当前位置:文档之家› 项目管理-上海东海大桥海上风电项目

项目管理-上海东海大桥海上风电项目

项目管理-上海东海大桥海上风电项目
项目管理-上海东海大桥海上风电项目

东海大桥海上风电场工程

工程概况和环境影响评价的初步结论

1工程概况

1.1项目名称与建设地理位置

1.1.1基本情况

(1)项目名称:东海大桥海上风电场工程。

(2)项目性质:本项目为风力发电项目,装设50台2000kW 风力发电机组,总装机容量10万kW,预计年上网电量25851万kWh。

(3)项目投资:21.22亿元。

1.1.2建设规模及地理位置

东海大桥风电场位于上海市临港新城至洋山深水港的东海大桥两侧1000m以外沿线,风电场最北端距离南汇嘴岸线5.9km,最南端距岸线13km。风机布置按东海大桥东侧布置4排35台风机;西侧布置2排15台风机,风电场装机规模10万kW。风机南北向间距500m(局部根据航道、光缆走向适当调整);东西向间距1000m。风电场通过35kV海底电缆接入岸上110kV风电场升压变电站,接入上海市电网。

1.2建设方案概述

1.2.1工艺说明

风机叶片在风力带动下将风能转变为机械能,在齿轮箱和发电机作用下机械能转变为电能,发电机出口电压为0.69kV。发电机出

口电力经过风电机组自带的升压变压器(10~36kV )变升压至35kV 等级后由风电场电气接线接入岸上110kV 升压站,电力升压至110kV 后经由两回110kV 线路接入220kV 芦一变电站的110kV 母线段并升压纳入上海市电网。

纳入城市电网 35kV 风电场电气接线两回110 kV 线路

出口电压0.69kV

风电机箱式变 图1 风电场工艺流程图

1.2.2 风机

风机主要由风机机舱,风机塔架和风机塔基等三部分组成。

(1)风机机舱 风机机舱作为风机核心部分安装有发电机、机舱控制器和风机箱式变压器。

(2)风机塔架 2000kW 机型的标准塔架高度为67m ,考虑到连接件高度,风力发电机组轮毂高度距平均海平面约70m 。叶片单片长约为40m 。

(3)风机塔基 选用单桩基础(单根直径4.8m 钢管桩)作为本工程风机基础的第一推荐方案,群桩式高桩承台基础(8根直径1.2m 钢管桩)为第二推荐方案。

1.3 海域占用及工程占地

1.3.1海域面积

本风电场风机布置于东海海面上,本工程风机和海底电缆共征用海域面积约329.92万m2。

1.3.2陆上占地面积

风电场110kV升压变电所布置在东海大桥东侧约300m岸线内侧,用地面积3150m2,建筑占地面积985 m2,总建筑面积2168m2。

工程施工临时占地共7.92hm2,其中变电站施工临时占地共1000 m2布置在芦潮港,风机堆场、拼装场地等7.82 hm2布置在长兴岛振华港机基地内或附近。

1.4工程施工

工程主要分为变电站部分和海上风电场部分。根据海上风机施工特点,风机现场施工作业全部在海上进行。

1.4.1施工方案

1.4.1.1风机施工

在振华港机长兴岛基地将风机机舱、转子(含三片叶片和轮毂)、上部塔筒拼装到一起,整体吊装到5000t甲板驳上,运到海上风机安装现场,将其和风机塔架、塔基等连接到一起。

1.4.1.2基础方案

风机塔基采用单桩独柱基础方案或群桩式高桩承台基础方案。

(1)单桩方案

单桩由于采用4.8m直径的钢管桩、桩长为50m,为国内最大直径的钢管桩。

钢管桩海底表面采取抛石防护,抛块石采用2000m3石驳运料,料石选用浙江嵊泗的石料,运到现场后,由1m3抓斗挖泥船抛石以及配合整平。

(2)群桩式高桩承台基础

本结构由基桩和承台组成,基桩推荐采用钢管桩,即采用8根直径1.2m(壁厚2cm)的钢管桩作为基桩,桩长为44m。8根基桩在承台底面上均匀布设,承台底面高程为0.50m,采用钢筋混凝土结构。沉桩结束后,基础海底表面抛铺厚度2m左右的高强土工网装碎石以防水流冲刷。

1.4.1.3海底电缆铺设

本工程电缆主要连接风机与风机之间、风机与变电站之间,均为海底铺设电缆,电缆总长度约76km。

本工程海底电缆铺设主要采用开沟犁挖沟、铺缆船铺设电缆。对于靠近风机基础的电缆铺设,需要潜水员配合小型船只开沟。1.4.1.4变电站施工

变电站为110kV升压变电站,施工采用常规施工方法。本工程的升压变电站和办公用房均为框架结构,施工顺序为:施工准备→基础开挖→基础砼浇筑→框架柱、梁、板、屋盖混凝土浇筑→砖墙垒砌→电气管线敷设及室内外装修→电气设备入室。

1.4.2施工进度计划

施工总工期12个月。

1.5工程管理

风电场发电机组自动化程度很高,本工程定员按30人计。

2工程海域环境现状

工程所在海域由于受长江与钱塘江径流夹带的大量泥沙和营养盐的影响,悬浮物和无机氮浓度较高,超过海水的水质标准三类,磷酸盐符合海水的水质标准二类,其它污染物指标均符合海水的水

质标准一类。海域沉积物质量较好,均符合海洋沉积物质量标准。

工程所在海域悬浮物泥沙含量较高,叶绿素浓度、浮游植物数量、浮游动物数量较杭州湾东部海域低,且底栖生物的种类和数量较少。

工程所在海域处于鳗鱼、凤鲚、带鱼、蟹苗等的洄游路线上,主要的经济鱼类包括带鱼、鲳鱼、鳓鱼、小黄鱼、海鳗等和虾蟹类。该海域原渔业资源丰富,近年来由于海域污染和过度捕捞等原因呈萎缩趋势,渔获量逐年下降。

3工程的主要环境影响和对策措施

3.1风电场对海域、土地利用的影响

东海大桥海上风电场的建设与上海市海洋功能区划是相容的。工程110kV升压变电站选址位于东海大桥东侧约300m岸线内侧,该区域目前为滩涂围垦地块,尚未开发利用,规划为临港新城的绿化用地。因此,本工程陆上工程占地对该区域土地利用的影响很小。

3.2施工期主要环境影响和对策措施

3.2.1施工活动对区域海底管线的影响

本风电场所在海域内有众多的通信光(电)缆,包括环球FLAG 光缆、海军军事光缆、中日海底通信光缆、大洋山至芦潮港通信电缆等管线。本风电场的输电电缆与上述部分电缆、光缆交叉,输电电缆埋设和风机建设施工过程中对其可能产生一定影响,施工期间做好各相关单位之间协调工作,采取在光(电)缆上铺设隔离垫等措施后,影响不大。

3.2.2对渔业生产的影响

工程海上施工区域为渔业捕捞区,目前在这些海域进行捕捞作业的主要是南汇区的渔民。在本工程施工期间,沿线的捕捞生产将

受到影响,主要表现为捕捞作业范围受到限制,工程周围海域因施工作业干扰,造成渔获率下降,从而引起经济收入下降,对渔民的生活产生一定影响。公众参与调查结果显示,在对有关渔民采取合理补偿或转产等措施后,其影响可为渔民所接受。

对施工海域设置明显警示标志,明示禁止进行捕捞活动的范围、时间,以确保施工期间的船舶安全。

3.2.3对海域水质和生态环境的影响

铺设海底输电电缆和风机基础施工将导致海底泥沙再悬浮引起水体浑浊,污染局部海水水质,造成部分底栖生物损失,降低海洋中浮游植物生产力,对海洋生态系统带来影响,造成一定的损失,但这些影响都是暂时的。

通过优化施工方案,通过合理安排施工时间,打桩、电缆铺设尽量应避开海洋鱼类产卵高峰期,在保证施工质量的前提下尽可能缩短水下作业时间;加强科学管理,严格限制工程施工区域在其用海范围内,划定施工作业海域范围,禁止非施工船舶驶入,避免任意扩大施工范围,以减小施工作业对底栖生物的影响范围;投入资金进行生态修复和补偿等措施可将此损失和不利影响降至最低程度。

对施工期附近水域开展生态环境及渔业资源跟踪监测,及时了解工程施工对生态环境及渔业资源的实际影响。

3.2.4对鸟类的影响

升压变电站施工期间,由于人类活动、交通运输工具与施工机械的机械运动,相应施工过程中产生的噪声、灯光等会对在施工区及邻近地区栖息和觅食的鸟类产生一定的影响,使区域中分布的鸟类数量减少、多样性降低。这种影响是短期的,可逆的,当工程建设完成后,其影响基本可以消除。工程施工尽量避开鸟类迁徙、集群的高峰期;

3.2.5施工期污染控制措施

(1)海上施工期间生活污水处理应按照海上施工作业规范及相关法规、规范、标准要求处理达标后排放。

(2)含油的机舱水和污染严重的压舱水、离岸施工船应配备油水分离设施,机舱水经处理达标后直接排海。

(3)甲板冲洗水可直接排放入海。甲板上偶尔出现的少量油(通常是润滑油)用锯末或棉纱吸净后冲洗,含油的棉纱等应收集后运回陆地。

(4)施工产生的废弃焊头、包装、生活垃圾等设置定点垃圾收集装置,定期运至陆上,由当地环卫部门规定的垃圾场统一处置。

(5)施工船舶大气污染物应符合《MARPOL 73/78 附则VI --防止船舶造成空气污染规则》要求。

3.3运行期的主要环境影响和对策措施

3.3.1对区域海域水文动力的影响

(1)对区域海域潮流场的影响

根据平面二维潮流场数学模型的计算结果,东海大桥风电场建成后,工程区附近海域的流速和潮通量略有变化,区域流速变幅超过5%的总面积约为2.3km2(单桩方案)和3.1km2(群桩方案),工程区潮通量的变幅约为0.6%。区域潮流场的变化对东海大桥基本没有影响。

(2)对区域海域地形地貌与冲淤的影响

风电场建成后,除风电场区中间部分稍有淤积,最大可能淤积厚度约为0.39m,其余区域水下地形的冲淤变化很小。

3.3.2对鸟类的影响

风电场位于南汇嘴大陆岸线的延长线上,处于亚太地区候鸟迁徙路线上,是许多候鸟迁徙过境时的必经之地。风电场运行时,一

般情况下,鸟类迁徙过境时的飞行高度约为150~600m,而且一般鸟类都具有良好的视力,它们很容易发现并躲避障碍物,因此在天气晴好的情况下,即使在鸟类数量非常多的海岸带区域,鸟类与风机撞击的机率基本为零;在天气条件较差时,如遇上暴雨、大风天气,鸟类通常会降低飞行高度,则风机运转对中途停歇和直接迁徙的鸟类具有一定影响,国外有关观测资料显示,相应飞行高度下穿越风电场的鸟类撞击风机的概率约为0.1%~0.01%。

上述不利影响通过合理规划风电场工程周边临近区域的滩涂鸟类栖息地,加强区域鸟类活动特征以及鸟类与风机撞击情况的观测,合理调整运营及防范措施;风机上加设灯光、采用不同色彩搭配等防范措施,采用对陆域建设区域侵占的鸟类栖息地进行补偿等生态工程措施,可以将可能产生的相应影响降低。

3.3.3对渔业生产的影响

风电场运行期间对海洋生态(包括渔业资源)无明显不利影响,但对渔业生产存在一定的影响。因风电场所在区域为渔业捕捞区,风电场建成运行后,为保护海底电缆和风机的安全运行,风电场范围内部分区域(风机周边和电缆区)禁止抛锚,同时由于风机桩的分隔造成渔业捕捞面积缩小,在一定程度上降低了渔业捕捞量,从而引起渔民经济收入下降,对渔民的生活产生一定影响。应对有关渔民采取合理补偿等措施,其影响可为渔民所接受。

由于风机桩的存在,特别是在迷雾天气,渔船与风机桩相撞的概率大大增加,对渔船和风机都存在一定的环境风险。通过在风机上涂有醒目的警示色、夜间采用灯光照射、安装海上风机监视系统等办法并确立完善的风险应急计划,对风电机桩基周围加装放撞保护圈,避免渔船碰撞引发事故,对电缆区设置警示标志,禁止打桩、抛锚。可将该风险影响降至最低。

为减少工程建设对海洋生态和渔业资源的影响,实施以增殖放流为主的生态修复措施。

3.3.4噪声影响

风机在运转过程中会产生噪声。风力发电机组的噪声主要包括叶片扫风产生的噪声和机组内部的机械运转产生的噪声。风力发电机组其风机轮毂处噪声值约为105dB(A),轮毂距离海平面约70m,机组塔架基础处的噪声值约57.1dB(A)。由于风电场地处海域,周围无噪声敏感目标,因此可认为风电场的噪声对周围环境不会产生影响。

3.3.5电磁辐射的影响

类比监测数据显示,110kV变电站建成运行后其工频电场强度波动范围为 1.22 ~1.25V/m,工频磁感应强度波动范围为0.0150~0.985μT,远远低于《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T24-1998)中推荐的工频电场4kV/m和磁感应强度0.1mT的评价标准。因此本工程的110kV变电站建成营运后的工频电场强度、工频磁感应强度满足国家相关的标准和规定。

本风电场输电电缆一般埋设于海底3m以下处,输电线路沿线电磁波射线影响很小。

3.4公众参与

公众参与结果可知,渔政、海事、东海大桥建设指挥部、中国海底电缆建设公司、上海液化天然气有限责任公司等相关单位对本工程建设均表示支持,大部分网上接受调查的普通公众和被调查的渔民对本工程建设表示支持,但有约16%的网上普通公众和18%的渔民对本工程的建设持反对意见。

网上接受调查的普通公众和被调查的渔民由于在生活和工作方式上的区别,对工程的观点不尽相同,前者比较关心的是工程对海洋生态环境和鸟类栖息环境影响,对工程建设持反对意见者,其反对的主要原因主要是认为工程建设对电网建设和经济发展作用不

大,且可能带来对生态环境和鸟类环境等方面的不利影响;后者则对工程建设对渔业生产的影响较为关心,对工程建设持反对意见者,主要原因在于担心工程建设可能对渔业生产产生影响,以及风机存在对作业安全存在的隐患,对于可能受到的影响,渔民主要要求通过经济补助的方式进行补偿。对于南汇区渔民对本工程的反对意见,建议通过采取转业安置、经济补偿等方式,并在项目开展前期加强协商、沟通,保障受影响渔民的利益,使本工程获得更高的公众支持率。

3.5总体结论

东海大桥风电场的建设符合我国21世纪可持续发展能源战略规划,在一定程度上改善了上海市的能源结构,同时具有示范作用,为国内今后大规模发展海上风电奠定基础。工程建设和运行存在的主要环境问题是对渔业生产和对鸟类的不利影响,可通过经济补偿、合理规划鸟类栖息地、风机上加设防范措施等环保措施予以减轻。因此,从环境影响的角度评价,不存在制约本工程建设的环境因素,工程建设基本可行。

截至2017年8月我国在建海上风电项目概况

截至2017年8月我国在建海上风电项目概况 截止2017年8月31日,我国开工建设的海上风电项共19个,项目总装机容量4799.05MW。项目分布在、、、、、和七个省(市、区)海域,其中8个在建项目共计2305.55MW,6个在建项目共计1428.4MW,、、、和分别有1个在建项目。 在建的19个海上风电项目里,使用(拟使用)电气机组总容量为2232MW;使用(拟使用)金风科技机组总容量为964.15MW;使用(拟使用)明阳智慧能源机组总容量为567MW;使用(拟使用)远景能源机组总容量为400.8MW;使用中国海装机组总容量为110MW;使用西门子歌美飒机组总容量为90MW。 一、华能如东八角仙300MW海上风电项目 华能如东八角仙300MW海上风电项目 开发商:华能如东八仙角海上风力发电有限责任公司。 项目概况:项目位于省市如东县小洋口北侧八仙角海域,分南区和北区两部分,共安装风电70台,总装机容量302.4MW,配套建设两座110千伏海上升压站和一座220千伏陆上升压站。北区项目面积36平方千米,平均岸距15千米,平均水深0-18米,装机容量156MW,安装14台电气SWT-4.0-130机组和20台中国海装5.0MW机组(H171-5MW、H151-5MW两种机型都有安装),北区装机共34台;南区项目面积46平方千米,平均岸距25千米,平均水深0-8米;装机容量146.4MW,

安装远景能源EN-136/4.2机组12台和电气SWT-4.0-130机组24台,南区装机共36台。项目造价为约为17000元/kW,总投资约51亿元。 项目进度:2015年1月26日获得省发改委核准,2016年4月份开工建设,2017年9月3日完成全部机组吊装。 二、鲁能东台200MW海上风电场项目 开发商:广恒新能源。 项目概况:项目位于省东台市东沙沙洲东南部,场区中心离岸距离36km,涉海面积29.8km2,共布置50台电气SWT-4.0-130风电机组、一座220kV海上升压站和一座陆上集控中心,通过35kV海缆将50台机组连接至海上升压站,再通过220kV海缆将海上升压站电能送至陆上集控中心。 项目进度:2015年7月11日东台项目正式启动。2016年4月份开工建设。2016年10月12日正式开始首台机组吊装,2016年12月16日完成首批机组并网发电。首批12台机组与2017年5月28日通过240试运行;2017年7月24日完成全部机组吊装工作。 三、大唐滨海300MW海上风电场 开发商:大唐国信滨海海上风力发电。 项目概况:项目位于省滨海县废黄河口至扁担港口之间的近海海域,涉海面积150平方公里,平均水深18-22米,平均岸距21千米。项目初期计划安装100台华锐风电3.0MW机组,并于2015年底曾完成海上机组试桩工作。2017年该项目重新进行机组招标,金风科技和明阳风电分别中标150MW。 项目进度:2016年12月19日,该项目220kV海上升压站完成吊装。2017年5月重新进行风电机组招标并于2017年8月公布了机组中标结果,2017年年完成数台机组的吊装。 四、投资分公司东台四期(H2)300MW海上风电场项目 开发商:()风电。 项目概况:此项目是集团第一个获得核准的海上风电项目,位于省东台近海北条子泥海域,风电场中心离岸距离约42公里,平均水深约6米,项目共安装机组75台,总装机容量302.4兆瓦,计划安装63台4.0兆瓦电气SWT-4.0-130风电机组及远景能源12台EN-136/4.2风电机组。风电机组基础采用单桩形式,设置

海上风电场施工安装风险管理

海上风电场施工安装风险管理 摘要:随着经济与社会的发展,海上风力发电已成为可再生能源发展的重要方向,在进行近海风电场机组安装的过程中,技术操作比较复杂,施工过程中有很 大的作业风险,万一出现安全事故,就可能造成很大的人身和财产损失。本文对 海上风电场施工安全风险进行分析,并提出相关的管理策略,希望对海上风电场 施工风险管理效果有所帮助。 关键词:海上风电场;施工安装;风险;管理策略 可再生能源是解决能源短缺问题的战略选择,而风能是目前发展最快、产业 前景最好的可再生能源之一。而海上风力发电项目属于建设工程的范畴,具有一 般建设工程风险的特点,风险存在的客观性和普遍性;风险的不确定性,但具有 一定的规律性和预测性;风险的潜在性和可变性。基于此,探讨海上风电场施工 安全风险管理措施就显得尤为必要。 一、海上风力发电项目的特点 (一)海上风力发电项目风险管理对各专业工程方面的知识要求较高 我国由于海上风电开发、海运、海事工程发展相对欧美国家发展比较晚,相 应的在过去近海风资源监测和研究工作也不足。随着海上风电的即将大规模上马,基础的海上测风和研究工作也已在中国近海大规模展开[1]。海上风电场距离远, 除了风机的质量、系统可靠性要求高以外,必要的维护是必不可少的,且因为海 上风力发电项目的特点,对其维修方面的专业知识要求较高。 (二)海上风力发电项目的风险受自然因素影响较大 海上台风对中国近海风电场的影响是需要特殊考虑的风险,由于气象资料的 时空分辨率和完整性方面具有一定局限性[2],高分辨率气象模式及有限元分析软 件也经常被用到风电场微观选址工作中,因此,海上风力发电项目的风险受自然 因素影响较大,需要重视自然因素的影响。 (三)风险因素之间的关联度较大 海上风力发电项目风险因素间的关联关系使得现有常用的风险评价方法的应 用受到很大的限制,由于海上风机叶轮的面积一般都远大于陆上,故其造成的尾 流对后方风机的影响也比陆地大得多[3],尽管邻近风机之间的距离也增大许多, 但距离的增加对消减这种尾流影响的效果仍有待研究,故在海上海上风力发电项 目风险分析中也要注意各个风险因素之间的关联。 (四)海上风力发电项目的风险具有明显的阶段性 海上风力发电项目风险因施工过程呈现明显的阶段性,在施工准备阶段、施 工阶段和后期维护阶段的风险都不同,且受到外力的阶段性影响,例如风力[4], 对施工风险就具有阶段性的影响,一旦海上有台风预警就会停止施工,以保证海 上施工安全。 二、海上风电场施工安装风险识别与控制 (一)基础施工风险识别与控制 1.钢管桩施工安装分析识别与控制 首先,地质的变化情况较大,造成钢管桩没有达到设计的标高。其次,钢管 桩的最终高程与水平误差没有在设计的要求范围内。 钢管桩施工安装控制措施有:根据未沉入的钢管桩的具体长度与贯入的程度

风电项目管理指导手册(含封面)

风力发电建设项目管理指导手册——金风S43/600型风力发电机组 编制人:侯先锋 编制时间:2004年7月 目录 前言:

第一章准备 一、接到市场营销部门传递的《合同》、《合同任务分解表》 二、项目执行小组确定 三、准备工作 第二章前期工作 一、运输方案、运输合同确定 二、塔架、基础环生产 三、风机设备生产 四、出厂 第三章现场 一、到货卸车 二、现场安装前验货 三、安装准备(现场) 四、现场安装 五、安装检查 六、调试、试启动 七、检查、试运行 第四章后期 二、500小时检修 三、交接(初验收) 附录: 风力发电建设项目管理指导手册 ——金风S43/600型风力发电机组 前言: 风力发电是一种新兴产业,是能源领域里的XX产业。近年来,由于化石能源的日见匮乏,世界各国都将能源发展战略逐渐转向可再生能源领域。目前可以利用的可再生能源有很多:风能、太阳能、潮汐能......而在这些可再生能源中目前人类利用技术最成熟的就是风能。在欧洲,一些国家风能已占到国家能源总量的20~30%,

在我国,由于国家能源部门的高度重视,风能利用也快速发展起来。专家预测,在未来几年内,中国的风电将成为仅次于火电、水电的第三大电力生产形式。 面对如此大的机遇,国内涌现了众多风电制造企业,一些国际知名的风电制造商也看好中国市场,计划进入中国风电领域。在此,本人根据在金风科技股份XX 从事4年的风力发电建设项目管理的一些经验、教训,编制成这本小册子,希望能对新近从事风电项目管理的各位同行有一些帮助、指导作用。 第一章准备 一、接到市场营销部门传递的《合同》、《合同任务分解表》 二、项目执行小组确定 1.项目组成员的初步确定,包括:项目经理、项目工程师(与项目经理配合)人 选确定; 2.《项目经理任命书》颁布; 3.项目组人员任务分工、管理关系、人员计划的确定。

海上风电项目风险浅述

海上风电项目风险浅述 摘要:海上风电场项目与陆地风电项目相比一方面海上风能优越,资源丰富且 稳定,其次不占用土地,但优势过高,也有其相应的劣势,海上风电项目施工复杂,技术含量高,环境恶劣,人员管理复杂,风险也成倍增加。这就要从风险管 理上来加强海上风电系统的维护及运行,降低风险,避免人力、财力、物力的损失。对风险进行多方面评审优化并进行管控,风电场顺利投产,证明构建的海上 风电项目风险管理理论框架是可行、有效的。 关键词:海上;风电项目;风险分析 1引言 目前国内海上风电项目的前景已取得了不错的成就,但收益是与风险并存的,收益越大,风险就越大,对于海上风电项目的风险识别和分析都有相应的对应方法,一般通过风险因素分解和专家调查。这样更能全面的准备的识别海上风险。 此外,在做好海上风电项目风险管理的同时,也要多方面去转移部分风险,避免 损失过大,影响整体运营,这类保险方式也是减少风电项目上因风险事故而造成 损失的重要手段。 2海上风电项目风险因素 海上风电项目中风险各类繁多,不同阶段亦存在不同风险,建设阶段的风险 以及运营阶段的风险都不可忽视,其中既有自然风险,也存在人为的管理及技术 方面的风险。海上风电项目建设前期涉及的面广而复杂,风险也并存繁多,设计 之初的实地勘察、机电安装及运营、海上线缆的敷设等,工期长而任务重,既要 保证项目正常运行,更要评估各项风险以减少各种损失。人为因素控制的风险都 有相应的控制措施及方案,但自然因素造成的损失是不可控且不可预计的,所以,人为风险的管控要低于自然因素造成的风险。项目进入的运营期后,更多的自然 灾害会给运营的项目带来麻烦,可控方面的设备质量及人员调配管理,以及实地 操作施工等都会产生风险。不可控的雷击、瞬时极端大风会对风电机组构成威胁;机组的安装质量和零部件质量也可能会导致风电机组出现故障;人为误判、误操 作可能会导致风电机组带病运行,使故障升级;船舶的非正常抛锚可能会钩断海缆。 3海上风电事故种类 3.1主要自然灾害导致的事故 3.1.1台风灾害事故 台风是所有海上风电项目中最特有的风险因子,虽然我国目前还没有出现过 台风对风电项目的案例,但受台风影响的电场受到的损失不可估量。2013年的台 风“天兔”致使红海湾风电场25台风电机组8台倒塌、9台叶片折断。2014年7 月,最强的台风“威马逊”使得风电场出现了倒塌现象,5台出现叶片断裂、发电 机掉落。所以,台风对海上风电系统的破坏也是令人惊愕的。 3.1.2雷击事故 自然界中不时会有雷电的灾害,不仅会造成事物的破坏,也有时会造成人员 的伤亡,海上风电项目庞大,这也增加了它在雷电天气遭雷电击的风险,小则至 使机组破坏,大则造成火灾及人员伤亡,直面破坏着人力、物力、财力。面对的 损失将是不可估量的。 3.2施工工艺不良、设备质量问题等造成的事故 3.2.1施工工艺不良造成的事故

风电项目管理实施计划

国信临海风电场一期工程项目管理实施计划 江苏农垦盐城建设工程有限公司

国信临海风电场一期二标段项目部2013年11月10日

目录 1、项目概况---------------------------------------------- ---1 2、项目范围--------------------------------------------------4 3、项目管理目标及要点----------------------------------------5 4、项目实施条件分析------------------------------------------9 5、项目管理模式、组织机构、分工职责--------------------------13 6、项目实施的基本原则----------------------------------------20 7、项目管理程序和协调程序------------------------------------21 8、项目施工管理计划------------------------------------------26 9 、工程项目质量控制管理--------------------------------------110 10、工程项目总成本控制管理------------------------------------123 11、项目合同管理----------------------------------------------129 12、项目HSE 管理----------------------------------------------144 13 、项目信息沟通与管理----------------------------------------152 14 、项目风险分析与对策----------------------------------------158

海上风电工程潮间带施工的安全管理

Safety management of offshore wind power construction in intertidal zone LU Hui (CCCC Third Harbor (Shanghai)New Energy Engineering Co.,Ltd.,Shanghai 200000,China ) Abstract :In recent years,offshore wind power has developed rapidly,and the installed capacity has expanded rapidly,and gradually developed into deep sea.However,at present,there is still a large proportion of wind power stations in the intertidal zone along the coast from north of Shanghai to Shandong,which requires the construction of ships waiting for tide and sitting on beaches.The traffic is inconvenient,the safety risk is high,and the management of safety process is difficult.Through the identification of safety risks in the construction process of offshore wind farms in intertidal zone and the analysis of possible safety accidents or potential hazards,the corresponding safety control measures are given,and the safety management points in the main procedures of the main projects,such as the dismantling and installation of stable pile platform,the construction of single pile sinking,the separate installation of wind turbines,ar analyzed,which provides reference for the safety management of similar wind power construction in intertidal zone in the future. Key words :offshore wind power;intertidal zone;safety risk;safety management 摘 要:近年来,海上风电发展迅速,装机量日益迅猛扩大并逐渐向深海发展。但是,目前在上海以北到山东一带 沿海仍有较大一部分风电机位处于潮间带,需要船舶候潮坐滩施工,交通不便,安全风险大,安全过程管理困难。通过对潮间带海上风电场施工过程进行安全风险识别、分析可能导致的安全事故或潜在的危险,给出了相应的安全管控措施,并分析了稳桩平台拆装、单桩沉桩施工、风机分体式安装等主体工程主要工序的安全管理要点,为今后潮间带类似风电工程施工的安全管理提供参考与借鉴。关键词:海上风电;潮间带;安全风险;安全管理中图分类号:U655.1;U655.553 文献标志码:B 文章编号:2095-7874(2019) 12-0074-05doi :10.7640/zggwjs201912016 海上风电工程潮间带施工的安全管理 逯辉 (中交三航(上海)新能源工程有限公司,上海 200000) 收稿日期:2019-06-12 修回日期:2019-08-07 作者简介:逯辉(1983—),男,河南新乡人,工程师,机械设计制造 及自动化专业。E-mail :398920578@https://www.doczj.com/doc/7116596015.html, 中国港湾建设 第39卷第12期 2019年12月 Vol.39 No.12 Dec.2019 引言 近年来,海上风电发展迅速,装机量日益迅 猛扩大,并且逐渐向深海发展[1]。但是,目前在上 海以北到山东一带沿海仍有较大一部分风电机位处于潮间带,风电安装作业属于浅滩施工,部分机位甚至是高滩施工、露滩施工,需要船舶候潮坐滩施工,交通困难,安全风险大,安全过程管理困难。 目前,海上风电施工安全管理多从项目部安 全管理、船舶安全管理等进行分析。从施工现场主要工序的施工过程安全管理,整个项目的施工安全风险统计分析及提出的对应措施较少。元国凯等[2]对海上风电场建设的主体工程进行了风险识别、分析,并提出了相应的控制措施。常亮[3]从安全体系建设、制度建设等方面提出了海上风电场的安全管理重点。李尚界等[4]对当前海上施工船舶的安全管理进行了分析并提出了相关的对策。张蓝舟等[5]给出了有坐滩能力船舶的坐滩安全管理方案。 本文立足于国华东台四期(H2)300MW 海上风电场项目,该工程位于东沙北条子泥,离岸距

海上风电施工简介(经典)

海上风电施工简介 二○一三年十月

目录 1 海上风电场主要单项工程施工方案 (1) 1.1 风机基础施工方案 (1) 1.2 风机安装施工方案 (13) 1.3 海底电缆施工方案 (19) 1.4海上升压站施工方案 (23) 2 国内主要海上施工企业以及施工能力调研 (35) 2.1 中铁大桥局 (35) 2.2 中交系统下企业 (41) 2.3 中石(海)油工程公司 (46) 2.4 龙源振华工程公司 (48) 3 国内海洋开发建设领域施工业绩 (52) 3.1 跨海大桥工程 (52) 3.2 港口设施工程 (55) 3.3 海洋石油工程 (55) 3.4 海上风电场工程 (58) 4 结语 (59)

1 海上风电场主要单项工程施工方案 1.1 风机基础施工方案 国外海上风电起步较早,上世纪九十年代起就开始研究和建设海上试验风电场,2000年以后,随着风力发电机组技术的发展,单机容量逐步加大,机组可靠性进一步提高,大型海上风电场开始逐步出现。国外海上风机基础一般有单桩、重力式、导管架、吸力式、漂浮式等基础型式,其中单桩、重力式和导管架基础这三种基础型式已经有了较成熟的应用经验,而吸力式和漂浮式基础尚处于试验阶段。舟山风电发展迅速。 目前国内海上风机基础尚处于探索阶段,已建成的四个海上风电项目,除渤海绥中一台机利用了原石油平台外,上海东海大桥海上风电场和响水近海试验风电场均采用混凝土高桩承台基础,江苏如东潮间带风电场则采用了混凝土低桩承台、导管架及单桩三种基础型式。 图1.1-1 重力式基础型式 图1.1-2 多桩导管架基础型式

图1.1-3 四桩桁架式导管架基础型式图1.1-4单桩基础型式 图1.1-5 高桩混凝土承台基础型式图1.1-6低桩承台基础型式基于国内外海上、滩涂区域风电场的建设经验,结合普陀6号海上风电场2区工程的特点及国内海洋工程、港口工程施工设备、施工能力,可研阶段重点考察桩式基础,并针对5.0MW风电机组拟定五桩导管架基础、高桩混凝土承台基础和四桩桁架式导管架基础作为代表方案进行设计、分析比较。 1.1.1 多桩导管架基础施工 图1.1-7 五桩导管架基础型式图1.1-8 四桩桁架式基础型式

浅析海上风电项目风险和保险的管理与建议

浅析海上风电项目风险和保险的管理与建议 发表时间:2018-12-21T10:50:50.453Z 来源:《基层建设》2018年第32期作者:王新峰[导读] 摘要:目前,国内能源结构正在迈入深度调整阶段,部分能源政策亟待完善与改进。 中国电建集团华东勘测设计研究院有限公司杭州 311122 摘要:目前,国内能源结构正在迈入深度调整阶段,部分能源政策亟待完善与改进。自“十三五”规划提出以来,我国进一步深化能源政策的落实程度,并结合绿色可再生能源发展理念,促进能源政策多元化发展。近些年来,全球风电场建设从陆地逐步过渡和转移到潮间带、近海乃至深远海方向发展,尤其对于我国而言,取得较好的经济和社会效益。为此,文章主要以海上风电项目管理为研究对象,对海 上风电项目涉及的风险问题、保险管理问题等进行深入分析和研究,提出加强风险与保险管理的相关建议。 关键词:海上风电项目;风险问题;保险管理;风险管控前言:现阶段,为了响应“绿水青山就是金山银山”的政策号召,我国陆地上可开发与利用的风能资源逐渐减少,资源紧张问题日益突显。为顺应时代和产业发展,有效缓解能源紧张局面,提高风资源等可再生能源的开发和利用,我国风电场项目经过多年的科研和技术攻关,逐渐从陆地过渡和转移到潮间带、近海海域。究其原因,主要是因为我国近海风能资源较丰富,且沿海省份接入电网方式较稳定与便捷,能够满足大规模开发海上风电的相关硬件配置和需求。结合现阶段的发展情况来看,我国海上风电项目建设水平逐渐趋于稳定、成熟,预期收益良好,值得推广与应用。然而,收益与风险问题总是互伴而生。 近些年,国内近岸陆上风电受到台风等恶劣天气影响,出现多起倒塔事故,带来的风险问题层出不穷。面对这样的问题,要求海上风电项目建设单位必须做好风险管控问题,寻求合理的途径将部分风险进行有效转移,确保项目运行安全。 1 海上风电项目风险问题 一般来说,海上风电项目全寿命周期除了受到财务风险的相关影响,出现运行问题之外,还会受到自然风险、技术风险、管理风险以及人为风险等方面的影响,出现不同程度的运行风险问题。结合实践经验来看,我们可以将风险发生时期分为建设期与运营期两个阶段。其中,海上风电建设期涉及到的环节众多且难以管理,如勘察设计环节,风电机组基础施工环节、风电机组运输与安装环节、设备调试与运营环节等。可以说,整个工序过程运行复杂且建设周期相对较短,稍有不慎,易出现运行隐患问题。然而,根据实际来看,建设期虽说是风险高发期,但各参建单位会对可能发生的风险问题进行合理评估与预防,除了自然风险无法规避,其他风险通过采取科学和合理的措施后,出现的频率还是较低的[1]。 海上风电项目进入运行期之后,遭受到的风险问题来源更加广泛,如自然灾害、设备质量、人为操作失误等,且难以掌控。举例而言,雷击、顺势极端大风很容易对风电机组运行安全带来严重威胁,易引发大型电气设备运行故障问题;零部件安装质量不合格或者安装工序不合理等,都容易引发风电机组出现运行故障,并发生火灾等安全隐患;人为误判或者误操作将会直接导致风电机组运行故障,或者进一步加剧原本的故障程度等。以上种种皆是造成风电机组出现运行故障问题的主导因素。针对于此,运行管理人员必须及时明确造成风电机组运行风险问题的主要原因,积极采取切实可行的有效措施进行合理规避,确保风电机组运行安全。 2 造成海上项目风险问题的主要原因 2.1施工工艺原因 海上风电建设初期涉及到的参建单位众多,监管具备一定难度。如此一来,很容易造成某些施工工艺在后期某个运行节点上会出现隐患问题。如电缆头的制作工艺或者质量不达标,后期运行过程中很容易出现电缆头过热或者放电问题,极易引发爆炸事故;承台基础与塔筒连接件焊接标准或者施工工艺出现不合理情况,极易导致钢结构在受到盐雾侵蚀之后,出现不同程度的断裂问题。举例而言,2015年11月,Paludans Flak 海上风电场出现运行机组的机舱与风轮坠海事故。究其原因,大体上可以判断为因2002年行业焊接标准出现失误造成的后续故障问题[2]。 2.2自身故障原因 主控系统出现故障问题或者零部件出现缺陷问题,均会造成海上风机出现不同程度的故障,引发较大的安全事故。举例而言,当海上机电风组遭遇台风袭击时,主控系统或者偏航系统很容易出现故障问题,如风机无法顺桨,将直接导致叶片折损等不利情况发生。 2.3人为操作原因 海上机电风组在正式运行的过程中,很容易受到天气等自然因素的制约,出现隐患问题,且无法随时随地登机维修等。为进一步解决海上风电机组存在的运行隐患,需要通过远程控制中心进行诊断。倘若在此过程中,工程师出现判断失误或者操作失误情况,很容易导致风电机组远程复位后出现严重的运行问题,加剧风险隐患程度[3]。 2.4第三方事故原因 当海上风电场地处滩涂或者近海海域时,与传统航道或者渔业养殖区域作业距离较近,过往的船只倘若在风电场附近海域抛锚,存在海底电缆被锚勾破的风险,对海上风电项目的正常运行造成不利影响。举例而言,2013年东海风电场附近海域就出现上述问题,造成较大损失[4]。 3 我国海上风电项目保险管理情况 3.1国内海上风电项目保险现状 海上风电项目与海上风电保险始终是互利共生的关系。可以说,海上风电需要保险业作为运行支撑,保险业也迫切希望涉入海上风电领域当中。经过多年的实践发展,我国多数保险公司与保险经纪公司积累了关于海上风电保险的相关经验,初步掌握了海上风电项目管理流程。甚至在原本陆上风电业务的基础上,成立了专门的海上风电业务部门,其目的在于通过招聘专业人才对海上风电项目的风险问题与理赔问题进行管理和管控。 3.2海上风电项目保险类型 针对海上风电项目的运行管理问题,国内保险公司提供了多种保险产品。针对建设初期而言,主要包括建筑安装工程一切险、设备运输险等主要保险形式。针对运营期而言,主要包括财产一切险、机器损坏险以及公众责任险等。除此之外,部分设备厂商有可能购买产品质量保证保险作为主要的保险类型[5]。 3.2.1海上风电建筑安装工程一切险

风电工程项目管理

风电工程项目管理(安装工程管理) 现场管理作为项目管理的一个重要组成部分,指的是公司项目管理人员通过在项目现场参与业主、安装队及监理等各方面进行有效协调,从而保证整个项目在项目施工前期准备、吊装、调试、验收等环节等达到规定的技术规范和要求。其内容主要包括以下几点: 首先一点是作为现场管理者的身份,要根据项目的进度计划,做好项目现场与各单位之间的协调工作,同时也要协调好现场人员做好现场的技术服务和机组的安装、调试工作; 其二,作为项目现场的技术人员;要协助项目经理做好项目施工过程中各项技术指导工作,解决好现场出现各种问题及机组安装的质量把关措施; 此外还要做好机组的各项的验收和预接收等方面工作。 本人认为根据项目的进度,现场管理大致可以分为现场准备阶段、现场作业及其验收阶段、现场试运行调试及其验收阶段、预接收阶段。并且每一个阶段工作的侧重点也有所不同。 项目现场前期准备阶段可以理解为始于项目服务人员到项目现场之日到具备机组开始吊装条件之日止。其工作的主要侧重点是保证我公司的设备及其部件能够顺利的到达现场,及时协调卸货并移交给业主,以及做好吊装前的各项准备工作。在现场前期的管理作为厂家我们主要需协调与准备的工作是: 1、根据我公司风机基础施工有关技术要求协助业主指导有关单位进行风机基础施工作业,并及时反馈与解决施工工程中出现的技术质量问题。 2、至项目现场观察现场道路、安装作业平台等场地能否满足机组及设备的运输与安装条件。对与不符合要求的道路与场地提出平整或其他相关要求。 3、参加吊装协调会,初步确定吊装日期,明确业主、安装队及我们厂家在吊装期间的职责并将机组吊装用的吊装说明及安装图纸等相关资料交于业主与安装队并负责解释说明。 4、根据合同及现场进度等实际情况确定机组及其部件的发货时间,在确定设备发货日期后,要推算设备的到货日期,设备到现场后,需及时与业主、安装队沟通协调,在天气等条件允许的条件下及时卸货,并对零部件及电缆等所有相关物资根据发货单进行当场清点,确认后及时移交于业主。 5、对于运至现场的重大型设备部件在卸货时需考虑存放位置,尽可能避免日后吊装时发生干涉及二次倒运。 6、桨叶到现场后应及时联系厂家过来安装小叶尖。 7、向业主及安装队建议对现场露天存放的安装部件、配件的进行有效的防盗、防风、防潮等安保管理。 8、与业主一道对现场已经浇制完毕并具备风机吊装条件的基础环进行基础水平验收,合格后双方确认并签字。 9、与安装公司施工人员实测安装现场,并根据安装现场的实际情况,进行详细的分析、比较,决定最有效、最可靠、最经济的吊装方案。 10、安排人员协助安装队对机组设备吊装所需的所有吊装工具及材料的整理、核对、检验等准备工作。 现场作业与验收阶段可以理解为项目开始吊装之日到所有机组吊装完成并安装验收完毕这一过程。 本阶段的主要任务及侧重点是在整个吊装过程中要求安装公司严格按照有关技术要求图纸施工,及时发现并协助安装队解决好现场出现各种问题,保证设备安装

近海海洋风电地基基础的现状介绍

近海海洋风电地基基础的现状 1.海洋风电开发形势及前景 当今世界能源消耗量不断上升, 且以煤炭、石油、天然气等化石能源为主. 未来几十年内, 世界能源消耗还将持续增长. 然而, 由于化石能源可开发量日益减少, 能源需求的缺口越来越大. 并且, 化石能源的生产和消费对环境造成极大的破坏, 甚至影响到全球气候的变化. 因此, 当前全球经济发展与能源需求的矛盾日益突出, 能源危机已成为人们的共识.为应对全球气候变化, 我国提出了“到2020年非化石能源占一次能源需求15%左右和单位GDP二氧化碳排放比2005 年降低40%–45%”的目标, 目前正加快推进包括水电、核电等非化石能源的发展, 并积极有序做好风电、太阳能、生物质能等可再生能源的转化利用. 然而, 2011年3月日本福岛核电站事故给全球核能发展带来了极大的冲击, 各国对核能的发展采取了非常谨慎的态度, 中国甚至一度停止了核电的审批作业.事实上, 发展可再生的环境友好型能源是解决“能源危机”、缓解“气候变化”、保持社会可持续发展的关键举措. 风电是目前最具规模化发展前景的可再生能源, 世界各国发展风能开发技术呈现争先恐后之势. 1973 年石油危机后, 美国开始研发风能资源, 这是风能发展史上的重要里程碑. 与此同时,欧洲的风能业稳步发展, 经过1990 年后的20 年, 欧洲已俨然成为全球风能业的引领者. 由于土地资源有限, 大规模的陆地风电场越来越面临选址困难的问题. 而海上风能资源优于陆地,海上风的品质更加优越, 因为海面

粗糙度小, 风速大, 离岸10 km的海上风速通常比沿岸陆地高约25%;海上风湍流强度小, 具有稳定的主导风向, 有利于减轻风机疲劳; 且海上风能开发不涉及土地征用、噪声扰民等问题; 另外, 海上风场往往离负荷中心近、电网容纳能力强. 因而大规模发展海上风电越来越受到高度重视, 近十年来发展迅猛, 欧洲尤其是丹麦和英国引领着全球风电的发展. 2.海洋风电资源 海上风能资源储量相当丰富, 以我国海域的统计数据为例, 联合国环境计划署与美国可再生能源实验室的一份联合研究报告指出, 中国海上风能资源为600 GW. 中国气象局21世纪初的统计数据表明, 我国水深小于20 m海域的风能储量达750 GW,是陆上风能资源的3 倍左右. 2009年底国家气象局发布消息称, 我国沿海水深5–25 m海域的3类风能(平均风能密度大于300 W/m2)储量达200 GW。根据中国国家海洋局最新调整的数据, 我国海上风电可开发容量为400–500 GW.具有发展海洋风电的巨大风力资源。 3. 海上风电开发现状 欧洲是全球海上风电发展的先驱, 1990 年在瑞典的Nogersund 安装了世界第一台海上风力发电机组, 1991 年丹麦建成了世界上第一个海上风电场Vindeby, 但装机只有4.95 MW. 此后, 丹麦、瑞典、荷兰和英国相继建设了一批研发性的海上风电项目.2002年总装机160 MW的Horns Rev 海上风电场在北海建成, 这是全球首个真正意义上的大型海上风电场, 此前最大的海上风电项目规模仅为40

江苏滨海300MW海上风电项目危险源、环境因素辨识表(第五版)

上海振华重工(集团)股份有限公司大唐滨海海上风电(一期)项目经理部

批准:年月日审核:年月日编写:年月日

目录 第一章综合说明 1.1 编制依据-----------------------------------------------------------02 2.2 编制目的----------------------------------------------------------02 第二章工程概况及特点 2.1 工程总体概况-----------------------------------------------------03 2.2项目工作内容及特点--------------------=-----------------------04 第三章项目危险源、环境因素辨识评价表 3.1 危险源识别评价表---------------------------------06 3.2 环境因素识别评价表-------------------------------17

第一章综合说明 一、编制依据 (一)中华人民共和国安全生产法 (二)中华人民共和国职业病防治法 (三)建设工程安全管理条例 (四)中华人民共和国噪声防治法 (五)建筑施工场界环境噪声排放标准 (六)上海振华海洋工程服务有限公司QHSE中的L1-HSE-001 危险源识别和风险评价 L2-HSE-002 环境因素识别和管理文件 二、编制目的 通过对项目中的危险源、环境因素进行识别评价,制定并落实风险防范措施,推进项目生产安全、顺利进行。

第二章工程概况及特点 一、工程总体概况 大唐江苏滨海300MW海上风电项目位于废黄河口至扁担港口之间的近海海域,风电场规划范围呈梯形,中心位置离海岸线直线距离约21km,规划海域面积约150km2,涉海面积约48km2,场区内泥面高程约-16.5~-22m(1985国家高程),场区内平均海平面高程为0.19m,设计高潮位为1.30m,设计低潮位为-1.24m,极端高潮位(50年一遇)为2.4m,极端低潮位(50年一遇)为-2.44m。 图2.1-1 风电场区域位置示意图

风电运维项目管理办法(试行)

云南国电电力工程有限责任公司风电运维项目管理办法(试行) 第一章总则 第一条为规范风电运维管理,本着“安全第一、服务至上,精简高效、互利双赢”的运维服务工作宗旨,制定本办法。 第二条本办法适用于云南国电电力工程有限责任公司(以下简称“公司”)承接的风力发电运维项目。 第三条公司承接的风力发电长期运维项目,原则上只成立一个项目部,其下属的各个风力发电场,成立各风电运维项目分部。 第四条公司风电运维项目部工作人员分别由国电小龙潭发电厂员工和劳务派遣员工构成。 第五条风电项目部内部分配原则:按照所在岗位适时调整、效益工资随岗位工资适时调整、住勤补贴与岗位挂钩适时调整的原则。 风电项目部是隶属 (风电项目部组织机构图) 第七条风电项目部各分部岗位结构

(风电项目分部岗位结构图) 第三章风电项目部定岗、定员、岗级标准 2. 在此定员标准基础上每个风电场增加装机50Mw容量的,只增加运维副值和运维值班员共计4人,其他岗位不增加。 第四章风电项目部岗位要求及聘用原则 第九条风电项目部岗位要求 (一)风电项目部工作岗位实行一岗多能、一专多能、运行维护一体化、各个项目分部轮换住勤的原则。

(二)根据公司运维部和各项目部的需要,项目部运维人员6个月内具备在风电项目部内的各风场间轮换工作的能力,在1年的时间内,具备在工程公司运维部各项目部之间轮换工作的能力。 (三)运维副值和运维值班员3个月内必须具备岗位轮换的能力;运维副值和运维值班员原则上3个月进行一次工作风电场的调换,以熟悉和掌握项目部各个运维风电场的情况。 (四)运维轮值长和运维主值原则上6个月进行一次工作风电场的调换,以熟悉和掌握项目部各个运维风电场的情况。 (五)项目部管理人员根据工程公司运维部和风电项目部的实际情况,择机在不同的风电场或不同的项目部进行工作。 (六)项目部根据各风电场的人员状况,可适时在各风场间进行人员调配,若存在人员休班期间代班的情况时,应选择合适的时间段给予代班人员休假。 第十条风电项目部岗位聘用原则 (一)项目部管理人员和轮值长岗位,由公司在进入风力发电场前直接聘用,试用期6个月,试用不合格者,调整到其他岗位。 (二)项目部一般工作人员岗位聘用,在风场发电两个月内,项目部根据工作人员掌握生产现场的实际情况和安全生产技能,经考察、提名后,考试定岗聘用,原则上以具备受令资格的人员优先定岗聘用。

海上风力发电概况

摘要 绿色能源的未来在于大型风力发电场,而大型风电场的未来在海上。本文简要叙述了全球海上风力发电的近况和一些主要国家的发展计划,并介绍了海上风电场的基础结构和吊装方法。 关键词:海上风电;风力发电机组;基础结构;吊装方法。 要旨 このページグリーンエネルギーの未来は大型風力発電場、大型風力発電の未来は海上。本文は簡単に述べた世界の海上風力発電の近況といくつかの主要国の発展計画を紹介した海上風力発電の基礎構造と架設方法。 キーワード海上風力発電、風力発電ユニット;基礎構造;架設方法。

1 引言 1.1 风力发电是近年来世界各国普遍关注的可再生能源开发项目之一,发展速度非常快。1997~2004年,全球风电装机容量平均增长率达26.1%。目前全球风电装机容量已经达到5000万千瓦左右,相当于47座标准核电站。随着风电技术逐渐由陆上延伸到海上,海上风力发电已经成为世界可再生能源发展领域的焦点。 1.2 海上风能的优点 风能资源储量大、环境污染小、不占用耕地;低风切变,低湍流强度——较低的疲劳载荷;高产出:海上风电场对噪音要求较低,可通过增加转动速度及电压来提高电能产出;海上风电场允许单机容量更大的风机,高者可达5MW—10MW 2 海上风能的利用特点 海上风况优于陆地,风流过粗糙的地表或障碍物时,风速的大小和方向都会变化,而海面粗糙度小,离岸10km的海上风速通常比沿岸陆上高约25%;海上风湍流强度小,具有稳定的主导风向,机组承受的疲劳负荷较低,使得风机寿命更长;风切变小,因而塔架可以较短;在海上开发利用风能,受噪声、景观影响、鸟类影响、电磁波干扰等问题的限制较少;海上风电场不占陆上土地,不涉及土地征用等问题,对于人口比较集中,陆地面积相对较小、濒临海洋的国家或地区较适合发展海上风电海上风能的开发利用不会造成大气污染和产生任何有害物质,可减少温室效应气体的排放。 3 海上风电机组的发展 3.1 第一个发展阶段——500~600kW级样机研制 早在上世纪70年代初,一些欧洲国家就提出了利用海上风能发电的想法,到1991~1997年,丹麦、荷兰和瑞典才完成了样机的试制,通过对样机进行的试验,首次获得了海上风力发电机组的工作经验。但从经济观点来看,500~600kW级的风力发电机组和项目规模都显得太小了。因此,丹麦、荷兰等欧洲国家随之开展了新的研究和发展计划。有关部门也开始重新以严肃的态度对待海上风电场的建设工作。 3.2第二个发展阶段——第一代MW级海上商业用风力发电机组的开发 2002年,5 个新的海上风电场的建设,功率为1.5~2MW的风力发电机组向公共

全国海上风电开发建设实施方案(-)

全国海上风电开发建设方案(2014-2016)

————————————————————————————————作者:————————————————————————————————日期: 2

附件: 全国海上风电开发建设方案(2014-2016) 省份项目名称项目规模 (万千瓦) 开发企业场址位置 天津中水电新能源开发有限责任公司南港海上风电 项目一期工程 9 中国水电建设集团新能源开发有限责任公司 滨海新区南港工 业区南防波堤 小计9 河北唐山乐亭菩提岛海上风电场300兆瓦示范工程30 乐亭建投风能有限公司唐山市乐亭县国电唐山乐亭月坨岛海上风电场一期项目30 国电电力河北新能源开发有限公司唐山市乐亭县河北建投唐山海上风电场二期工程20 河北建投新能源有限公司唐山市海港区华电唐山曹妃甸海上风电场20 华电国际电力股份有限公司唐山市曹妃甸区 唐山乐亭海域五场址Ⅱ号区域300兆瓦海上风电 项目 30 唐山建设投资有限责任公司、华能国际电力 股份有限公司河北分公司 唐山市乐亭县小计130 辽宁辽宁省大连市庄河近海II号风电场30 大连市建设投资集团公司大连市庄河海域辽宁省大连市庄河近海III号风电场30 大连市建设投资集团公司大连市庄河海域小计60

省份项目名称项目规模 (万千瓦) 开发企业场址位置 江苏江苏如东10万千瓦潮间带海上风电项目10 中国水电建设集团新能源开发有限公司南通市如东县 中广核如东海上风电场项目15.2 中广核如东海上风力发电有限公司南通市如东县 江苏响水近海风电场项目20 响水长江风力发电有限公司盐城市响水县 龙源如东试验风电场扩建项目 4.92 江苏海上龙源风力发电有限公司南通市如东县 江苏大丰200MW海上风电项目20 龙源大丰海上风力发电有限公司盐城市大丰市 东台200MW海上风电项目20 江苏广恒新能源有限公司盐城市东台市 江苏滨海300MW海上风电项目30 大唐国信滨海海上风力发电有限公司盐城市滨海县 响水C1# 1.25 响水长江风力发电有限公司盐城市响水县 滨海北区H1# 10 中电投江苏新能源有限公司盐城市滨海县 大丰H7# 20 龙源大丰海上风力发电有限公司盐城市大丰市 -4-

截至2017年8月我国在建海上风电项目概况

截至2017年8月我国在建海上风电项目概况

————————————————————————————————作者:————————————————————————————————日期:

截至2017年8月我国在建海上风电项目概况 截止2017年8月31日,我国开工建设的海上风电项共19个,项目总装机容量4799.05MW。项目分布在江苏、福建、浙江、广东、河北、辽宁和天津七个省(市、区)海域,其中江苏8个在建项目共计2305.55MW,福建6个在建项目共计1428.4MW,浙江、广东、河北、辽宁和天津分别有1个在建项目。 在建的19个海上风电项目里,使用(拟使用)上海电气机组总容量为2232MW;使用(拟使用)金风科技机组总容量为964.15MW;使用(拟使用)明阳智慧能源机组总容量为567MW;使用(拟使用)远景能源机组总容量为400.8MW;使用中国海装机组总容量为110MW;使用西门子歌美飒机组总容量为90MW。 一、华能如东八角仙300MW海上风电项目 华能如东八角仙300MW海上风电项目 开发商:华能如东八仙角海上风力发电有限责任公司。 项目概况:项目位于江苏省南通市如东县小洋口北侧八仙角海域,分南区和北区两部分,共安装风电70台,总装机容量302.4MW,配套建设两座110千伏海上升压站和一座220千伏陆上升压站。北区项目面积36平方千米,平均岸距15千米,平均水深0-18米,装机容量156MW,安装14台上海电气SWT-4.0-130机组和20台中国海装5.0MW机组(H171-5MW、H151-5MW两种机型都有安装),北区装机共34台;南区项目面积46平方千米,平均岸距25千米,平均水深0-8

相关主题
文本预览
相关文档 最新文档