当前位置:文档之家› 欧洲最新流体力学课件第四章

欧洲最新流体力学课件第四章

流体力学讲义 第一章 绪论

第一章绪论 本章主要阐述了流体力学的概念与发展简史;流体力学的概述与应用;流体力学课程的性质、目的、基本要求;流体力学的研究方法及流体的主要物理性质。流体的连续介质模型是流体力学的基础,在此假设的基础上引出了理想流体与实际流体、可压缩流体与不可压缩流体、牛顿流体与非牛顿流体概念。 第一节流体力学的概念与发展简史 一、流体力学概念 流体力学是力学的一个独立分支,是一门研究流体的平衡和流体机械运动规律及其实际应用的技术科学。 流体力学所研究的基本规律,有两大组成部分。一是关于流体平衡的规律,它研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系,这一部分称为流体静力学;二是关于流体运动的规律,它研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等,这一部分称为流体动力学。 流体力学在研究流体平衡和机械运动规律时,要应用物理学及理论力学中有关物理平衡及运动规律的原理,如力系平衡定理、动量定理、动能定理,等等。因为流体在平衡或运动状态下,也同样遵循这些普遍的原理。所以物理学和理论力学的知识是学习流体力学课程必要的基础。 目前,根据流体力学在各个工程领域的应用,流体力学可分为以下几类: 能源动力类: 水利类流体力学:面向水工、水动、海洋等; 机械类流体力学:面向机械、冶金、化工、水机等; 土木类流体力学:面向市政、工民建、道桥、城市防洪等。 二、流体力学的发展历史 流体力学的萌芽,是自距今约2200年以前,西西里岛的希腊学者阿基米德写的“论浮体”一文开始的。他对静止时的液体力学性质作了第一次科学总结。 流体力学的主要发展是从牛顿时代开始的,1687年牛顿在名著《自然哲学的数学原理》中讨论了流体的阻力、波浪运动,等内容,使流体力学开始成为力学中的一个独立分支。此后,流体力学的发展主要经历了三个阶段: 1.伯努利所提出的液体运动的能量估计及欧拉所提出的液体运动的解析方法,为研究液体运动的规 律奠定了理论基础,从而在此基础上形成了一门属于数学的古典“水动力学”(或古典“流体力学”)。 2.在古典“水动力学”的基础上纳维和斯托克思提出了著名的实际粘性流体的基本运动方程 ——N-S方程。从而为流体力学的长远发展奠定了理论基础。但由于其所用数学的复杂性和理想流体模型的局限性,不能满意地解决工程问题,故形成了以实验方法来制定经验公式的“实验流体力学”。但由于有些经验公式缺乏理论基础,使其应用范围狭窄,且无法继续发展。

工程流体力学课件

流体力学 绪论 第一章流体的基本概念 第二章流体静力学 第三章流体动力学 第四章粘性流体运动及其阻力计算 第五章有压管路的水力计算 第六章明渠定常均匀流 第九章泵与风机 绪论 一、流体力学概念 流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 研究内容:研究得最多的流体是水和空气。 1、流体静力学:关于流体平衡的规律,研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系; 2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。 基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程(反映物质宏观性质的数学模型)和物理学、化学的基础知识。 二、流体力学的发展历史

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通 江河的传说;秦朝李冰父子带领劳动人民修建的 马人建成了大规模的供水管道系统等等。 流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 流体力学的主要发展: 17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。使流体力学开始成为力学中的一个独立分支。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘性流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维(法)建立了粘性流体的基本运动方程;1845年,斯托克斯

工程流体力学禹华谦习题答案第4章课件-新版.doc

第四章管路,孔口和管嘴的水力计算 4-1(自编)根据造成液体能量损失的流道几何边界的差异,可以将液体机械能的损失分为 哪两大类? 各自的定义是什麽? 发生在哪里? 答: 可分为沿程损失和局部损失两大类。沿程损失指均匀分布在流程中单位重量液体的机械 能损失,一般发生在工程中常用的等截面管道和渠道中。局部损失指单位重量液体在流道几 何形状发生急剧变化的局部区域中损失的机械能,如在管道的入口、弯头和装阀门处。 4-2 粘性流体的两种流动状态是什么?其各自的定义是什么? 答:粘性流体的流动分为层流及紊乱两种状态。层流状态指的是粘性流体的所有流体质点处 于作定向有规则的运动状态,紊流状态指的是粘性流体的所有流体质点处于作不定向无规则 的混杂的运动状态。 4-3 流态的判断标准是什么? 解:流态的判断标准是雷诺数Re。由于实际有扰动存在,故一般以下临界雷诺数Re c作为层紊流流态的判断标准,即Re<2320, 管中流态为层流,Re>2320,管中流态为紊流.。 6 2 4-4 某管道直径d=50mm,通过温度为10℃的中等燃料油,其运动粘度 5.06 10 m s 。试求:保持层流状态的最大流量Q 。 解:由Re v d 有v = R e d =(2320×5.06× 6 10 )/0.05=0.235m/s,故有Q=A v= ×0.05 4 3 ×0.05×0.235/4= m s 4.6 10 。 -6 m2/s 的水,求管中保持4-5(自编) 一等径圆管内径d=100mm,流通运动粘度ν=1.306 ×10 层流流态的最大流量Q 。 解:由 6 vd Re 1.306 10 2320 Re ,有v 0.03 m / s d 0.1 此即圆管中能保持层流状态的最大平均速度,对应的最大流量Q 为 2 4 3 Q vA 0. 03 0.1 / 4 2. 36 10 m / s 4-6 利用毛细管测定油液粘度,已知毛细管直径d=4.0mm,长度L=0.5m ,流量Q=1.0cm 3/s 时,测压管落差h=15cm。管中作层流动,求油液的运动粘度。

相关主题
文本预览
相关文档 最新文档