当前位置:文档之家› 排列组合的应用

排列组合的应用

排列组合的应用
排列组合的应用

排列组合应用(一)排列

解排列问题,首先必须认真审题,明确问题是否是排列问题,那是否有序,抓住问题本质特征,灵活运用基本原理和公式进行分析,同时要讲究一些基本策略与方法技巧。

1、特殊元素的“优先按排法”。

例1、用0、1、2、3、4这五个数字,组成没有重复的三位数,其中偶数共有多少?

(分析)由于三位数是偶数,故末尾数字必须是偶数,以“0”不能排在首位,所以“0”就是其中特殊元素,优先按排。按“0”在末尾

和不在末尾分为两类。共A2

4+A1

2

A1

3

A1

3

=30种。

2、相邻问题有“捆绑法”。对于某几个元素要求相邻的排列问题,可将先相邻的元素“捆绑”起来,作为一个“大”的元素,与其他元素排列,然后再对相邻元素的内部进行排列。

例2、7人站成一排照相,要求甲、乙、丙三人相邻有多少种不同的排法?

(分析)先把甲乙丙三人“捆绑“看作一个元素,与其余4个元素进

行排列再对甲、乙、丙三人进行排列。共A5

5A3

3

种。

3、不相邻问题有“插空法”。对于某几个元素不相邻的排列问题,可先将其他元素排好,然后再将不相邻的元素在已排好的元素之间及两端的空隙间插入即可。

例3、7人站成一排照相,要求甲、乙、丙三人不相邻有多少种不同的排法?

(分析)先让其余4人站好,有A4

4

种排法,这时有5个“空隙”可

供甲、乙、丙选取,即A3

5种。共A4

4

A3

5

种排法。

4、间接法或淘汰法。理解题中的要求,把不符合要求的除去,此时应注意既不能多减也不能少减。

例4、5名男生,5名女生排成一行,其中5名男生不排在一起,有几种排法?

(分析)先计算出10人的全排列数,再减去5名男生排在一起的排

列数即可。共A10

10—A5

5

A6

6

排法。

5、合理分类与准确分步。解含有约束条件的排列组合问题,应按元素的性质进行分类,事情发生的连续性分步,做到分类标准明确,分步层次清楚,不重不漏。

例5、五人从左到右站成一排,其中甲不站排头,乙不站第二个位置,共有多少种不同站法

(分析)若甲在第二位置上其余4人可自由按排,有A4

4

种;

若甲在第3、4、5位置上,则乙可站在其他3个位置上,有A1

3A1

3

A3

3

种;共A4

4+ A1

3

A1

3

A3

3

种排法。

或用间接法:①甲在第一位置,乙在第二位置有A3

3

种;②甲在第一

位置,乙不在第二位置有A1

3A3

3

种;③甲不在第一位置,乙在第二位

置有A1

3A3

3

种;即共有A3

3

+ A1

3

A3

3

+ A1

3

A3

3

种不符合要求,则符合要求

的有A5

5—(A3

3

+ A1

3

A3

3

+ A1

3

A3

3

)种。

6、顺序固定问题有“除法”。对于某几个元素顺序一定的排列问题,

可先将这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。

例7、五人排列,甲在乙前面的排法有多少种?

(分析)先将5人全排列有A 55种排法,而甲、乙之间排法有A 22种排

法,而甲在乙前的排法只有一种符合,故符合条件的排法有22

5

5A A 种。

例8、由1、2、3、4、5、6六个数字可组成多少个无重复且是6的倍数的五位数?

(分析)6的倍数的数既是2的倍数不是3的倍数,其中3的倍数又满足“各个数位上的数字和是3的倍数”的特征。把6个数字分成4组:(1,5)(2,4)(3)(6),每组数字之和为3的倍数,因而可分成两类,一类由1、5、2、4、6作为数码,另一类由1、5、2、4、3作为数码,且末尾数字为偶数即可。第一类有A 13A 44种,第二类有共

有A 12A 44种,共有A 13A 44+ A 12A 44种。

巩固练习

1、 有3名男生、4名女生、排成一排

(1) 选其中5人排成一行(2)甲只能在中间或两头(3)甲、乙二

人必须在两头(4)甲不在排头,乙不在排尾(5)男生、女生各站一边(6)男生必须排在一起(7)男生、女生各不相邻(8)男生不能相邻(9)甲、乙、丙三人中甲必须在前,丙必须在后,但三人不一定相邻(10)甲、乙中间必须有3人,各有多少种

不同的排法

(答案)(1)A5

7(2)A1

3

A6

6

(3)A2

2

A5

5

(4)3720(5)A3

3

A4

4

A2

2

(6)

A3

3A5

5

(7)A3

3

A4

4

(8)A4

4

A3

5

(9)

3

3

7

7

A

A(10)A2

2

A3

5

A3

3

2、由数字0、1、2、2、4、5组成(各位上数字不允许重复)(1)

多少六位数?(2)多少个六位偶数(3)多少个被5整除的五位数?(4)多少个被3整除的五位数(5)比240135大的六位数有多少个?允许重复呢?

例1求不同的排法种数:

(1)6男2女排成一排,2女相邻;

(2)6男2女排成一排,2女不能相邻;

(3)4男4女排成一排,同性者相邻;

(4)4男4女排成一排,同性者不能相邻.

例3 某小组6个人排队照相留念.

(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?

(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?

(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?

(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?

(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?

(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?

(答案)(1)A1

5A5

5

(2)312(3)216(4)216(5)407

(二)组合

组合与排列有许多联系,在解决组合问题中常借用解决排列问题的方法。以下是解决组合问题的几种方法

1、直接法或间接法

例1、在100件产品中有98件合格品,2件次品。从这100件产品中任意取出3件(1)一共有多少种不同的取法(2)恰好取出1

件次品,有多少种取法(3)至少有1件次品,有多少种取法?

(答案)(1)C3

9(2)C1

2

C2

98

(3) C1

2

C2

98

+C2

2

C1

98

(或C3

100

–C3

98

)

练习:要从12人中选出5人去参加一项活动,按下列要求有多少种不同选法?(1)A、B、C三人必须入选(2)A、B、C三人不能入选(3)A、B 、C三人只有一人入选(4)A、B、C三人至少一人入选(5)A、B、C三人至多二人入选

(答案)(1)C2

9(2)C5

9

(3)C1

3

C4

9

(4)C1

3

C4

9

+C2

3

C3

9

+C3

3

C2

9

( 5)C0

3C5

9

+ C1

3

C4

9

+ C2

3

C3

9

(或C5

12

–C2

9

)

2、分组分配

例2、六本不同的书按下列条件各有多少种不同的分法?

(1)分给甲、乙、丙三人,每人两本子(2)分成三份,每份两本(3)分成三份,一份一本,一份二本,一份三本(4)分给甲、乙、丙三人,一人一本,一人二本,一人三本

(分析)(1)先分给甲有C2

6种,再分给乙有C2

4

种,最后为丙有C2

2

种,

共C2

6C2

4

C2

2

=90种

(2)问题(1)也可以分成两步完成:第一步先把六本书均分成三份,设有x种分法,第二步把已分好的书分给甲、乙、丙三人有A3

3

种,即

有xA3

3= C2

6

C2

4

C2

2

x=

3

3

2

2

2

4

2

6

A

C

C

C=15种

说明:(1)(2)两题的区别在于(2)只分组不分配,(1)既分组又分配。那么为什么在(2)中也就是只分组的问题中要除去A m

m

呢?比如A、B 、C、D四个元素要均分为两组,先取AB再取CD为一

种即{AB

CD 或先取CD再取AB为另一种即{CD

AB

,由于只分组即AB

与CD 间是无序的因而只能算一种分法。因而“分组分配”有如下一般结论: a) 将2n 个元素均分为两组方法数:!22n n

n n C C 种。

b) 将3n 个元素均分为三组方法数:!

323n

n

n n n n C C C 种。

c) 将kn 个元素均分为k 组方法数:

!

....)1(k C C C n n

n n k n kn -种。

d)

将n 个元素均分为m 组每组r 个(m ?r=n )方法数:

!

...22m C C C C C r

r

r r r r n r r n r n --

e) 若再将m 组分配给m 个对象,则分配方法有

!

...22m C C C C C r r

r r r r n r r n r n --?m!

(3)先分一本,再分二本,最后分三本,即得分三组的方法数

共有C 16C 2

5C 33=60种

(4)先要把收分成三组有C 16C 25C 33=60种,再分配给三人有A 33种 共有A 33C 16C 25C 33=360种。

练习:六本不同的书,分成3组,1组4本,其余各1本有多少种分法?

(答案)2

2

1

1

1246A C C C 3、隔板法

例3、某中学从高中7个班中选出12名学生组成校代表队,参加市课外知识竞赛,使代表中每个班至少有1人参加的选法有多少种?

(分析)由于12个名额是不可区分的,所以将问题转化为:把排成一行的12个“0”分成7份的不同方法数。12个“0”形成11个空

隙,用6个隔板可将其分成7组,有C6

11种不同的插法,即C6

11

=462种。

练习:10个相同的球放入6个盒中,每个盒中至少一个的放法有多少种。

(答案)C5

9

=126

4、插空法

例4、某城市新修建的一条道路上有12盏路灯,为了节约用电又不影响照明,可以熄灭其中的3盏,但两端的灯不能熄,也不能熄灭相邻的两盏灯,则熄灭的方法共有多少种?

(分析)把要熄灭的三盏灯去掉,有九盏灯亮着,则有8个空隙,在

这8个空隙中安排3盏灯故有C3

8

种。

练习:一排无区别的座位10个,3个人来坐,都不能坐两头,且两人之间至少有一个座位,问有多少种不同的坐位?

(答案)C3

6

5、递推法

例5、一楼梯共10级,如果规定每次只能跨下一级或两级,要走上这10级楼梯,共有多少种不同的走法?

(分析)设上n级楼梯的走法为a n种,则a1=1,a2=2,当n≥2时,上n 级楼梯的走法可分两类:一类是最后一步跨一级有a n﹣1种走法,另一类是最后一步跨二级有a n﹣2种走法,则有a n= a n﹣1+ a n﹣2

由a3=a2+a1=3,a4=a3+a2=5,a5=a4+a3=8,a6=a5+a4=13,a7=a6+a5=21,a8=34,

a9=55,a10=89

练习:一个楼梯共18级台阶,一步可跨一级或两级台阶,若12步登完共有多少种不同的走法?

(分析)一步一台阶x个,一步二台阶y个则有{12

18

=

+

=

-

y

x

y

x得

x=6,y=6,即无论哪种走法都有6个一步一台阶6个一步二台阶的,因而转化为求12步中任选6步的不同选法:C6

12

=924

巩固练习

1、从五双不同鞋子中任取4只,4只鞋子中至少有2只配在一双的可能性有多少种?

2、有20个不加区别的小球放入编号为1、2、3的三个盒子中,要

求每个盒子内的球数不少于盒子的编号数,问有多少种不同的放法?

3、某校高二年级共有6个班,现从外地转入4名学生要按排到该

年级的两个班,每班二名有多少不同的方案?

4、四个不同的小球放入编号为1、2、3、4的四个盒子则恰好一个

空盒的放法有多少种?

5、平面内有n个点,如果有m个点共线,其余各点任何三点不共

线,则这几个点能形成多少条直线?多少个三角形?

(答案)1、130 2、C2

163、C2

6

C2

4

4、C2

4

A3

4

=144

5、C2

n ﹣C2

m

+1,C3

n

﹣C3

m

四年级下册数学讲义-奥数专题讲练:第六讲 排列组合的综合应用(例题解析版)全国通用

第六讲排列组合的综合应用 排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.) 当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握. 例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法? 分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理. 解:符合要求的选法可分三类: 不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的. 因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种. 注运用两个基本原理时要注意: ①抓住两个基本原理的区别,千万不能混. 不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数. 不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数. ②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分. ③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的. 例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列. 分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.

解排列组合应用题的21种策略

解排列组合应用题的21种策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.E D C B A ,,,,五人并排站成一排,如果B A ,必须相邻且B 在A 的右边,那么不同的排法种数有( ) A 、60种 B 、48种 C 、36种 D 、24种 解析:把B A ,视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4 4A =24种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有2 6A 种,不同的排法种数是36002655=A A 种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.E D C B A ,,,,五人并排站成一排,如果B 必须站在A 的右边(B A ,可以不相邻)那么不同的排法种数是( ) A 、24种 B 、60种 C 、90种 D 、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即602 155=A 种,选B 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的 7人中选1人承担丙项任务,不同的选法共有25201718210=C C C 种,选C . (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( A ) A 、44484 12C C C 种 B 、344484 12C C C 种 C 、33484 12A C C 种 D 、33 4448412A C C C 种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? 解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有363324=A C 种

排列组合的应用

排列组合的应用 一、填空题: 1、有不同的书6本,平均分给甲、乙两人,有种分法。 2、某校举办排球赛,有10支队参赛,赛制为单循环赛,这次比赛共要进行场,冠军和亚军的获得者有种可能情况。 3、有5本不同的故事书,准备送给3个小朋友,如果每人只能得1本,有种送法;如果5本书都要送出,但不限定每个小朋友都得到,有种送法。 4、有8台车床,分配给甲、乙、丙三名技工管理,如果甲管4台,乙管3台,丙管1台,有 种分配方法;如果甲管4台,其余两人是一人管3台,1人管1台有种分配方法。 5、从1,2,3,4,5,6这六个数字中,任取两个相减,可得到个不同的差。 6、有8位男生,7位女生,现准备从中选出6人组成试验小组,如果男女各占一半,有种选法;如果最多只能有3位女生,有种选法。 二、选择题: 1、6个队员排成一列进行操练,其中新队员甲不能站排首,也不能站排尾,有()种不同排法。 A、4P55 B、4P66 C、2P55 D、2P66 2、6件不同的商品将它们排成一列,陈列在橱窗里,如果a、b两件商品要分别放在两端,有()种不同排法。 A、P44 B、P66-2 C、2P44 D、P46 3、某铁路线上一共有51个大小车站,铁路局要为这条路线准备()种不同的车票。 A、102 B、2601 C、1275 D、2550 4、有甲、乙、丙、丁、戊5个队比赛足球,分主客场比赛,总共要比赛()场。 A、10 B、20 C、25 D、120 5、如果从4,5,6,7,8,9,10,14,17各数中每次取出两个数,使其和为偶数,共有()种选法。 A、20 B、16 C、9 D、32 6、从12名学生中选3人参加歌咏比赛的选法有()种。A、1320 B、220 C、3960 D、660 7、某校文艺演出的节目中有5个是唱歌的,3个是舞蹈,若舞蹈节目不能安排成连续的,有()种出场顺序。 A、120 B、240 C、336 D、14400 8、参加小组唱的6个男生和4个女生站成一排,要求女生站在一起有()种不同站法。 A、10! B、4!×6! C、4×7! D、4!×7! 9、若x、y分别在1、2、3、4、5、6中取值,则x+y=7有()组解。 A、3 B、6 C、7 D、9 10、若x、y分别在0,1,2,…,9中取值,则点P(x,y)在第一象限中的点的个数是() A、100 B、99 C、121 D、81 三、解答题: 1、某厂生产一批五档数字的号码锁(每档数字都可以是0,1,2,…,9这十个数字中的任一个),问产品中总共可有多少不同的锁? 2、某市的电话号码从原来的7个数码,升位为8个数码,电话号码升位后,可增加多少用户(如果规定号码的第1个数字不得用0)。 3、用5面不同颜色的小旗升上旗杆,以作出信号,总共可作出多少种不同的信号(作信号时,可以只用一面小旗,也可以用多面小旗)?

排列组合中的最短路径问题

两个计数原理的应用 一、选择题 1.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为【答案】B (A)24 (B)18 (C)12 (D)9 【解析】 试题分析:由题意,小明从街道的E处出发到F处最短路径的条数为6,再从F处到G ?=,故处最短路径的条数为3,则小明到老年公寓可以选择的最短路径条数为6318 选B. 【考点】计数原理、组合 【名师点睛】分类加法计数原理在使用时易忽视每类中每一种方法都能完成这件事情,类与类之间是相互独立的;分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相互关联的. 2.如图,一只蚂蚁从点出发沿着水平面的线条爬行到点,再由点沿着置于水平面的长方体的棱爬行至顶点,则它可以爬行的不同的最短路径有( B )条

A. 40 B. 60 C. 80 D. 120 【解析】试题分析:蚂蚁从到需要走五段路,其中三纵二竖,共有条路径,从到共有条路径,根据分步计数乘法原理可知,蚂蚁从到可以爬行的不同的最短路径有条,故选B. 考点:分步计数乘法原理. 二、解答题 3.某城市有连接8个小区A、B、C、D、E、F、G、H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图,某人从道路网中随机地选择一条最短路径,由小区A前往H. (1)列出此人从小区A到H的所有最短路径(自A至H依次用所经过的小区的字母表示); (2)求他经过市中心O的概率. 【答案】(1)见解析(2)2 3 【解析】 解:(1)此人从小区A前往H的所有最短路径为:

排列与组合的综合应用.

高三数学(理一轮复习—— 10.3排列与组合的综合应用 教学目标:1. 进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解 法,提高分析问题和解决问题的能力,学会分类讨论的思想. 2. 使学生掌握解决排列、组合问题的一些常用方法。 教学重点:排列组合综合题的解法。教学过程: 一.主要知识: 解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系, 还要考虑“是有序”的还是“无序的” ,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法: 1.特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。 2.科学分类法:对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行 3.分配、分组(堆问题的解法: 4. 插空法 :解决一些不相邻问题时, 可以先排一些元素然后插入其余元素, 使问题得以解决。 5.捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个” 6.排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法 . 7.剪截法(隔板法 :n 个相同小球放入m(m≤ n 个盒子里 , 要求每个盒子里至少有一个小球

的放法等价于 n 个相同小球串成一串从间隙里选 m-1个结点剪成 m 段 (插入 m -1块隔板 , 有 11 --m n C 种方法 . 8. 错位法:编号为 1至 n 的 n 个小球放入编号为 1到 n的 n 个盒子里 , 每个盒子放一个小球 . 要求小球与盒子的编号都不同 , 这种排列称为错位排列 . 特别当 n=2,3,4,5时的错位数各为 1,2,9,44.2个、 3个、 4个元素的错位排列容易计算。关于 5个元素的错位排 列的计算,可以用剔除法转化为 2个、 3个、 4个元素的错位排列的问题: ① 5个元素的全排列为:5 5120A =; ②剔除恰好有 5对球盒同号 1种、恰好有 3对球盒同号 (2个错位的 351C ?种、恰好有 2对球盒同号 (3个错位的 252C ?种、恰好有 1对球盒同号 (4个错位的 1 59C ?种。 ∴ 120-1-351C ?-252C ?-1 59C ?=44. 用此法可以逐步计算:6个、 7个、 8个、……元素的错位排列问题。 二.典例分析 【题型一】“分配” 、“分组”问题 例 1.将 6本不同的书按下列分法,各有多少种不同的分法? ⑴分给学生甲 3 本,学生乙 2本,学生丙 1本;

难点29排列组合的应用问题

难点29 排列、组合的应用问题 排列、组合是每年高考必定考查的内容之一,纵观全国高考数学题,每年都有1~2道排列组合题,考查排列组合的基础知识、思维能力. ●难点磁场 (★★★★★)有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? ●案例探究 [例1]在∠AOB 的OA 边上取m 个点,在OB 边上取n 个点(均除O 点外),连同O 点共m +n +1个点,现任取其中三个点为顶点作三角形,可作的三角形有( ) 12 12111121 21 2121 211211C C C D.C C C C C C C.C C C C .C B C C C A.C n m n m n m m n n m m n n m m n n m +++++++++ 命题意图:考查组合的概念及加法原理,属★★★★★级题目. 知识依托:法一分成三类方法;法二,间接法,去掉三点共线的组合. 错解分析:A 中含有构不成三角形的组合,如:C 11+m C 2n 中, 包括O 、B i 、B j ;C 1 1+n C 2m 中,包含O 、A p 、A q ,其中A p 、A q ,B i 、B j 分别表示OA 、OB 边上不同于O 的点;B 漏掉△A i OB j ; D 有重复的三角形.如C 1 m C 21+n 中有△A i OB j ,C 21+m C 1n 中也有△A i OB j . 技巧与方法:分类讨论思想及间接法. 解法一:第一类办法:从OA 边上(不包括O )中任取一点与从OB 边上(不包括O )中任取 两点,可构造一个三角形,有C 1 m C 2n 个;第二类办法:从OA 边上(不包括O )中任取两点与 OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 2 m C 1n 个;第三类办法:从 OA 边上(不包括O )任取一点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形, 有C 1 m C 1n 个.由加法原理共有N =C 1m C 2n +C 2m C 1n +C 1m C 1n 个三角形. 解法二:从m +n +1中任取三点共有C 3 1++n m 个,其中三点均在射线OA (包括O 点),有 C 31+m 个,三点均在射线OB (包括O 点),有C 31+n 个.所以,个数为N =C 3 1++n m -C 31+m -C 31+n 个. 答案:C [例2]四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_________. 命题意图:本题主要考查排列、组合、乘法原理概念,以及灵活应用上述概念处理数学问题的能力,属★★★★级题目. 知识依托:排列、组合、乘法原理的概念. 错解分析:根据题目要求每所学校至少接纳一位优等生,常采用先安排每学校一人,而后将剩的一人送到一所学校,故有3A 3 4种.忽略此种办法是:将同在一所学校的两名学生按 进入学校的前后顺序,分为两种方案,而实际题目中对进入同一所学校的两名学生是无顺序要求的.

组合数学在计算机中的应用

目录 摘要 (1) 1.组合数学概述 (1) 2.组合数学在生活中的应用 (1) 3.组合数学与计算机软件 (1) 3.1 信息时代的组合数学 (2) 3.2 组合数学在计算机软件的应用 (2) 3.3组合数学与计算机软件的关系 (2) 3.4组合数学在国外软件业的发展状况 (2) 4 Ramsey 数在计算机科学中的应用 (3) 4.1Ramsey 定理和Ramsey 数 (3) 4.2信息检索 (3) 参考文献 (5)

组合数学在计算机中的应用 摘要:介绍了组合数学的概念、起源与研究的主要内容,分析了组合数学的特点以及其在生活中的应用,阐述了组合数学与计算机软件的联系,并着重通过两个例子说明了Ramsey 数在计算机科学的信息检索中的重要应用。 关键词:组合数学;组合算法;Ramsey 数;信息检索; 1:组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 2:组合数学在生活中的应用 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是组合数学的问题。 组合数学在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 3:组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。

排列组合问题的解题方法与技巧的总结(完整版)

种。故不同插法的种数为:26A + 22A 16A =42 ,故选A 。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区 不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答) 解:由题意,选用3种颜色时,C 43种颜色,必须是②④同色,③⑤同色,与①进行全排列,涂色 方法有C 43A 33=24种4色全用时涂色方法:是②④同色或③⑤同色,有2种情况,涂色方法有 C 21A 44=48种所以不同的着色方法共有48+24=72种;故答案为72 六、混合问题--先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4 人,则不同的分配方案共有( )种 A. B.3种 C. 种 D. 解:本试题属于均分组问题。则12名同学均分成3组共有 种方法,分配到三 个不同的路口的不同的分配方案共有: 种,故选A 。 例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出 3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共 有() A .24种 B .18种 C .12种 D .6种

解:黄瓜必选,故再选2种蔬菜的方法数是C32种,在不同土质的三块土地上种植的方法是A33, ∴种法共有C32A33=18,故选B. 七.相同元素分配--档板分隔法 例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。 解一:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有2 C种插法,即有15种分 6 法。 2、解二:由于书相同,故可先按阅览室的编号分出6本,此时已保证各阅览室所分得的书不小于其编号,剩下的4本书有以下四种分配方案:①某一阅览室独得4本,有种分法;②某两个阅览室分别得1本和3本,有种分法;③某两个阅览室各得2本,有种分法;④某一阅览室得2本,其余两阅览室各得1本,有种分法.由加法原理,共有不同的分法3+=15种. 八.转化法: 对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解 。例11 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种? 分析此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略 关键词:排列组合,解题策略 ①分堆问题; ②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个. 四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.30 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答) 解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色.用三种颜色着色有=24种方法, 用四种颜色着色有=48种方法,从而共有24+48=72种方法,应填72. 六、混合问题——先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有() A.种B.种

排列数、组合数公式及二项式定理的应用

排列数、组合数及二项式定理整理 慈济中学全椒 刘 1、排列数公式 m n A =)1()1(+--m n n n Λ=!! )(m n n -.(n ,m ∈N*,且m n ≤). 2、排列恒等式 (1) 1(1)m m n n A n m A -=-+;(2) 1m m n n n A A n m -= -;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5) 1 1m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +?+?++?=+-L . 3、组合数公式 m n C =m n m m A A =m m n n n ???+--ΛΛ21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 4、组合数的两个性质 (1) m n C =m n n C - ; (2) m n C +1 -m n C =m n C 1 +. 5、排列数与组合数的关系 m m n n A m C =?! . 6、二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L 【注】: 1.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 2.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。

高考一轮复习教案十二(3)排列与组合的综合应用(教师)文科用

模块:十二、排列组合、二项式定理、概率统计 课题:3、排列与组合的综合应用 教学目标:进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解法,提高分析问题和解决问题的能力,学会分类讨论的思想. 掌握解决排列、组合问题的一些常用方法. 重难点:掌握解决排列、组合问题的一些常用方法. 一、知识要点 常用解题方法: 1、特殊优先法 2、分类讨论法 3、分组(堆)问题 4、插空法 5、捆绑法 6、排除法 7、隔板法 8、错位法 9、容斥法 二、例题精讲 例1、将6本不同的书按下列分法,各有多少种不同的分法? (1)分给学生甲3 本,学生乙2本,学生丙1本; (2)分给甲、乙、丙3人,其中1人得3本、1人得2 本、1 人得1 本; (3)分给甲、乙、丙3人,每人2本; (4)分成3堆,一堆3 本,一堆2 本,一堆1 本; (5)分成3堆,每堆2 本 (6)分给分给甲、乙、丙3人,其中一人4本,另两人每人1本; (7)分成3堆,其中一堆4本,另两堆每堆1本。 答案:(1)60;(2)360;(3)90;(4)60;(5)15;(6)90;(7)15. 例2、求不同的排法种数: (1)6男2女排成一排,2女相邻; (2)6男2女排成一排,2女不能相邻; (3)4男4女排成一排,同性者相邻; (4)4男4女排成一排,同性者不能相邻. 答案:(1)10080;(2)30240;(3)1152;(4)1152.

例3、有13名医生,其中女医生6人.现从中抽调5名医生组成医疗小组前往灾区,若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为P ,则下列等式 (1)514 1376;C C C - (2)23324157676767C C C C C C C +++; (3)514513766C C C C --; (4)23 711C C ; 其中能成为P 的算式有_________种. 答案:(2)(3) 例4、对某种产品的6件不同正品和4件不同次品,一一进行测试,到区分出所有次品为止.若所有次品恰好在第五次测试被全部发现,则这样的测试方法有 种. 答案:576种 例5、某班新年联欢会原定的5个节目已排成节目单,开演前有增加了2个新节目,如果将这两节目插入节目单中,那么不同的插法种数为 . 答案:42. 例6、从10 种不同的作物中选出6 种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法共有 种. 答案:120960 例7、将3种作物种植在如图的5块试验田里,每块种植一种作物且相邻的 试验田不能种植同一种作物,不同的种植方法共有________种. 答案:42 例8、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有 种. 答案:141种 例9、从黄瓜,白菜,油菜,扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有 种. 答案:18种 例10、有四个不同的小球,全部放入四个不同的盒子内,恰有两个盒子不放球的放法总数为

高中数学排列组合应用

课题:___排列组合应用_ 教学任务 教学过程设计 排列组合应用 一、选择: 1、某班元旦联欢会原定的5个学生节目已排成节目单,开演前又增加了两个教师节目 入原节目单中,那么不同插法的种数为() A.42B.30C.20D.12 2、将1,2,3,4填入标号为1,2,3,4的四个方格里,没格填一个数字,则每个方格的标号与所填的数字均不相同的填法()种. A. 6 B. 9 C. 11 D.23 3、6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的分法有()A.33 34 p p?B.33 33 p p?C.33 44 p p?D.33 33 2p p? 4、有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有() A.70B.80C.82D.84 二、填空: 5、从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进行实验,有 _____种不同的种植方法。 6、9位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有种 7、3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有_____________种。 8、某兴趣小组有4名男生,5名女生:(1)从中选派5名学生参加一次活动,要求必须有2名男生,3名女生,且女生甲必须在内,有种选派方法;(2)从中选派5名学生参加一次活动,要求有女生但人数必须少于男生,有_ _ __种选派方法;(3)分成三组,每组3人,有种不同分法 9、一天课表中,6节课要安排3门理科,3门文科,要使文、理科间排,不同的排课方法有 _ 种;要使3门理科的数学与物理连排,化学不得与数学、物理连排,不同的排课方法有种

排列组合综合应用

第九讲 排列组合综合应用 【内容概述】 乘法原理是指做一件事,完成它需要分成几个步骤,做第一步有m 1种不同的方法, 做第二步有m 2种不同的方法…做第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×……×m n 种不同方法(即每一步都不能单独完成这件事情,需要所有步骤合在一 起才能完成这件事情) 加法原理是指做一件事,完成它可以有几类办法,在第一类办法中,有m 1种不同的 方法,在第二类办法中,有m 2种不同的方法……在第n 类办法中,有m n 种不同的方法。 那么完成这件事共有N=m 1+m 2+m n 种不同方法。(即每一类办法都能独立完成,每一类与 另一类不重复,所有这些类型合起来构成这个事情) 【典型题解】 例1 某人到食堂去买饭,食堂里有4种荤菜,3种素菜,2种汤,他要各买一样,共有多少种不同的买法? 【答案解析】根据题目条件可知,买饭可以分3个步骤。直接利用乘法原理计算。 不同的买法的种数:24234=??(种) 练习一“IMO ”是国际数学奥林匹克的缩写,把这三个字母用三种不同的颜色来写,现有五种不同颜色的笔,问共有多少种不同的写法? 【答案解析】根据题目条件可知,写完IMO 可以分三个步骤,第一步写“I ”有5种写法,第二步写“M ”有4种写法,第三步写“O ”有3种写法。直接利用乘法原理计算。 不同的写法的种数60345=??(种) 例2 一个篮球队,五名队员A 、B 、C 、D 、E ,由于某种原因,C 不能做中锋,而其余 四人可以分配到五个位置的任何一个上,问:共有多少种不同的站位方法? 【答案解析】把球场的上的五个位置分别称为1、2、3、4、5号位;令1号位为中锋,由于C 不能做中锋,那么还有4种不同的选择方法,2号位还有剩下的4个人可供选择,3号位还有剩下的3个人可供选择,4号位还有剩下的2个人可供选择,5号位只剩个人可供选择,根据乘法原理,它们的积就是全部的选择方法. 不同的站位方法:9612344=????(种) 练习二 广州电话号码有8个数码,其中第一个数字不为0,而且数字不重复,这样的电话号码共有多少个? 【答案解析】首先考虑第1个位置,有9种选择。其它位置根据乘法原理,依次有9、8、7、6、5、4、3种选择。 电话号码个数:163296034567899=???????(个)

高三数学整理解排列组合应用问题的十种思考方法

“解排列、组合应用问题”的思维方法 一、优先考虑: 对有特殊元素(即被限制的元素)或特殊位置(被限制的位置)的排列,通常是先排特殊元素或特殊位置,再考虑其它的元素或其它的位置。 例1.(1)由0、1、2、3、4、可以组成 个无重复数字的三位数。 (2) 由1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 个。 (3) 5个人排成一排,其中甲不排在两端也不和乙相邻排列的排列共有 种。 二、“捆”在一起:有要求元素相邻(即连排)的排列问题,可以先将相邻的元素看作一个“整体”与其它元素排列,然后“整体”内部再进行排列。 例2.(1) 有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有 种。 (2) 有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共有 种。 三、插空档:有要求元素不相邻(即间隔排)的排列问题,可以制造空档插空。 例3.(1)五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有 种陈列方法。 (2)6名男生6名女生排成一排,要求男女相间的排法有 种。 四、减去特殊情况(即逆向思考):先算暂时不考虑限制条件的排列或组合种数,然后再从中减去所有不符合条件的排列或组合数。 例4.(1)以正方体的顶点为顶点的四面体共有 个。 (2) 由0、1、2、3、4、可以组成 个无重复数字的三位数。 (3)集合A 有8个元素,集合B 有7个元素,B A 有4个元素,集合C 有3个元素且满足下列条件: B C A C B A C ,,的集合C 有几个。 (4)从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有多少种参赛方案? 五、先组后排:排列、组合综合题,通常都是先考虑组合后考虑排列。 例5(1)用1、2、3、 9这九个数字,能组成由3个奇数数字、2个偶数数字的不重复的五位数有 个。 (2)有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,

小学数学《排列组合的综合应用》练习题(含答案)

小学数学《排列组合的综合应用》练习题(含答案) 例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法? 分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理. 解:符合要求的选法可分三类: 不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有 5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有 5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的. 因此,依加法原理,选取两幅不同类型的画布置教室的选法有 15+10+ 6=31种. 注运用两个基本原理时要注意: ①抓住两个基本原理的区别,千万不能混. 不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数. 不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数. ②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分. ③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的. 例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列. 分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式. 解:

排列与组合的应用.

排列与组合的应用 四川成都市大弯中学 李植武 摘要 在信息学奥林匹克竞赛中,多次出现了排列与组合的竞赛题目。本文介绍了排列与组合的概念、公式,重点讲解了排列与组合的生成算法,最后通过几个竞赛题目的解决,体现了排列与组合在信息学竞赛中的应用。 关键词 排列 组合 生成 应用 说明:本文中的pascal 程序在Lazarus v0.9.22 beta 下调试完成,c 程序dev-c++ 4.9.9.2下调试完成,所有程序通过相应数据测试。 一、排列与组合 1.排列及公式 (1)线排列 一般地,从n 个不同元素中,取出m(m ≤n)个元素按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个线排列;从n 个不同元素中取出m(m ≤n)个元素的所有线排列的个数,叫做从n 个不同元素中取出m 个元素的排列数, 用符号 m n A 表示。 )! (!A 1)-m -...(n )2)(1(m n m n n n n n A m n -= --= 规定 0!=1。 (2)圆排列 从n 个不同元素中取出m 个元素按照某种次序(如逆时针)排成一个圆圈, 称这样的排列为圆排列,圆排列个数为)! (! m n m n m A m n -= 。 因为从n 个不同元素中取出m 个元素排成一列的个数是m n A 。不妨设一个排 列是:a 1a 2…a m 。而这个排列与排列a 2…a m a 1, a 3…a m a 1a 2,…, a m a 1a 2…a m-1,是一样 的圆排列,共有m 个,所以一个圆排列对应m 个普通排列,所以有圆排列数m A m n 。 (3)无限重排列 从n 个不同元素中取r 个元素按次序排列,每个元素可以取无限次,这样的排列称为无限重排列。显然,其排列数为n r 。 (4)有限重排列 从k 个不同元素{ a 1a 2…a k }中取n 个元素按次序排列,元素a i 可以取r i 次,r 1+r 2+...+r k =r ,这样的排列称为有限重排列。 实际上,这个问题与下面的问题等价:

排列组合应用

课题:___排列组合应用_教学任务 教学流程说明 教学过程设计

排列组合应用 一、选择: 1、某班元旦联欢会原定的5个学生节目已排成节目单,开演前又增加了两个教师节目如果将这两个教师节目插入原节目单中,那么不同插法的种数为( A ) A .42 B .30 C .20 D .12 2、将1,2,3,4填入标号为1,2,3,4的四个方格里,没格填一个数字,则每个方格的标号与所填的数字均不相同的填法(B )种. A . 6 B . 9 C . 11 D . 23 3、6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的分法有 ( D ) A .333 4p p ? B .3333p p ? C .3344p p ? D .33332p p ?

4、有两条平行直线a 和b ,在直线a 上取4个点,直线b 上取5个点,以这些点为顶点作三角形,这样的三角形共有(A ) A .70 B .80 C .82 D .84 二、填空: 5、从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进行实验,有 __24___种不同的种植方法。 6、9位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有 166320 种 7、3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有______540________种。 8、某兴趣小组有4名男生,5名女生:(1)从中选派5名学生参加一次活动,要求必须 有2名男生,3名女生,且女生甲必须在内,有 22 4436C C = 种选派方法;(2)从 中选派5名学生参加一次活动, 要求有女生但人数必须少于男生,有__14235 4 5 4 45C C C C +=__种选派方法;(3)分成三组,每组3人,有 333963 3 3280C C C P = 种不同分法 9、一天课表中,6节课要安排3门理科,3门文科,要使文、理科间排,不同的排课方法有 72种;要使3门理科的数学与物理连排,化学不得与数学、物理连排,不同的排课方法有 144种 三、解答 10、甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ? 答案:解法一:(排除法)4221 31424152426=+-C C C C C C . 解法二:分为两类:一类为甲不值周一,也不值周六,有2 324C C ;另一类为甲不值周一,但值周六,有2 41 4C C ,∴一共有2 41 4C C +2 32 4C C =42种方法. 11、某科技组有6名同学,现在从中选出3人去参观展览,至少有1名女生入选时的不同 选法有16种,则小组中的女生数目是多少? 答案:2 12、赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中挑选6人上艇,平均分配在两舷上划桨,共有多少种选法? 答案:333223133 3763553545675C C C C C C C C C +++=. 13、有5张卡片,它们的正反面分别写0或1,2或3,4或5,6或7,8或9,将其中任 意3张并放在一起组成三位数,共可组成多少个不同的三位数? 答案:986432??= 14、将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒 子放一个球,恰好3个球的标号与盒子的标号不一致的放入方法的种数是多少? 答案:240 15、第17届世界杯足球赛于2002年夏季在韩国、日本举办、五大洲共有32支球队有幸参

相关主题
文本预览
相关文档 最新文档