过电压的防止措施 (8) 3.1变电站倒闸操作 (8) 3.1.1切断空载线路过电压 (8) 3.1.2切断空载变压器的过电压 (9) 3.1.3电弧接地过电压 (10) 3.1.4铁磁谐振过电压 (11) 3.1.5电磁式电压互感器饱和过电压 (11) 3.2雷电 (12) 4过电压保护设备及其保护原理、作用 (13) 4.1避雷器 (13) 4.2避雷针 (14) 4.3避雷线 (14) 4.4放电间隙 (15) 结束语 (15) 参考文献 (15)

电力系统过电压是危害电力系统安全运行的主要因素之一,过电压一旦发生,往往造成电气设备损坏和大面积停电事故。过电压来自两个方面,一种是遭受雷击产生的外部过电压,另一种是操作和事故时引起的内部过电压,主要是操作过电压。过电压的数值与电力网和结构、系统容量及参数、中性点接地方式、断路器性能等有关。通常采用避雷器、避雷针、避雷线等方法限制外部过电压。而对于内部过电压,针对操作中产生过电压的形式可采取不同的控制措施,如对于谐振过电压,可采用并联电阻或改变系统运行参数的方法加以限制,对于电弧接地过电压,则产用将系统中性点直接接地的方法等,以达到保证设备安全、系统安全、人员安全的目的。 关键词:过电压危害防止限制

武汉大学电气工程学院《电力系统过电压复习重点内容》

电力系统过电压复习重点内容 1. 过电压:由于雷电、电磁能量的转换会使系统电压产生瞬间升高,其值可能大大超过电 气设备的最高工频运行电压 2. 按其不同能量来源分类: 3.行波的折射与反射 212211221Z Z Z Z Z Z Z αβαβ?= ? +?-?=?+?? =+?? 4.串联电感 折射电压波 u2f 的陡度: /2f 1f 2d 2e d t T u u Z t L -= t = 0 时陡度有最大值: 21f 2 max d 2d t f u u Z t L ==

并联电容:在Z2线路中折射电压的最大陡度: 2f1f max1 d2 d t u u t Z C = = 5. 入口电容: T0000 000 1d1 () d x x Q u C K K U U U x U K α α = = ==== === 6.绕组初始电压分布不均匀的主要原因是电容链中对地电容的分流作用。 改善绕组初始电位分布,使之接近稳态电位分布的方法主要有两种:一是补偿对地电容的影响,并联补偿;二是增大纵向电容,采用纠结式绕组或内屏蔽式绕组。 7.冲击电压在变压器绕组间的传播包括静电感应,电磁感应 8.雷电放电过程:先导放电阶段,主放电阶段,余辉放电阶段 雷暴日Td 是指该地区平均一年内有雷电放电的平均天数,单位d/a 。 雷暴小时Th 雷暴小时是指平均一年内的有雷电的小时数,单位h/a。 雷电流陡度是指雷电流随时间上升的速度。雷电流陡度 2.6 a I = 衡量输电线路防雷性能的重要指标是耐雷水平和雷击跳闸率。 (1)雷击输电线路时,线路绝缘不发生冲击闪络的最大雷电流幅值称为输电线路的“耐雷水平”,以kA为单位。 (2)输电线路的雷击跳闸率是指标准雷暴日数为40时,每年每100km长的线路因雷击引起的跳闸次数,单位为次/100km·年。 输电线路的直击雷过电压: (1)雷击杆塔塔顶或附近避雷线时的过电压(2)雷绕击导线时的过电压(3)雷击档距中央避雷线时的过电压 雷击杆塔时的耐雷水平I1为 50% 1 (1)()(1) 2.6 2.6 g a t c i t c U I h h L h k R k k h h ββ = -+-+- 当忽略避雷线与横担高度的差别,即ht≈ha、且hg≈hc时, 50% 1 (1)() 2.6 2.6 t c i U I L h k R β = ??-++ ?? ?? 9.为了防止避雷针与被保护的配电构架或设备之间的空气间隙Sa被击穿而造成反击事故,必须要求Sa大于一定距离,取空气的平均耐压强度为500kV/m;为了防止避雷针接地装置和被保护设备接地装置之间在土壤中的间隙Se被击穿,必须要求Se大于一定距离,取土壤的平均耐电强度为300kV/m,Sa和Se应满足下式要求: Sa≥0.2Ri+0.1h Se≥0.3Ri 在一般情况下,间隙距离Sa不得小于5m;Se不得小于3m。 10. 构架避雷针注意事项: (1)严禁将照明线、电话线、广播线及天线等装在避雷针或其构架上; (2)如在避雷针的构架上设置照明灯,灯的电源线必需用铅护套电缆或将导线装在金属管内,并将引下的电缆或金属管直接埋入地中,其长度在10m以上,这样才允许与屋内低压配电装置相连,以免雷击构架上的避雷针时,威胁人身和设备的安全;

浅谈电源不稳定的成因及解决方法

浅谈电源不稳定的成因及解决方法 【摘要】本文主要探讨了目前我国在供电系统中电源不稳定的成因以及危害,并根据相关理论和实践经验,提出了一些自己的见解和有效解决办法。 【关键词】电力资源;电源不稳定;因素;方法 随着我国经济建设的蓬勃发展,社会对电力资源的需求日益增长,用户对电力系统的要求也越来越高。供电的可靠性和稳定性已经成为保障经济增长和满足用户需求的重要问题。影响电源稳定的因素主要是两点:不稳定电压和谐波。下面着重从这两方面分析探讨。 1.电压不稳定的危害及解决办法 1.1电压不稳定的危害 在现代工业用电中,一种电气设备出现故障就会导致流水线、甚至整个工厂作业的中断,造成难以想象的损失。对于普通用户,家用电器长时间在非额定电压或频率下工作,会严重影响电气设备的使用寿命。例如:长期在低于额定电压下工作的计算机,容易出现重启、程序紊乱、烧毁硬盘等情况。因此在比较重要的信息采集、数据检测分析工作点,都要装设在线式UPS以保证无间断供电。 1.2引起电压不稳定的原因及解决办法 按供电系统节点来看,电压波动可分为高压侧电压波动和低压侧电压波动。高压侧电压波动又可分为进线电源处电压不稳定和高压母线上电压不稳定。 1.2.1进线电源处电压不稳定原因分析 原因之一是上一级电源质量不高。解决方法是更换电源或在上一级负荷处重新架设一条供电线路。原因之二是传输过程中(进线电缆)存在问题。解决方法是检查是否存在电缆破损、电缆质量、电缆选型不正确的情况,有针对性地加以改善。 1.2.2高压母线上电压不稳定原因分析 原因之一是变压器三相空载导致高压侧母线电压不稳定。解决方法是重新计算变压器的负载率,更换更大一级容量的变压器。原因之二是在变压器负载时,大功率设备冲击电网造成高压侧母线电压不稳定。解决方法如下一是对大功率设备采用变频启动或软启动方式,来减少对电网的冲击。二是大功率设备尽量采用高压电机,以优化电能质量。三是对个别大功率设备,采用单独无功补偿装置稳定电压。

轨道电路

、轨道电路

————————————————————————————————作者:————————————————————————————————日期:

第三篇 基本常识 第一章 轨道电路 第一节 轨道电路的基本概念 一、轨道电路定义 轨道电路是以铁路线路的两根钢轨作为导体,两端加以电气绝缘或电气分割,并接 上送电设备和受电设备构成的电路。它的主要功能就是反映轨道区段是否被列车占用。轨道电路是构成现代化铁路信号设备的基础,它能否正常工作,直接关系到行车安全和行车效率。最简单的轨道电路构成形式如图3.1.1.1所示。 图3.1.1.1 轨道电路的结构 二、构成说明 轨道电路的送电设备安装在送电端(又称电源端或始端),它由轨道电源E 和限流器RX 组成。根据轨道电路的类型不同,轨道电源可以用铅蓄电池浮充供电(或其它直流电源),也可以用轨道变压器或变频器、信号发生器供电。限流器一般为电阻器,也可以采用电抗器,它的作用是保护电源设备不因过负荷而损坏,并保证在列车占用轨道电路时,轨道继电器能可靠地落下,对某些交流轨道电路而言,它还兼有相位调整的功效。轨道电源采用由电子器件组成的信号发生器时,一般都不设限流器。 轨道电路的接收设备安装在受电端(又称继电器端或终端),目前接收器主要采用的是继电器(称轨道继电器GJ ),由它来接收轨道信号电流。电子轨道电路的接收设备一般都采用电子器件,其作用和轨道继电器相同。 轨端接续线是为了减小钢轨的纵向电阻,而在轨条的连接处增设的。 钢轨绝缘的作用是分割两相邻轨道电路,从电的方面加以绝缘,但是,相邻钢轨线路之间通过大地仍保持着联系,从而给电流形成了附加通路,使轨道电路的传输复杂化。 两组绝缘节之间的钢轨线路(即从送电端到受电端之间),称为轨道电路的控制区段,也就是轨道电路的长度。 安装方式:送电和接收设备一般放在轨道旁的继电器箱、变压器箱(分散)或信号楼内(集中),直接由引接线(钢丝绳)或通过电缆再由引接线接向钢轨。 三、原理分析 当轨道电路控制区段内的钢轨完整,且无列车占用(即线路空闲)时,通过轨道继电器的电流比较大,轨道继电器励磁吸起,前接点闭合,利用轨道继电器前接点的闭合条件,接 送电端 限流器(RX) E 轨道电源引接线 轨道继电器(GJ) 受电端 钢轨绝缘 钢轨线路 轨端接续线

电力系统过电压考试复习

?当电力系统进行操作或发生接地故障时,就会在由电气设备构成的集中参数电路中产生 电磁暂态过程,引起系统电压的升高或产生过电流。 ?当电力系统中某一点突然发生雷电过电压或操作过电压时,这一变化并不能立即在系统 其它各点出现,而要以电磁波的形式按一定的速度从电压或电流突变点向系统其它部位传播。 ?电磁波在分布参数电路中传播产生的暂态过程,简称波过程。 一般架空单导线线路的波阻抗Z≈500Ω,分裂导线波阻抗Z≈300Ω ?冲击电晕对导线耦合系数的影响 发生冲击电晕后,在导线周围形成导电性能较好的电晕套,在这个电晕区内充满电荷,相当于扩大了导线的有效半径,因而与其它导线间的耦合系数也增大。 ?冲击电晕对波阻抗和波速的影响 冲击电晕将使线路波阻抗减小、波速减小 ?冲击电晕对波形的影响 冲击电晕减小波的陡度、降低波的幅值的特性, 有利于变电所的防雷保护。 最大电位梯度出现在绕组的首端。冲击电压波作用于变压器绕组初瞬,绕组首端的电位梯度是平均电位梯度的αl倍。αl越大,电位分布越不均匀,相应绕组的抗冲击能力越差。(危及变压器绕组的首端匝间绝缘) ?最大电位梯度均出现在绕组首端,其值等于αU0,对变压器绕组的纵绝缘(匝间绝缘) 有危害。 ?绕组内的波过程除了与电压波的幅值有关外,还与作用在绕组上的冲击电压波形有关。 过电压波的波头时间越长(陡度越小),由于电感分流的影响,振荡过程的发展比较和缓,绕组各点的最大对地电压和纵向电位梯度都将下降;反之则振荡越激烈。波尾也有影响,在短波作用下,振荡过程尚未充分激发起来时,外加电压已经大为减小,导致绕组各点的对地电压和电位梯度也比较低。 ?变压器绕组内部保护的关键措施是:改善绕组的初始电位分布,使初始电位分布尽可能 地接近稳态电位分布。这可有效地降低作用在绕组纵绝缘上的电位梯度,并削弱振荡,减小振荡过电压的幅值。 (1)补偿对地电容C0dx的影响;(静电环)(2)增大纵向电容K0/dx (纠结式绕组)绕组匝间绝缘所承受的冲击电压为Uab=ālab/v ?侵入波的陡度愈大,每匝线圈的长度愈长,或波速愈小,则作用在匝间的电压也愈大。 ?为了限制匝间电压以保护绕组的匝间绝缘,必须采取措施来限制侵入电机的波的陡度。

电力系统电压稳定问题的初步研究

绪论 电力系统是由电能生产、传输、使用的能量变换、传输系统和信息采集、加工、传输、使用的信息系统组成的。电力系统稳定性问题可以分为角度稳定、电压稳定和频率稳定三个方面。电压稳定性问题与发电系统,传输系统和负荷系统都有关系。电压稳定性是指电力系统在正常运行或经受扰动后维持所有节点,电压为可接受值的能力 引起电压不稳定的主要因素是电力系统没有能力维持无功功率的动态平衡和系统中缺乏合适的电压支持;电压不稳定性受负荷特性影响很大。电压崩溃通常是由以下几种情况引发的:①负荷的快速持续增长;②局部无功不足;③传输线发生故障或保护误动; ④不利的OLTC的动态调节;⑤电压控制设备限制器(如发电机励磁限制)动作。这些情况往往是互相关联的,持续恶化的相互作用将最终导致电压崩溃的发生。 电压安全是指电力系统的一种能力,即不仅在当前运行条件下电压稳定,而且在可能发生的预想事故或负荷增加情况下仍能保持电压稳定。它意味着相对可信的预想事故集合,电力系统当前运行点距离电压失稳点具有足够的安全裕度。 为了防止电压失稳/崩溃事故,最为关心的问题是,当前电力系统运行状态是不是电压 稳定的,系统离电压崩溃点还有多远或稳定裕度有多大。因此必须制定一个确定电压稳定程度的指标,以便运行人员做出正确的判断和相应的对策 电压稳定性研究的方法:非线性动力学方法、概率分析方法、静态分析方法和动态分析方法。 电力系统是非线性动力系统,稳定本身属于动态范畴,电压失稳或电压崩溃本质是一个动态过程。当我们深入研究电压不稳定发生的原因、机理及其变化过程时,特别是要研究因电压过低而导致系统的动态稳定破坏时,静态分析方法难以完整计及系统动态元件的影响,因此无法深入研究电压失稳的机理及其演变过程。必须在计及元件动态作用的前提下,建立恰当的数学模型,采用合适的动态方法进行研究才能真正揭示电压失稳的发展机制。 负荷特性在电压稳定研究中起着重要作用,它直接影响分析的结果,但由于负荷的随机性、分散性及多样性,严格统一负荷特性尚无法确立,这使得负荷特性成为电压稳定研 页脚内容1

轨道电路讲解

轨道电路 一.交流480轨道电路。 (一)工作原理: 交流电源经由BG1变压器降压后送到轨道电路,经过轨道的传输,在受电端经过BZ4变压器,使钢轨线路的特性阻抗与继电器阻抗相匹配,然后经过继电器内部的桥式整流器,使继电器励磁吸起。当列车进入轨道区段时,由于车轮的分路作用,轨道继电器励磁落下。 (二)各器材的作用: ⒈熔断器的作用 防止室外轨道电路因故在某个区段将电源短路时,造成室内电源屏中的熔断器烧断。 ⒉轨道变压器的作用 (1)将室内发送出的高电压变成轨面所需的低电压 (2)利用轨道变压器的Ⅱ次侧可输出多种电压的特点,做到对轨道电路的调整。 (3)起隔离供电作用,减少绝缘节破损对轨道电路的影响。 ⒊限流电阻的作用 (1)防止车辆在送端轨面上分路时,分路电流过大烧毁轨道变压器。 (2)可对轨道电路的调整起到一定作用。 (3)可改善轨道电路的分路特性。 ⒋中继变压器BZ4的作用 (1)将从轨面上传过来低电压信号变成高电压,送回室内动作轨道继电器。 (2)减少信号在电流传输过程中的衰耗。 (3)改善整个回路的阻抗匹配器的条件。 ⒌轨道继电器JZXC-480的作用。 室内送回的交流信号(73、83端子),经过整流再送到轨道继电器线圈(1、4端子)上动作继电器衔铁,所以在继电器插座扳上,可测得交流、直流两种电压。 二.25HZ相敏轨道电路 (一)工作原理 从电网送入50HZ电源,经专设的25HZ分频送出轨道电路的专用电源。轨道线圈的电压由轨道变压器降压后再经扼流变压器降压送至轨面,传输到受电端,经扼流变压器升压后送至轨道变压器再次降压,有电缆传输至轨道继电器的轨道线圈上,而轨道继电器的局部线圈电压由局部分频器直接供给。当轨道电压和局部电压达到规定值,且局部电压相位超过轨道电压90度时,轨道继电器励磁吸起。 (二)各器材的作用 ⒈ 25HZ分频器 25HZ分频器是一种利用参数激励震荡原理构成的铁磁震荡器,由其向轨道电路提供25HZ轨道线圈电压和局部线圈电压。 ⒉二元二位继电器 25HZ相敏轨道电路采用的二元二位继电器(型号为JR-JC-66/345型插入式)是一种交流感应式继电器,是根据电磁铁所建立成的交变磁场与金属转子中感应电流之间相互作用的原理而动作。型号JRC1-70/240 ⒊扼流变压器 扼流变压器在轨道电路中的作用是用以构通牵引电流。变比1:3

过电压引起设备烧毁事故的原因分析及处理

编号:SM-ZD-50557 过电压引起设备烧毁事故的原因分析及处理 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

过电压引起设备烧毁事故的原因分 析及处理 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 【摘要】:在10KV或35KV中性点不接地(或非有效接地)系统中,由于谐振过电压、间歇性弧光接地过电压的存在,经常导致10KV(或35KV)接地电压互感器烧毁或使PT的熔断器的熔丝熔断,从而造成系统的停电检修,给电力系统造成不必要的损失。本文结合实例,对谐振过电压,尤其是间歇性弧光接地过电压引起设备烧毁事故的原因进行分析,并采取了相应的对策,保证了变电站设备的正常运行。 【关键词】:过电压设备事故分析和处理 前言 本文对处理固原西吉新营35KV变电站发生单相接地后,烧毁电压互感器的一次保险及二次计量电表的原因进行分析和探讨,认为烧毁电压互感器及二次设备的原因,不仅和谐振过电压有关,间歇性弧光接地也可能是造成此现象更重要

电网中的并发故障问题表现

电网中的并发故障问题表现 电网中经常发生并且对电脑和精密仪器产生干扰或破坏,主要表现在 以下几个方面: 1. 电涌(power surges):指输出电压有效值高于额定值110%,而且持续时间达一个或数个周期。电涌主要是由于在电网上连接的大型电气设备关机时(例如常见的家用空调关机时),电网因突然卸载而产生的高压(我们都会有这样 的切身体会:在晚上6:00 至9:00 左右的时间段,是用电的高峰期,市电电压 普遍偏低,家里的照明灯比较暗,过了用电高峰期,比如说在晚上10:00 左右,你会发现家里的照明灯突然一闪,并且亮了很多,这就是我们在日常生活中最 常见到的一种电涌现象)。 2. 高压尖脉冲(high voltage spikes):指峰值达6000v,持续时间从万分之一秒至二分之一周期(10ms)的电压。这主要由于雷击、电弧放电、静态放电或 大型电气设备的开关操作而产生。 3. 暂态过电压(switching transients):指峰值电压高达20000V,但持续时间界于百万分之一秒至万分之一秒的脉冲电压。其主要原因及可能造成的破 坏类似于高压尖脉冲,只是在解决方法上会有区别。 4. 电压下陷(power sags):指市电电压有效值介于额定值的80%至85% 之间的低压状态,并且持续时间达一个到数个周期。大型设备开机,大型电动 机启动,或大型电力变压器接入都可能造成这种问题。 5. 电线噪声(electrical line noise):系指射频干扰(RFI)和电磁干扰(EFI)以及其它各种高频干扰。马达的运行、继电器的动作、马达控制器的工作、广播 发射、微波辐射、以及电气风暴等,都会引起线噪声干扰。 6. 频率偏移(frequency variation):系指市电频率的变化超过3Hz 以上。

变频器过电压的原因及解决方法

变频器过电压的原因及解决方法 过电压产生后,变频器为了防止内部电路损坏,其过电压保护功能将动作,使变频器停止运行,导致设备无法正常工作。 变频器在调试与使用过程中经常会遇到各种各样的问题,其中过 电压现象最为常见。 过电压产生后,变频器为了防止内部电路损坏,其过电压保护功能将动作,使变频器停止运行,导致设备无法正常工作。因此必须采取措施消除过电压,防止故障的发生。由于变频器与电机的应用场合不同,产生过电压的原因也不相同,所以应根据具体情况采取相应的 对策。 过电压的产生与再生制动 所谓变频器的过电压,是指由于种种原因造成的变频器电压超过额定电压,集中表现在变频器直流母线的直流电压上。正常工作时,变频器直流部电压为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压Ud=1.35U线=513V。 在过电压发生时,直流母线上的储能电容将被充电,当电压上升至700V左右时,(因机型而异)变频器过电压保护动作。造成过电压的原因主要有两种:电源过电压和再生过电压。电源过电压是指因电

源电压过高而使直流母线电压超过额定值。而现在大部分变频器的输入电压最高可达460V,因此,电源引起的过电压极为少见。 本文主要讨论的问题是再生过电压。产生再生过电压主要有以下原因:当大GD2(飞轮力矩)负载减速时变频器减速时间设定过短;电机受外力影响(风机、牵伸机)或位能负载(电梯、起重机)下放。由于这些原因,使电机实际转速高于变频器的指令转速,也就是说,电机转子转速超过了同步转速,这时电机的转差率为负,转子绕组切割旋转磁场的方向与电动机状态时相反,其产生的电磁转矩为阻碍旋转方向的制动转矩。所以电动机实际上处于发电状态,负载的动能被“再生” 成为电能。 再生能量经逆变部续流二极管对变频器直流储能电容器充电,使直流母线电压上升,这就是再生过电压。因再生过电压的过程中产生的转矩与原转矩相反,为制动转矩,因此再生过电压的过程也就是再生制动的过程。换句话说,消除了再生能量,也就提高了制动转矩。如果再生能量不大,因变频器与电机本身具有20%的再生制动能力,这部分电能将被变频器及电机消耗掉。若这部分能量超过了变频器与电机的消耗能力,直流回路的电容将被过充电,变频器的过电压保护功能动作,使运行停止。为避免这种情况的发生,必须将这部分能量及时的处理掉,同时也提高了制动转矩,这就是再生制动的目的。 过电压的防止措施

电力系统过电压知识点总结

第四章 1.地面落雷密度:一个雷电日每 km2 的地面上落雷的次数(次/雷电日·km 2 )。落雷密度为单位时间单位面积的地面平均落雷次数 2.保护设备与被保护设备的伏秒特性应如何配合?为什么?答案:保护设备的伏秒特性应始终低于被保护设备的伏秒特性。这样,当有一过电压作用于两设备时,总是保护设备先击穿,进而限制了过电压幅值,保护了被保护设备。 3. ZnO 避雷器的主要优点有哪些?答案:ZnO 避雷器的主要优点有无间隙、无续流、电气设备所受过电压可以降低、通流容量大、ZnO 避雷器特别适用干直流保护和 SF6 电器保护等优点。适于大批量生产,造价低,经济性能好。 4.跨步电压:人的两脚着地点之间的电位差称为跨步电压。(取跨距为 0.8m)工作接地中,对人身安全造成威胁的电位差包括接触电位差和跨步电位差人所站的地点与接地设备之间的电位差称为接触电势 5.内部过电压倍数:内部过电压倍数:内部过电压幅值与最大运行相电压幅值之比。 6.【简答题】什么叫做操作过电压?答案:电力系统是由电源、电阻、电感、电容等元件组成的复杂系统,当开关操作,或事故状态引起系统拓扑结构发生改变时,各储能元件的能量重新分配并发生振荡,在设备上将会产生数倍于电源电压的过渡过程的过电压,称为操作过电压。电力系统由于操作从一种稳定工作状态通过震荡转变到另一种工作状态的过渡过程所产生的过电压称为操作过电压。 7.简述电力系统中操作过电压的种类。答案:①间歇电弧接地过电压②空载变压器分闸过电压③空载线路分闸过电压④空载线路合闸过电压一种是计划性的合闸操作,另一种是自动重合闸操作⑤电力系统解列过电压 8.在不同电压等级中起主导作用的操作过电压类型?答案:(一)6~10kV,35~60kV:电弧接地过电压;(二)110~220kV:切空载变压器,切除空载线路过电压;(三)330~500kV:合空载线路过电压。 9.电弧接地过电压:在中性点绝缘的电网中发生单相接地时,将会引起健全相得电压升高到线电压。如果单相接地为不稳定的电弧接地,即接地点的电弧间歇性地熄灭和重燃,则在电网健全相和故障相上将会产生很高的过电压,一般把这种过电压称为电弧接地过电压。 10.影响电弧接地过电压的因素有哪些?答案:(一)电弧熄灭与重燃时的相位;(二)系统的相关参数(相间电容、线路损耗);(三)中性点接地方式。 11.电弧接地过电压的发展过程和幅值大小都与什么有关?答案:电弧过电压的发展过程和幅值大小都与熄弧的时间有关,存在两种熄弧时间:(1)电弧在过渡过程中的高频振荡电流过零时即可熄灭(2)电弧要等到工频电流过零时才能熄灭 12.什么叫做截流?答案:流过电感的电流在到达自然零点前被断路器强行切断,称为强制熄弧,使得储存在电感中的磁场能量被强迫转化为电场能,导致电压的升高。当采用灭弧能力很强的断路器切断很小的励磁电流时,工频励磁电流的电弧可能在自然过零前被强制熄灭,甚至电流在接近幅值 m I 时被突然截断,这就是断路器的截流现象。 13.为什么说切空载变压器容易发生截流现象?答案:切断 100A 以上的交流电流时,电弧通常都是在工频电流自然过零时熄灭的;但当被切断的电流较小时(空载变压器的激磁电流很小,一般只是额定电流的 0.5%~4%,约数安到数十安),电弧提前熄灭,亦即电流会在过零之前就被强行切断。 14.断路器的性能和变压器的参数是怎么影响切空变压器的?答案:切断小电流电弧时,性能差的断路器,由于切断电流能力不强,切除空载变压器时过电压较低;而切除小电流电弧时性能好的断路器,由于切流能力强,切除空载变压器过电压较高。另外,当断路器的灭弧能力差时,切流后在断路器触头间容易引起电弧重燃,而这种电弧重燃与切空线相反,使变压器侧的电容中电场能量向电源释放,从而降低了过电压。使用相同断路器,即使是在相同的截流能力下,当变压器的电容越大和电感越小时,过电压会降低。 15.如何限制切空载变压器的过电压?答案:(一)在断路器的变压器侧加装阀式避雷器。(二)在断路器的主触头上并联一线性或非线性电阻。(三)需频繁进行变压器的分合闸操作的场合可采用:在电弧炉变压器的低压绕组侧并接三相整流电路,直流回路中接有大容量电解电容。 16.在不同电压等级中起主导作用的操作过电压类型?答案:(一)6~10kV,35~60kV:电弧接地过电压;(二)110~220kV:切空载变压器,切除空载线路过电压;(三)330~500kV:合空载线路过电压。

浅析电网电压不稳定的原因及解决办法

浅析电网电压不稳定的原因及解决办法 【摘要】保障供电的稳定性是保障社会经济增长和满足用户需求的重要问题。本文分析了电压稳定性破坏的原因及危害,针对电压不稳定的原因,提出了具体解决措施。 【关键词】稳定性;电压;破坏;措施 随着我国经济建设的蓬勃发展,社会对电力资源的需求日益增长,用户对电力系统的要求也越来越高。供电的可靠性和稳定性已经成为保障经济增长和满足用户需求的重要问题。保障供电的稳定性也是改善内外部投资环境、满足人民日益增长的生活水平以及提升综合国力的重要体现。 1.电压稳定性破坏的原因 研究认为,电压崩溃日趋严重的主要原因有以下几点:一是由于经济上及其它方面(如环保)的考虑,发、输电设备使用的强度日益接近其极限值;二是并联电容无功补偿大量增加,因而当电压下降时,向电网提供的无功功率按电压平方下降;三是线路或设备的投切,引起电压失稳的可能性往往比功角稳定研究中所考虑的三相短路情况要大得多,然而人们长期以来只注意功角稳定的研究。 电力系统稳定问题的物理本质是系统中功率平衡问题,电力系统运行的前提是必须存在一个平衡点。电力系统的稳定问题,直观的讲也就是负荷母线上的节点功率平衡问题。当节点提供的无功功率与负荷消耗的无功功率之间能够达成此种平衡,且平衡点具有抑制扰动而维持负荷母线电压的能力,电力系统即是电压稳定的,反之倘若系统无法维持这种平衡,就会引起系统电压的不断下降,并最终导致电压崩溃。当有扰动发生的时候,会造成节点功率的不平衡,任何一个节点的功率不平衡将导致节点电压的相位和幅值发生改变。各节点电压和相位运动的结果若是能稳定在一个系统可以接受的新的状态,则系统是稳定的,若节点的电压和相角在扰动过后无法控制的发生不断的改变,则系统进入失稳状态。电力系统的电压稳定和系统的无功功率平衡有关,电压崩溃的根本原因是由于无功缺额造成的,扰动发生后,系统电压无法控制的持续下降,电力系统进入电压失稳状态。无论是来自动态元件的扰动还是来自网络部分的扰动,所破坏的平衡均归结为动态元件的物理平衡。电力系统的动力学行为仅受其动态元件的动力学行为及其相互关系的制约。 2.电压不稳定的危害 在现代工业用电中,一种电气设备出现故障就会导致流水线、甚至整个工厂作业的中断,造成难以想象的损失。对于普通用户,家用电器长时间在非额定电压或频率下工作,会严重影响电气设备的使用寿命。例如:长期在低于额定电压下工作的计算机,容易出现重启、程序紊乱、烧毁硬盘等情况。因此在比较重要的信息采集、数据检测分析工作点,都要装设在线式UPS以保证无间断供电。 3.电压不稳定的类型 电压不稳定主要表现在电压偏差和电压波动两个方面。电压偏差是在某一时段内,实际电压幅值“缓慢”变化而偏离了额定电压,偏差是稳态的,就是我们常说的电压偏高或偏低。电压偏差的大小,主要取决与电力系统的运行方式、线路阻抗及有功负荷和无功负荷的变化。电压偏差主要是用电设备所处的位置及运行的时间,如线路末端电压偏低,后夜电压偏高等。 为改善电压偏差,可采取以下措施:一是正确选择变压器的变压比和电压分

25HZ轨道电路案例分析

25HZ轨道电路案例分析 某站发生轨道电路红光带故障,影响多趟旅客列车。为压缩故障延时,提高故障处理技能,现将故障概况、处理过程及原因分析如下. 1、故障概况 某站5DG轨道区段突然红光带,轨道电压从原来的调整状态的21.9V降到11.7V,轨道电相位角由85.2°下降到53.4°。导致了二元二位继电器不能有效动作。在故障处理的过程中,。红光带自动消失消失。轨道电压及相位角均恢复正常。在对设备进行全面检查后恢复正常使用。 2、故障处理过程 13:05分段调度接到某站5DG红光带通知后,段调度立即启动轨道电路应急抢修预案。现场处理人员在信号机械室分线盘测量5DG发送电压为75V,受端电压为11V,凭经验认为故障点在室外,马上赶赴室外检查测试处理故障。13:45分技术科工程师赶到机械室检查测试,在分线盘甩开受端负载,测得受电端电缆电压为40V,在分线盘接负载电压降为11V,初步判断故障在室内,在进一步判断查找过程中,5DG红光带自动恢复,恢复后5DG电压21.7V。工长室外对5DG区段进行了仔细检查,没有发现设备异常。晚上利用天窗点继续查找,对有可能引起故障的器材进行试验,当对室内防护盒进行试验时发现,防护盒开路情况下,其故障现象再现,所有数据曲线与白天故障完全吻合,基本判定,该起故障系防护盒开路所致。 3、原因分析 通过对25HZ轨道电路特性分析资料的查阅,了解到HF4-25型防护盒的

功能为对50HZ 电流起到串联谐振的作用,能减少轨道线圈上的干扰电压。对25HZ 电流起到电容作用。减少了轨道电路传输衰耗和相移。当防护盒在从正常到开路状态时,电压最大衰耗可降到原电压的45.5%,同时相位角失调角最大为41.33°,变化幅度要根据轨道电路长度等情况有部分偏差。和本故障现象相符(表格一),在晚上对防护盒试验时的数据曲线数据也相符,因此我们得出结论故障原因为HF4-25 型防护盒开路故障。同时举一反三以轨道电压正常值20V 为例,当防护盒电容被击穿状态下轨道电压会原来得20V 降至3V-4V 左右,相位角失调角61°。防护盒电感短路状态下轨道电压从20V 降到17V 左右,相位角失调角15°;当防护盒后面短联线开路时。电压为9V 左右,相位角到0°。 故障时电压变化和相位角变化

相关主题
文本预览
相关文档 最新文档