当前位置:文档之家› 一元函数微分学知识点.

一元函数微分学知识点.

一元函数微分学知识点.
一元函数微分学知识点.

函数与极限

函数会求函数的定义域,对应法则;

几种特殊的函数(复合函数、初等函数等);

函数的几种特性(有界性、单调性、周期性、奇偶性)

极限

(1)概念无穷小与无穷大的概念及性质;

无穷小的比较方法;(高阶、低阶、同阶、等价)

函数的连续与间断点的判断

(2)计算函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件)

极限的四则运算法则

利用无穷小与无穷大互为倒数的关系;

利用无穷小与有界函数的乘积仍为无穷小的性质;

消去零因子法;

无穷小因子分出法;

根式转移法;

利用左右极限求分段函数极限;

利用等价无穷小代换(熟记常用的等价无穷小);

利用连续函数的性质;

洛必达法则(掌握洛必达法则的应用条件及方法);型,

两个重要极限(理解两个重要极限的特点);,

,,

一般地,,,

3 函数的连续

连续性的判断、间断点及其分类

导数与微分

1 导数

(1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。

导数的几何意义:曲线上某点的切线的斜率

(2)导数的计算:

基本初等函数求导公式;

导数的四则运算法则;(注意函数积、商的求导法则)

复合函数求导法则(注意复合函数一层层的复合结构,不能漏层)

隐函数求导法则(a:两边对x求导,注意y是x的函数;b:两边同时求微分;)

高阶导数

2 微分

函数微分的定义,

导数的应用

洛必达法则(函数极限的计算)

函数的单调性与极值,最值、凹凸性与拐点的求法

一元函数微分学典型例题

一元函数微分学典型例题 1. 有关左右极限题 求极限??? ?????+++→x x sin e e lim x x x 41 012 ● 根据左右极限求极限, ● 极限x x e lim 1 →, x x sin lim x 0 →,x tan lim x 2 π→,x cot lim x 0→,x cot arc lim x 0→,x arctan lim x 1 0→都不存在, ● A )x (f lim A )x (f lim )x (f lim x x x =?==∞ →-∞ →+∞ → ● 【 1 】 2. 利用两个重要极限公式求1∞ 型极限 x sin x ) x (lim 20 31+→ ● 0→)x (?,e )) x (lim() x (=+??1 1 ● A )x (f lim =0→)x (?,A )x (f ) x (e ])) x (lim[(=+??11 ● 【 6e 】 3. 等价无穷小量及利用等价代换求极限 当0x + → (A) 1- (B) ln (C) 1. (D) 1-. ● 等价无穷小定义:如果1=α β lim ,则称β与α失等价无穷小,记为α∽β, ● 0→x 时,(1)n x x a x a x x x x x x x x x e x x x x x n x x ≈ -+≈-≈-+≈-≈---+≈-≈+≈≈≈≈111112 1 16111112 3 ln )(cos sin )ln(arctan tan sin αα

● 当0→)x (?时,)x (sin ?∽)x (?,11-+n )x (?∽ n ) x (?∽∽ ● 【 B 】 4. 利用单调有界准则求极限 设数列{}n x 满足n n x sin x ,x =<<+110π。证明:极限n n x lim ∞→存在,计算1 1n x n n n x x lim ??? ? ??+∞→ ● 利用单调有界准则球数列或者函数极限的步骤:1。证明数列或函数单调;2。证明 数列或函数是有界;3。等式取极限求出极限。 ● 定理单调有界数列必有极限还可以叙述为单调递减有下界数列必有极限,或单调递 增有上界数列必有极限。 ● 61 1 2 -→=?? ? ??e x x sin lim x x ● 【 0;6 1- e 】 5. 判断函数连续与否以及利用函数的连续性解题 设函数f (x )在x =0处连续,下列命题错误的是: (A) 若0()lim x f x x →存在,则f (0)=0. (B) 若0()() lim x f x f x x →+-存在,则f (0)=0. (C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()() lim x f x f x x →-- 存在,则(0)f '存 在 【 】 ● 若()()00 x f x f lim x x =→,则称函数()x f 在点0x 处连续。 ● 左连续右连续则连续。 ● 分段函数的分段点不一定是函数的间断点。 ● 判断函数在某点是否连续的步骤:求函数在该点的极限;求函数在该点的函数值;判断 二者是否相等,相等则连续,否则间断。 6.导数的定义式相关题目 设函数 ()x f 在 x=0某领域内有一阶连续导数,且 ()()0 000≠'≠f ,f 。若 ()()()02f h bf h af -+在0→h 时是比h 高阶的无穷小,试确定a, b. ● 函数在某一点导数的定义: ()()()x x f x x f lim x y lim x f x x ??????000 00-+=='→→ ()()()()()0 0000 00 x x x f x f lim h x f h x f lim x f x x h --=-+='→→

数学考研:一元函数微分学的知识点和常考题型

数学考研:一元函数微分学的知识点和常考题型 【大纲内容】 导数和微分的概念 导数的几何意义和物理意义(数三经济意义) 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分、曲率的概念、曲率圆与曲率半径(数三不要求) 【大纲要求】 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理。 6.掌握用洛必达法则求未定式极限的方法。 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。(数三不要求) 【常考题型】 1.导数概念; 2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导; 3.函数的单调性和极值; 4.曲线的凹凸性与拐点; 5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数; 6.利用洛必达法则求极限; 7.几何、物理、经济等方面的最大值、最小值应用题。解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

第三章 一元函数积分学

第三章 一元函数积分学 一.不定积分 例1:设2 ln )1(22 2 -=-x x x f ,且x x f ln )]([=?,求?dx x )(?(答案: C x x +-+1ln 2) 例2:已知 x x sin 是)(x f 的一个原函数,求?dx x f x )('3(答案: C x x x x x +--cos 6sin 4cos 2) 例3:设???>≤=0 ,sin ,)(2x x x x x f ,求?dx x f )( 例4:设)(x F 是)(x f 的一个原函数,π4 2 )1(= F ,若当0>x 时,有) 1(arctan )()(x x x x F x f += ,求)(x f 。(答案:) 1(21)(x x x f += ) 例5:求? dx x x )1,,max(23 例6:求?dx e e x x 2arctan 二.定积分 例1:求极限?? ? ??+++++∞→n n n n 212111lim 例 2:设)(x f 在]1,0[上连续,且 )(1 =?dx x f ,试证明存在 0)1()()1,0(=-+∈ξξξf f 使。 例3:已知)0()1ln()(1 >+= ?x dt t t x f x ,求??? ??+x f x f 1)((答案:x 2ln 21)

例4:设函数)(x f 连续,且,arctan 21)2(2 0x dt t x tf x =-?已知1)1(=f ,求?2 1 )(dx x f 的 值。(答案: 4 3 ) 例5:已知22110,1,ln ,sin )(>≤<≤≤?? ? ??=x x x x x x x f 求?=x dt t f x I 0)()( 例6:求积分?≥-= x x dt t x g t f x I 0 )0()()()(,其中当0≥x 时x x f =)(,而 ?? ?? ? ≥ <≤=220,0,sin )(π πx x x x g 例7:设)(x f 在],[b a 上连续,且0)(>x f ,证明 ? b a dx x f )(2)() (1 a b dx x f b a -≥? 例8:设)('x f 在]1,0[上连续,求证 ? ??? ?? ? ??≤1 1 010)(,)('max )(dx x f dx x f dx x f 例9:设)(x f 在]1,0[上连续,且0)(≥x f ,0)1(=f ,求证: 存在?= ∈ξ ξξ0 )()()1,0(dx x f f 使 例10:设)(x f 是在),(+∞-∞内的周期函数,周期为T ,并满足 )),,(,()()()1(为常数其中L y x y x L y f x f +∞-∞∈?-≤-; 0)()2(0 =?T dx x f 求证:LT x f T x 2 1 )(max ] ,0[≤ ∈ 例11:设函数)(x f 在],[b a 上具有连续的二阶导数,证明在),(b a 内存在一点ξ,使得 )('')(24 12)()(3 ξf a b b a f a b dx x f b a -+??? ??+-=?

高等数学教案--一元函数微分学的应用

高等数学教案—一元函数微分学的应用 课 时 授 课 计 划 第一课时 教学过程及授课内容 教学过程 一、柯西中值定理 定理1(柯西中值定理)如果函数)(x f 与 )(x F 满足下列条件:(1)闭区间 ],[b a 上连续; (2)在开区间),(b a 内可导; (3))('x F 在),(b a 内的每一点均不为零,那么,在),(b a 内至少有一点ξ,使得 二、洛必达法则 把两个无穷小量之比或两个无穷大量之比的极限称为00型或 ∞ ∞ 型不定式(也称为 0型或∞∞ 型未定型)的极限,洛必达法则就是以导数为工具求不定式的 极限方法. 定理2 (洛必达法则)若(1)0)(lim 0 =→x f x x ,0)(lim 0 =→x g x x ; (2))(x f 与)(x g 在0x 的某邻域内(点0x 可除外)可导,且0)('≠x g ; (3)A x g x f x x =''→) () (lim 0(A 为有限数,也可为∞+或∞-),则 A x g x f x g x f x x x x =''=→→) () (lim )()(lim 00 证 由于我们要讨论的是函数在点0x 的极限,而极限与函数在点0x 的值无关,所以我们可补充)(x f 与)(x g 在0x 的定义,而对问题的讨论不会发生任何影响。令0)()(00==x g x f ,则)(x f 与)(x g 在点0x 就连续了.在0x 附近任取一点x ,并应用柯西中值定理,得 .f(b)f(a)f ( )F(b)F(a)F () ξξ'-='-

) () ()()()()()()(00ξξg f x g x g x f x f x g x f ''=--= (ξ在x 与0x 之间) . 由于0x x →时,0x ξ→,所以,对上式取极限便得要证的结果,证毕. 注:上述定理对∞→x 时的0 未定型同样适用,对于0x x →或∞→x 时的未定型 ∞ ∞ ,也有相应的法则. 例1 求1 2 3lim 2331+--+-→x x x x x x . 解 123lim 2331+--+-→x x x x x x =12333lim 221---→x x x x =266lim 1-→x x x =46=2 3. 例2求x x x tan cos 1lim π+→. 解 x x x tan cos 1lim π+→=x x x 2πcos 1sin lim -→=0. 例3 求 x x x 1arctan 2 lim -+∞ →π 解 x x x 1arctan 2 lim -+∞ →π =221 11 lim x x x -+- +∞ →=22 1lim x x x ++∞→=1. 除未定型 00与∞ ∞ 之外,还有00,1,0,,0∞∞-∞∞?∞等未定型,这里不一一介绍,有兴趣的同学可参阅相应的书籍,下面就∞-∞未定型再举一例. 例5 求??? ? ?--→x x x x ln 11lim 1. 解 这是∞-∞未定型,通过“通分”将其化为 未定型. x x x x x x x x x x ln )1()1(ln lim ln 11lim 11---=??? ??--→→x x x x x x x 1ln 1 ln 1 lim 1-+ -+=→

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

专升本-一元函数积分学

第四章 一元函数积分学 不定积分部分 一.原函数的概念 例1.下列等式成立色是( ) ()()().;A f x dx f x '=? ()()().;B df x dx f x =? ()()(). ;d C f x dx f x dx =? ()()()..D d f x dx f x =? 例2.下列写法是否有误,为什么? ()1 .ln c dx e e x x +=?(c 为任意正常数) ()2 ).0(1 3 3 2 ≠+=?c c dx x x ()3 .arccos arcsin 12 c x c x dx dx x +-=+=-? 例3.下列积分结果正确吗? ()211sin .cos sin ;2x xdx x C =+?√ ()21 2sin .cos cos ;2x xdx x C =-+?√ ()1 3sin .cos cos 2.2 x xdx x C =-+?√ 例3说明不定积分的结果具有形式上的多样性。 二.直接积分法 利用不定积分的性质及基本积分表,我们就可以计算较简单的函数的积分,这种方法称做直接积分法. 例4.求().arctan 3 1111113 2 2 24 2 4 c x x dx dx dx dx x x x x x x x ++-= + +-= ++-= +???? 例5.求.sin 21 2cos 212cos 12sin 2 c x x xdx dx dx x dx x +-=-=-=???? 例6.求.tan 44422csc sin cos sin 2 222c x c xdx x dx x x dx +-===??? 例7.已知某个函数的导数是x x cos sin +,又知当2 π=x 时,这函数值为2,求 此函数. 解:因为() .sin cos cos sin c x x dx x x ++-=+?, 所以,可设().sin cos c x x x f ++-=

一元函数积分知识点完整版

一元函数积分相关问题 前言: 考虑到学习的效率问题,我在本文献中常常会让一个知识点在分隔比较远的地方出现两次。这种方法可以让你在第二次遇到同样的知识点时顺便复习下这个知识点,同时第二次出现这个知识点时问题会稍微升华点,不做无用的重复。 一.考查原函数与不定积分的概念和基本性质 讲解:需要掌握原函数与不定积分的定义、原函数与不定积分的关系,知道求不定积分与求微分是互逆的关系,理解不定积分的线性性质。 问题1: 若)(x f 的导函数是x sin ,则所有可能成为)(x f 的原函数的函数是_______。 二.考查定积分的概念和基本性质 讲解:需要掌握定积分的定义与几何意义,了解可积的充分条件和必要条件,掌握定积分的基本性质。 定积分的基本性质有如下七点: 1、线性性质 2、对区间的可加性 3、改变有限个点的函数值不会改变定积分的可积性与积分值 4、比较定理(及其三个推论) 5、积分中值定理 6、连续非负函数的积分性质 7、设)(x f 在],[b a 上连续,若在],[b a 的任意子区间],[d c 上总是有 ? =d c dx x f 0)(,则当 ],[b a x ∈时,0)(≡x f 问题2: 设? = 2 )sin(sin π dx x M ,?=20 )cos(cos π dx x N ,则有() (A )N M <<1 (B )1<

分的关系,了解初等函数在定义域内一定存在原函数但不一定能积出来,需要重点掌握牛顿—莱布尼兹公式及其推广。 其中变限积分的求导方法为: 设)(x f 在],[b a 上连续,)(x ?和)(x ψ在],[βα上可导,当],[βα∈x 时, b x x a ≤≤)(),(ψ?,则? =) () ()(x x dt t f y ?ψ在],[βα上可以对x 求导,且 )('))(()('))((x x f x x f dx dy ψψ??-= 牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知 ? +=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 四.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在]1,0[上连续, A dx x f =? 2 )cos (π ,则==? π 20 )cos (dx x f I _______。 五.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑? =∞ →--+ =n i n b a n a b n a b i a f dx x f 1))((lim )( ∑? =∞ →---+ =n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5: 求∑ =∞ →+=n i n i n n i n w 1 2tan lim 六.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 七.考察分项积分方法

一元函数积分学的应用

一元函数积分学的应用 一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。 一元积分主要分为不定积分 ?dx x f )(和定积分? b a dx x f )(。化为函数 图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C 的导数也是f(x)(C 是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间[a,b]中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。 积分的应用十分巧妙便捷,能解决许多不直观、不规则的或是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。 微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。 而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间[]b a ,为若干子区间,任取一个子区间[]dx x x +,,求Q

在该区间上局部量的Q ?的近似值dx x f dQ )(=;(2)以dx x f )(为被积式,在],[b a 上作积分即得总量Q 的精确值 ??==b a b a dx x f dQ Q )(。(分割,近似,求和,取极限) 在实际应用中,通过在子区间],[dx x x +上以“匀”代“非匀”或者把子区间],[dx x x +近似看成一点,用乘法所求得的近似值就可以作为Q ?所需要的近似值,即为所寻求的积分微元dx x f dQ )(= 。 定积分在几何中的应用 在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论: 一、 平面图形的面积 求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x 轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。 1、直角坐标情形 在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲 y O

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞∞或00型,) ()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

第三章-一元函数积分学

第三章 一元函数积分学 §3-1 不定积分 不定积分是计算定积分、重积分、线面积分和解微分方程的基础,要求在掌握基本积分法的基础上,更要注重和提高计算的技巧。 一、基本概念与公式 1. 原函数与不定积分的概念 2. 不定积分与微分的关系(互为逆运算) 3. 不定积分的性质 4.基本积分表 2222 22 312 22 3 2max{1}d .,1 max{1,}1,11, , 111max{1,}d d 3 11max{1,}d 1d 11 max{1,}d d . 3x x x x x x x x x x x x x x C x x x x x C x x x x x x C ?<-? =-≤≤??>?<-==+-≤≤==+>==+???????1求,因 当时 ;当时 ; 当时 例解 ()()3111321 11232 31lim lim 3,1lim lim 323 ,232 133 max{1,}d 1 1.2 1 33 x x x x x C x C x C x C C C C C x C x x x x C x x C x -+ - +→-→-→→??? +=+ ????? ? ???+=+ ?????? =-+??? ?=+?? ?-+<-???=+-≤≤???++>?? ? 由原函数的连续性,有 得 故 ,,,

二、不定积分的基本方法 1. 第一类换元法(凑微分法) ()d ()[()]d []d [].f u u F u C f x x x f x x F x C ?????=+'()=()()=()+???若,则 2. 第二类换元法 ()10[]()()d []d ()[]. x t t x x t t f t t G t f x x f t t t G t C G x C ?????????-1=() =-''=()()≠()()'()()=+()+? ? 令代回 若是单调可导函数,且,又具有原函数,则有换元公式 3. 分部积分法 ()()d ()()()()d d d . u x v x x u x v x u x v x x u v uv v u ''=-=-????或 4. 有理函数的积分法 化有理真分式为部分分式. 5. 三角函数有理式的积分 (sin cos )d ()tan 2 R x x x R u v u v x t =?对于,(其中,表示关于,的有理函数),可用“万能代换”化为有理函数的积分. 三、题解示例

高数第二章 一元函数微分学选择题

高数第二章 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2. 已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2 -∈?≤x x x f ,则0=x 必是 )(x f 的( ) (A )间断点。 (B )连续而不可导的点。

(C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x (B )0≠x (C )0>x (D )0≤x 答C

成人高考一元函数积分学整理.

一元函数积分学 【知识要点】 1、理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2、熟练掌握不定积分的基本公式。 3、熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换。 4、熟练掌握不定积分的分部积分法。 5、掌握简单有理函数不定积分的计算。 6、理解定积分的概念及其几何意义,了解函数可积的条件 7、掌握定积分的基本性质 8、理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 9、熟练掌握牛顿—莱布尼茨公式。 10、掌握定积分的换元积分法与分部积分法。 11、 . 理解无穷区间的广义积分的概念,掌握其计算方法。 12、掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 1不定积分 定义函数 (x f 的全体原函数称为函数 (x f 的不定积分 , 记作?dx x f (, 并称?微积分号, 函数 (x f 为被积函数, dx x f (为被积表达式, x 为积分变量。因此 ? +=C x F dx x f ( (, 其中 (x F 是 (x f 的一个原函数, C 为任意常数(积分常数。基本积分公式(要求熟练记忆 (1 ?=C dx 0 (2 1(1

11 -≠++=+?a C x a dx x a a . (3 C x dx x +=? ln 1. (4 C a a dx a x x += ?ln 1 1, 0(≠>a a (5 C e dx e x x +=? (6 ?+-=C x xdx cos sin (7 ?+=C x xdx sin cos (8 C x x +=?tan cos 1 2 . (9 C x x +-=?cot sin 1

《高等数学》(上)一元函数微分学复习题

《高等数学》(上)“一元函数微分学”复习题 1.设x x f +=1)(ln ,求)(x f '. 2.设函数)(x f 二阶可导,且0)0(=f ,1)0(='f ,2)0(=''f ,求2 0)(lim x x x f x -→. 3.设)(x f 在2=x 处连续,且22 )(lim 2=-→x x f x ,求)2(f '. 4.若)(sin x f y =,求dy . 5.函数)(x f 有任意阶导数,且[]2)()(x f x f =',求)()(x f n . 6.设函数)1ln()(2x x f -=,求)(x f ''. 7.求等边曲线x y 1=在点2) ,2 1(的切线方程. 8.设函数???≥+<=0 ),1ln(0,sin )(x x x x x f ,求)0(-'f 、)0(+'f ,并判断)0(f '是否存在. 9.设函数???>+≤=1 ,1,)(2x b ax x x x f ,为了使函数)(x f 在1=x 处连续且可导,b a ,应取 什么值? 10.求曲线???==t y t x sin 2cos 在3π=t 处的切线方程和法线方程. 11.设()3,1是曲线23bx ax y +=的拐点,求b a ,. 12.设)(x y y =由x y y 223=+确定,求其在点)1,0(-处的切线方程和法线方程. 13.设函数x x x y ?? ? ??+=1,求其导数y '. 14.设曲线的参数方程为?????==-t t e y e x 23,求22dx y d . 15.求由方程12 2=-y x 所确立的隐函数)(x y y =的二阶导数22dx y d . 16.求椭圆124322=+y x 上点)2 3 ,1(的切线方程. 17.设函数)(x f y =由方程4ln 2y x xy =+确定,求() 1,1dx dy .

高数一元函数积分学习题及答案

第四章 不定积分 一、是非题: 1.已知()211 arcsin x x -='π+,则?π+=-x dx x arcsin 112. 错 2. 连续函数的原函数一定存在. 对 3. ()()?? =dx x f d dx x f dx d . 错 4. ax y ln =和x y ln =是同一函数的原函数. 对 ()2x x e e y -+=和()2x x e e y --=是同一函数的原函数. 对 5. ()()??=dx x f k dx x kf (k 是常数) 错 二、填空题: 1.()()? ='dx x f x f (C x f +)(ln ). 2.()?=''dx x f x (()C x f x f x x f xd +-'='? )()( ). 3.知()()?+=C x F dx x f ,则()?=+dx b ax f (C b ax F a ++)(1),b a ,为常数. 4.已知 ()?+=C e dx x f x ,则()=??dx x x f sin cos ( C e x +-cos ). 5.已知()[]x dx x f sin ='?,则()=x f (x sin ). 6. 设()x f 、()x f '连续,则() ()[]=+'?dx x f x f 21([]C x f +)(arctan ). 7. 设()x f 的一个原函数为x e -,则()ln f x dx x =?( 1C x + ). 8. 函数(21ln(1)2x C ++)是2 1x x +的原函数. 9. 设()x f x e =,则()ln f x dx x '=?(x C +). 三、选择填空: 1.已知()x F 是()x f 的一个原函数,C 为任意常数,下列等式能成立的是( a ) a .()()?+=C x F x dF b .()()? ='x F dx x F

04-第四章-一元函数微分学的应用

04-第四章-一元函数微分学的应用

第四章 微分学的应用 一、本章学习要求与内容提要 (一)学习要求 1.了解罗尔中值定理、拉格朗日中值定理与柯西中值定理. 2.会用洛必达法则求未定式的极限. 3.掌握利用一阶导数判断函数的单调性的方法. 4.理解函数的极值概念,掌握利用导数求函数的极值的方法,会解简单一元函数的最大值与最小值的应用题. 5.会用二阶导数判断函数图形的凹性及拐点,能描绘简单函数的图形. 重点 用洛必达法则求未定式的极限,利用导数判断函数的单调性与图形凹性及拐点,利用导数求函数的极值的方法以及求简单一元函数的最大值与最小值的应用题. (二)内容提要 1. 三个微分中值定理 ⑴ 罗尔(Rolle )定理 如果函数)(x f y =满足下列三个条件: ①在闭区间],[b a 上连续; ②在开区间),(b a 内可导; ③)()(b f a f =, 则至少存在一点),,(b a ∈ξ使0)(='ξf .

⑵ 拉格朗日(Lagrange )中值定理 如果函数)(x f y =满足下列两个条件: ①在闭区间],[b a 上连续; ②在开区间),(b a 内可导, 则至少存在一点),(b a ∈ξ,使得,)()()(a b a f b f f --= 'ξ或))(()()(a b f a f b f -'=-ξ. ⑶ 柯西(Cauchy )中值定理 如果函数)(x f 与)(x g 满足下列两个条件: ①在闭区间],[b a 上连续; ②在开区间),(b a 内可导,且),(,0)(b a x x g ∈≠', 则在),(b a 内至少存在一点ξ,使得 ) ()()()()()(ξξg f a g b g a f b f ''=--. 2.洛必达法则 如果 ①,0)(lim 0=→x f x x 0)(lim 0=→x g x x ; ② 函数)(x f 与)(x g 在0x 某个邻域内(点0x 可除外)可导,且0)(≠'x g ; ③ ),,()()(lim 0 ∞-+∞∞=''→或也可为为有限数A A x g x f x x ,则 A x g x f x g x f x x x x =''=→→) ()(lim )()(lim 00. 注意 上述定理对于∞→x 时的0 型未定式同样适用,

相关主题
文本预览
相关文档 最新文档