当前位置:文档之家› 一元函数与二元函数在微积分学上的差异

一元函数与二元函数在微积分学上的差异

一元函数与二元函数在微积分学上的差异
一元函数与二元函数在微积分学上的差异

一元函数与二元函数在微积分学上的差异在一元微积分部分我们学习了仅依赖于一个变量的函数——一元函数。一元函数就是函数关系中最简单的情形。但在现实问题中,我们发现通常一个变量的变化总就是受到多个因素的制约与影响。所以,我们更需要学习、研究多元函数及其微积分。而在多元函数的相关学习中我们又以二元函数为重点研究对象,因为对二元函数的研究方法在原则上适用于多元函数。通过对一元函数与二元函数的比较学习,我们发现矛盾对立统一的观点贯穿二者之间。下面我们将着重分析一元函数与二元函数在微积分学上的差异。

(一)、函数极限

这一点通过几何上的意义可以很直观地加以说明:在几何图象上,一元函数描述的仅就是二维平面上简单的点或曲线;而二元函数,从一元函数确定的二维平面上扩展至三维立体空间描述的就是点或曲面。我们

从极限的定义上来瞧:一元函数y=f(x)在x

0处的极限为A即当x→x

有f(x)→A。可以知道x趋近于x

0 ,有且仅有两个方向—、x o的正方向

与x

o的负方向,而且趋近的路径也被f(x)确定的曲线所确定。因此我们在考虑函数在某点的极限就是否存在时,通常只考虑函数在该点的左

右极限就是否存在且相等。而二元函数f(x,y)在(x

0,y0)的极限为A即当(x,y)→(x0,y0)有z=f(x,y) →A。显然,在坐标平面上(x,y)有无数个方向

可以趋向于(x

0,y0)而且(x,y)趋向于(x0,y0) 的路径也就是多种多样。因

此,我们发现在二元函数中已无左右极限之说。那么,我们在考虑二元函数在某点的极限就是否存在时,就不能再仅仅考虑它在该点的左右

某个方向或某条特定的路径上存在极限。而应考虑在这点的某个邻域内任意方向、由任意路径趋近就是否都存在极限,并且各极限的值相等。

(二)、连续

函数连续实际上就是函数存在极限的一种特殊情况:函数在某点存在极限且极限值就等于函数在该点的函数值。所以,对函数连续的讨论可以与函数极限的讨论等同起来。同样,一元函数在某点连续则它在该点左连续右连续;而二元函数无左、右连续之说。值得注意的就是,当一元函数不连续时它可能有可去间断点、第一类间断点、第二类间断点。对于二元函数,它若不连续同样有类似以上的三类间断点。根据不同间断点的定义可知,在二元函数中要确定点a就是哪一类间断点,不仅要像一元函数一样考虑f(a-0)、f(a+0)就是否都存在,存在的话就是否相等,相等的话又都等不等于f(a)。还要考虑从不同方向顺着不同路径趋近于a 时的极限,换句话说,就就是要考虑到a 的整个邻域。就几何图象来说,连续的一元函数图像就是一根光滑曲线允许曲线上有尖角(如函数f(x)=|x|所确定的图象在x=0处);连续的二元函数图像就是圆滑的曲面,但就是它不允许有尖角。

(三)导数

1、由于一元函数只含一个变量,所以可以对该变量直接求导;二元函数含两个变量只能分别对其中一个求偏导。在求一个变量的偏导时,将另一个变量瞧成常量。实际上,另一变量的变量身份并没有改变而且z=f(x,y)对x的偏导还就是关于x,y的二元函数。

2、高阶导数。一元函数如果存在高阶导数,高阶导数的个数与阶的大小无关,反正至多有一个表达式;二元函数存在高阶偏导数,则其高阶偏导数的个数有关(阶越高数目多)。假设二元函数存在任意高阶偏导数,函数的n阶偏导数有2n个。

3.一元函数可导一定可推导出函数连续,二元函数的偏导数存在并不能说明函数一定就连续。、

(四)微分

1、一元函数可导与可微就是等价的,二元函数可导并不能推导出函数可微,二元函数在某点可微的充分条件就是它在该点邻域的偏导数连。在判断一元函数就是否可微时只要考虑该函数本身的一些性质,而要判断二元函数就是否可微还要考虑它的偏导数的相关性质。

2、几何意义。一元函数在某点可微就表示函数图像在该点存在切线,所以一元函数若在整个定义域都可微则说明它的函数图像上任意一点都存在切线。二元函数在某点对x的偏导数、对y的偏导数分别表示二元函数与y=y0、x=x0相交所得曲线在该点存在切线,就算二元函数在整个定义域上都可微它也不代表函数确定的曲面上任意一点都存在切线。

3、在一元函数中微商dy/dx可理解为函数微分与变量微分之比,而在二元函数中的偏导都就是一个个的整体符号,不能理解成普通的公式。

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

一、多元函数、极限与连续解读

一、多元函数、极限与连续 ㈠二元函数 1 .二元函数的定义:设 D 是平面上的一个点集,如果对于每个点 P (x,y)∈ D ,变量按照 一定法则总有确定的值与它对应,则称是变量 x 、y 的二元函数(或点 P 的函数),记为 (或),点集 D 为该函数的定义域, x 、y 为自 变量,为因变量,数集为该函数值域。由此也可定义三元函数以及三元以上的函数。二元函数的图形通常是 一张曲面。例如是球心在原点,半径为 1 的上半球面。 ㈡二元函数的极限 ⒈设函数 f(x,y)在开区域(或闭区域) D 内有定义, 是 D 的内点或边界点,如果对于任意给定的正数,总存在正 数,使得对于适合不等式的一切点 ,都有成立,则称常数 A 为函数f(x,y)当 时的极限,记作或, 这里 。为了区别一元函数的极限,我们把二元函数的极限叫做二重极限。

⒉注意:二重极限存在是指沿任意路径趋于,函数 都无限接近 A 。因此,如果沿某一特殊路径,例如沿着一 条定直线或定曲线趋于时,即使函数无限接近于某一确定值,我们也不能由此判定函数的极限存在。 ㈢多元函数的连续性 1 .定义:设函数 f(x,y)在开区间(或闭区间) D 内有定 义,是 D 的内点或边界点且。如果 ,则称函数 f(x,y)在点连续。如果函数 f(x,y)在开区间(或闭区间) D 内的每一点连续,那么就称函数 f(x,y)在 D 内连续,或者称 f(x,y)是 D 内的连续函数。 2 .性质 ⑴一切多元初等函数在其定义域内是连续的; ⑵在有界闭区域 D 上的多元连续函数,在 D 上一定有最大值和最小值; ⑶在有界闭区域 D 上的多元连续函数,如果在 D 上取两个不同的函数值,则它在 D 上取得介于这两

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

一元函数微积分学内容提要

第四部分 一元函数微积分 第11章 函数极限与连续[内容提要] 一、函数:(138-141页) 1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。 2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反 三角函数的统称);复合函数([()]y f x ?=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。 3、函数的特性:奇偶性;单调性;周期性;有界性. 二、极限: 1、极限的概念:(141-142页) 定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向 于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞ →lim ,若{}n x 没有极限,则称数列{} n x 发散。 定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,) U x δo 内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于 A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0 。 左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作0 0(0)lim ()x x f x f x A -→-==。 右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作0 0(0)lim ()x x f x f x A +→+==。 定义3:(x 趋于无穷大时函数)(x f 的极限)设)(x f 在区间)0(>>a a x 时有定义, 若x 无限增大时,函数)(x f 的值无限趋向于常数A ,则称当∞→x 时,

二元函数的连续、偏导数、可微之间的关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1二元函数连续、偏导数、可微三个概念的定义 (1) 2二元函数连续、偏导数、可微三个概念之间的关系 (2) 2.1二元函数连续与偏导数存在之间的关系 (2) 2.2二元函数连续与可微之间的关系 (3) 2.3二元函数可微与偏导数存在之间的关系 (3) 2.4二元函数可微与偏导数连续之间的关系 (4) 二元函数连续、偏导数、可微的关系图 (6) 参考文献 (7) 致谢 (8)

本科生毕业论文 2 二元函数的连续、偏导数、可微之间的关系 摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common.. Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设f 为定义在点集2D R ?上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ?∈, 就有0)||()(f P f P ε<-,则称f 关于集合 D 在点0P 连续. 定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内 有定义,则当极限00000000(,))(,) (,lim lim x x x f x y f x y f x x y x x ?→?→+-=????存在时,则称这个极限 为函数f 在点00,)(y x 关于x 的偏导数,记作0 (,) |x y f x ??. 定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义, 对于0()U P 中的点00,)(,)(y P x y x x y ++=??,若函数f 在点0P 处的全增量可表示为

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

如何判定二元函数的可微性

万方数据

万方数据

如何判定二元函数的可微性 作者:黄激珊 作者单位:兴义良族师范学院,贵州,兴义,562400 刊名: 考试周刊 英文刊名:KAOSHI ZHOUKAN 年,卷(期):2010,""(26) 被引用次数:0次 参考文献(3条) 1.同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,200 2. 2.华东师范大学数学系.数学分析(下册)[M].北京:高等教育出版社,200 3. 3.刘玉琏.数学分析学习指导书[M].北京:高等教育出版社,200 4. 相似文献(10条) 1.期刊论文何鹏.俞文辉.雷敏剑二元函数连续、可偏导、可微等诸条件间关系的研究-南昌高专学报2005,20(6) 本文指出二元函数诸性质间的关系源于二元函数对极限的两种不同推广:二重极限和累次极限,并详细阐明了连续、偏导数存在、可微、偏导连续四者间的关系.在文章的最后,作者对偏导连续推出可微这一命题的条件作了减弱并予以证明. 2.期刊论文杨凯.王焕东二元函数连续、偏导数与可微的关系-沧州师范专科学校学报2007,23(3) 一元函数可微与可导等价,可导必连续,但二元函数并非如此.给出了二元函数的连续、偏倒数、可微之间的关系,并给出了简洁全面地证明. 3.期刊论文张德利.郭彩梅.ZHANG De-li.GUO Cai-mei一类二元函数连续性的等价刻画及在三角模上的应用-模糊系统与数学2007,21(4) 关于二元函数的连续,经典数学分析中有熟知的结果,即"如果二元函数连续,则必关于每个单变量连续.反之,则未必".本文证明对于单调且对称的二元函数而言,其二元连续等价于单变量连续,并重新定义了三角模的连续. 4.期刊论文樊红云.张宏民.FAN Hong-yun.ZHANG Hong-min视一元函数为二元函数时的极限与连续-长春师范学院学报(自然科学版)2006,25(3) 本文讨论了视一元函数u=φ(x)为二元函数u=f(x,y)=φ(x)时的极限与连续. 5.期刊论文郭素霞二元函数连续与其按单变量连续的关系-衡水师专学报2001,3(2) 若二元函数连续,则二元函数按每一个单变量必连续;反之,二元函数按每一个单变量都连续,但二元函数不一定连续.而补充某些条件后,二元函数就连续. 6.期刊论文齐小忠关于二元函数二阶混合偏导数的注记-许昌学院学报2004,23(2) 大多数数学分析教科书讨论二元函数的二阶混合偏导数f'xy(x,y)、f"(x,y)与求导次序有无关系时,都是在其连续的情况下得出与次序无关的结论的.本文给出了较弱的与求导次序无关的几个结论. 7.期刊论文张仁华.秦建红二元函数可微的又一充分性条件及证明-科技信息2009,""(35) 本文对常见教材中二元函数可微的条件进行修改,给出了一个二元函数可微的又一个充分性条件,因而可得二元函数可微的另一个定理. 8.期刊论文闫彦宗关于二元函数分析性质的讨论-宜宾学院学报2003,6(6) 讨论了二元函数的重极限与累次极限、可微性与偏导数的存在性及函数的连续性、重积分与累次积分之间的关系. 9.期刊论文张骞二元函数全连续和偏连续关系的探讨-太原城市职业技术学院学报2005,""(1) 文章根据二元函数全连续性的定义给出了偏连续的定义,并进一步讨论了它们之间的关系. 10.期刊论文赵辉Mathematica的图形功能在二元函数极限与连续中的应用-安徽电子信息职业技术学院学报2008,7(6) 在高等数学中,二元函数极限与连续的概念是个难点,本文利用Mathematica软件作出二元函数在案区域的三维图形和等高线,可以更加直观的观察二元函数当时的变化情况,加深对此概念的理解. 本文链接:https://www.doczj.com/doc/7115705220.html,/Periodical_kszk201026056.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:10c98dc1-0e96-4f5e-8c65-9dce00bbfc62 下载时间:2010年8月10日

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 0x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小, 这时底直径与高的比是多少?

多元函数的可微性

多元函数的可微性 摘要:多元函数微分学是一元函数微分学的推广,也保留了一些一元函数微分学的许多性质。但是由于自变量的增加使之产生了某些本质上是新的内容。 关键词:可微、多元函数、偏导 在一元函数中,可微性与可导性是等价的,但在多元函数中可微可以保证各偏导数都存在,而各偏导数都存在并不能保证可微,即偏导数都存在只是可微的必要条件而非充分条件。本文总结了一些可微的必要条件而非充分条件和充要条件。 一、全微分的定义: 函数(,)u f x y =在点(,)x y 全微分的定义为:若函数(,)u f x y =的全改变量u ?可以 表示为(,)(,)u f x x y y f x y A x B y ο?=+?+?-=?+?+且其中A 、B 与x ?, y ?无关而仅与,x y 有关,则称函数(,)f x y 在点(,)x y 可微,并称A x B y ?+?为(,)f x y 在点(,)x y 的全微分,记为du 或(,)df x y 。 可微的判别方式:0()lim 0ρορρρ →== (,)f x y 在点(,)x y 可微。 二、可微的必要条件而非充分条件: 定理1:若(,)f x y 在点P (,)x y 可微,则(,)f x y 在点(,)x y 的偏导存在,且(,)x f x y A =、(,)y f x y B =。 证明:(,)(,)u f x x y y f x y A x B y ο?=+?+?-=?+?+ 且 0(,)(,)(,)lim x x f x x y f x y f x y x ?→+?-=? 0lim x A ?→== 同理:(,)y f x y B = 定理2:若(,)u f x y =在点P (,)x y 可微,则必在该点连续。 证明:因为(,)u f x y =在点(,)x y 可微,所以有 (,)(,)u f x x y y f x y ?=+?+?- (),A x B y ορρ=?+?+其中 由此立即可得

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞ ∞或00型,)()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

二元函数的连续、偏导数、可微之间的关系

摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1二元函数连续、偏导数、可微三个概念的定义 (1) 2二元函数连续、偏导数、可微三个概念之间的关系 (2) 二元函数连续与偏导数存在之间的关系 (2) 二元函数连续与可微之间的关系 (3) 二元函数可微与偏导数存在之间的关系 (3) 二元函数可微与偏导数连续之间的关系 (4) 二元函数连续、偏导数、可微的关系图 (6) 参考文献 (7) 致谢 (8) 二元函数的连续、偏导数、可微之间的关系

摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common.. Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设f 为定义在点集2D R ?上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ?∈,就有0)||()(f P f P ε<-,则称f 关于集合D 在点0P 连续. 定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内 有定义,则当极限00000000(,))(,) (,lim lim x x x f x y f x y f x x y x x ?→?→+-=????存在时,则称这个极限为函数f 在点00,)(y x 关于x 的偏导数,记作0 (,)|x y f x ??. 定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义,对于0()U P 中的点 00,)(,)(y P x y x x y ++=??,若函数f 在点0P 处的全增量可表示为

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

二元函数可微的充分条件(最终版)

元函数可微的充分条件(最终版) 肇教材的充分条件是这样的,z二f(x, y)的偏导数连续,则函数是可微的。条件可弱化为, z二f(x, y)偏导数存在,且其中一个偏导数连续,另一个偏导数单元连续(关于求导变元)则函数是可微的。 蒄多元函数关于某个变元连续,则称之为单元连续。 :z : z 莁证明:1 )设连续,关于y单元连续。 ex dy 罿因为偏导数存在,函数对单个自变量是连续的,根据拉格朗日中值定理,有 )=f (x,y) - f (x°,y) f (x°,y) - f (冷,y。)膀= f (x,y) - f (X o,y。 祎=f x ( ,ypx f y(x。,):y (1) 肅在y, y0之间,?在x,x0之间。 ( ,y)在(X o,y。)连续,有f x( ,y)二f x(X o,y。) 1 (2) 螀f x 羇i在x— x°,yr y。时是无穷小量。 羄f y(x0,)在y二y0关于y单元连续,有 ,)= f y(X o,y。);2 (3) 蒄f y(x。 蒀;2在y— y0时是无穷小量。 羈将(2)(3)代入(1)有

n f x (X o ,y °) :x f y (x o ,y °) y 1 :x 八 袄可以证明 ? 2 y=o^: L X - t y ) 穷小量,即 Q 'X 亠 22L y=o C ; L X 2 : i y 2) 蒅2)设’连续,‘关于 x 单元连续。 dy dx 芃因为偏导数存在,函数对单个自变量是连续的,根据拉格朗日中值定理,有 羁 z 二 f (x,y) - f (x °,y o ) = f(x,y) - f (x,y 。) f (x, y 。)- f (心 y 。) f y (x, ) y f x ( ,y 。):x 袈.在y,y 。之间, 在x,x 。之间。 螂 f y (X,) 在(x 。, y 。)连续,有 f y (x,巴)=f y (x 。, y 。)+ ^1 ( 4) 螁i 在 x — x °,yr y 0 时是无穷小量。 羈f x ( ,y 。)在X =x 。关于x 单元连续, 有 羆 f x ( , y 。)= f x (x 。,y 。) ;2 (5) 膂;2在X — X 。时是无穷小量 0空丨"lx J^x 2 + 也y 2 一丨;i |+|刑 肀| ;」+|列是无穷小量,又两边夹准则, 1 ■ :x^ Ay 2'是无穷小量,所以.Uy 2 是无 (3)

《数学分析》多元函数微分学

第四章多元函数微分学一、本章知识脉络框图

二、本章重点及难点 本章需要重点掌握以下几个方面容: ● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数 与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式. ● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法. 三、本章的基本知识要点 (一)平面点集与多元函数 1.任意一点A 与任意点集E 的关系. 1) 点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的点。 2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。 3) 界点(边界点). 若在点A 的任何邻域既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。 4) 聚点. 若在点A 的任何空心邻域()o U A 部都含有E 中的点,则称点A 是点集E 的 聚点。 5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。 2. 几种特殊的平面点集. 1) 开集. 若平面点集E 所属的每一点都是E 的点,则称E 为开集。 2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。 3) 开域. 若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于E 得有限折线相连接,则称E 为开域。 4)闭域. 开域连同其边界所成的点集称为闭域。 5)区域. 开域、闭域或者开域连同某一部分界点所成的点集,统称为区域。 3.2 R 上的完备性定理. 1) 点列收敛定义:设{}2 n P R ?为平面点列,2 0P R ∈为一固定点。若对任给的正数ε,存在正整数N ,使得当n N >时,有()0,n P U P ε∈,则称点列{}n P 收敛于点0P ,记作 0lim n n P P →∞ = 或 ()0,n P P n →→∞.

(整理)多元函数的极限与连续习题.

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1s i n 1s i n )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 s i n ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1l i m l i m 00-=+-→→y x y x x y , 二重极限不存在。 或 0l i m 0=+-=→y x y x x y x , 3 1l i m 20-=+-=→y x y x x y x 。

《高等数学》(上)一元函数微分学复习题

《高等数学》(上)“一元函数微分学”复习题 1.设x x f +=1)(ln ,求)(x f '. 2.设函数)(x f 二阶可导,且0)0(=f ,1)0(='f ,2)0(=''f ,求20)(lim x x x f x -→. 3.设)(x f 在2=x 处连续,且22)(lim 2=-→x x f x ,求)2(f '. 4.若)(sin x f y =,求dy . 5.若函数)(x f 可导,)(sin 2x f y =则 dx dy 为多少? 6.设函数)1ln()(2x x f -=,求)(x f ''. 7.求等边曲线x y 1=在点2) ,2 1(的切线方程. 8.设函数???≥+<=0 ),1ln(0,sin )(x x x x x f ,求)0(-'f 、)0(+'f ,并判断)0(f '是否存在. 9.确定常数a ,b 使函数? ??>-≤+=0,0,13sin )(x b ae x x x f x 在0=x 处可导. 10.求曲线???==t y t x sin 2cos 在3π=t 处的切线方程和法线方程. 11.求由方程0=-+e xy e y 所确定的隐函数的微分dy . 12.设函数x x x y ?? ? ??+=1,求其导数y '. 13.设曲线的参数方程为?????==-t t e y e x 23,求22dx y d . 14.求由方程12 2=-y x 所确立的隐函数)(x y y =的二阶导数22dx y d . 15.设函数)(x f y =由方程4ln 2y x xy =+确定,求() 1,1dx dy . 16.求椭圆442 2=+y x 在点()2,0处的二阶导数22dx y d . 17.设()3,1是曲线2 3bx ax y +=的拐点,求b a ,.

相关主题
文本预览
相关文档 最新文档