当前位置:文档之家› 电磁感应中的双动式导轨问题(例题)

电磁感应中的双动式导轨问题(例题)

电磁感应中的双动式导轨问题(例题)
电磁感应中的双动式导轨问题(例题)

电磁感应中的双动式导轨问题

一、等间距水平导轨,无水平外力作用(安培力除外,下同)

例1两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为。导轨上面横放着两根导体棒和,构成矩形回路,如图所示。两根导体棒的质量皆为,电阻皆为,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒静止,棒有指向棒的初速度。若两导体棒在运动中始终不接触,求:

(1)在运动中产生的焦耳热最多是多少?

(2)当棒的速度变为初速度的时,棒的加速度是多少?

解析棒向棒运动时,两棒和导轨构成的回路面积变小,磁通量变小,于是产生感应电流。棒受到与其运动方向相反的安培力而做减速运动,棒则在安培力的作用下向右做加速运动。只要棒的速度大

于棒的速度,回路总有感应电流,棒继续减速,棒继续加速,直到两棒速度相同后,回路面积保持不变,不产生感应电流,两棒以相同的速度做匀速运动。

(1)从开始到两棒达到相同速度的过程中,两棒的总动量守恒,有,根据能量守恒定律,整个过程中产生的焦耳热。

(2)设棒的速度变为时,棒的速度为,则由动量守恒可知得,此时棒所受的安培力。

由牛顿第二定律可得:棒的加速度。

二、不等间距水平导轨,无水平外力作用

例2如图所示,光滑导轨、等高平行放置,间宽度为间宽度的3倍,导轨右侧水平且处于

竖直向上的匀强磁场中,左侧呈弧形升高。、是质量均为的金属棒,现让从离水平轨道高处由静止下滑,设导轨足够长。试求:(1)、棒的最终速度;(2)全过程中感应电流产生的焦耳热。

解析下滑进入磁场后切割磁感线,在电路中产生感应电流,、各受不同的磁场力作用而分别作变减速、变加速运动,电路中感应电流逐渐减小,当感应电流为零时,、不再受磁场力作用,各自以不同的速度匀速滑动。

(1)自由下滑,机械能守恒:①

由于、串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度,故它们的磁场力为:②

在磁场力作用下,、各作变速运动,产生的感应电动势方向相反,当时,电路中感应电流为零(),安培力为零,、运动趋于稳定,此时有:

所以③

、受安培力作用,动量均发生变化,由动量定理得:

联立以上各式解得:,

(2)根据系统的总能量守恒可得:

三、等间距水平导轨,受水平外力作用

例3两根平行的金属导轨,固定在同一水平面上,磁感强度的匀强磁场与导轨所在平面垂直,导

轨的电阻很小,可忽略不计。导轨间的距离,两根质量均为的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为。在时刻,两杆都处于静止状态。现有一与导轨平行,大小为0.20N的恒力作用于金属杆甲上,使金属杆在导轨上滑动。经过,金属杆甲的加速度为,求此时两金属杆的速度各为多少?

解析设任一时刻两金属杆甲、乙之间的距离为,速度分别为和,经过很短时间,杆甲移动距离

,杆乙移动距离,回路面积改变

由法拉第电磁感应定律,回路中的感应电动势:

回路中的电流:

杆甲的运动方程:

由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时为0)等于外力F

的冲量:

联立以上各式解得

代入数据得=8.15m/s =1.85m/s

四、竖直导轨问题

例4如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒和,与导轨紧密接触且可自由滑动。先固定,释放,当的速度达到时,再释放,经过1s后,的速度达到,则(1)此时的速度大小是多少?(2)若导轨很长,、棒最后的运动状态。

解析(1)当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。释放棒后,经过时间t,分别以和为研究对象,根据动量定理,则有:

代入数据可解得:

(2)在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。当棒的速度与棒接近时,闭合回路中的逐渐减小,感应电流也逐渐减小,则安培力也逐渐减小。最

后,两棒以共同的速度向下做加速度为g的匀加速运动。

以上几种常见的情况归纳如下:

水平导轨,无水平外力不等间距导轨,无水平

外力

水平导轨,受水平外

竖直导轨

两导体棒以相同的速度

做匀速运动

两导体棒以不同的速度

做匀速运动

两导体棒以不同的

速度做加速度相同

的匀加速运动

两导体棒以相同的

速度做加速度相同

的匀加速运动

动量守恒定律,能量守恒

定律及电磁学、运动学知

动量定理,能量守恒定

律及电磁学、运动学知

动量定理,能量守恒

定律及电磁学、运动

学知识

动量定理,能量守恒

定律及电磁学、运

动学知识

电磁感应中的“杆导轨”类问题(3大模型)解题技巧

辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧 电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下: 类型一:单杆+电阻+导轨模型类 【初建模型】 【例题1】(2017·模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。重力加速度为g ,导轨电阻不计,杆与导轨接触良好。求: (1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。 【思路点拨】: 【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12 mgx sin θ -m 3g 2R 2sin 2θ B 4L 4 【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I = E R +R 杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v 2R =ma 当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m = 2mgR sin θ B 2L 2 ,方向沿导轨平面向下。 (2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+1 2 mv m 2

2010高中物理易错题分析集锦——11电磁感应

第11单元电磁感应 [内容和方法] 本单元内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 本单元涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极? 【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【正确解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。 【小结】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例2长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[ ]

电磁感应中的导轨类问题

动态分析 导体棒与导轨问题1、一根导体棒在导轨上滑动(单导体问题) 棒ab长为L,质量为m,电阻为R, 棒ab 长为L,质量为m,电阻为R, 导轨光滑,电阻不计。导轨光滑,电阻不计。 开关闭合后,棒ab受安培力F=BLE/R,此时,a=BLE/mR,棒ab的速度增加一感应电动势BLv增加一安培力F=BIL减小一加速度a减小,当安培力F=0(a=0)时,v最大棒ab释放后下滑,此时a=gsin a 棒ab的速度v增加一一感应电动势E=BLv增加 ――感应电流增加一一安培力F增加一一加速度a减小,当安培力F=mgsin a时,v 最大。 2、两根导体棒在导轨上滑动(双导体问题) 初速度不为零, 不受其他水平外力作用 N Q N t / Q 1 尸V0 / 示M / /M M / P P 意 图质量=m i=m2 电阻=门=「2 质量=m i=m2 电阻=r i=r2 长度=L i=L2 长度=L i=L2 分杆MN做边减速运动,杆PQ做变稳疋时,两杆的加速度为零,两杆的速度 析加速运动,稳定时,两杆的加速度之比为i: 2 为零,以相等的速度匀速运动。 初速度为零,受其他水平外力的作用 \ 1;1 * 1N 电一动一电”型动一电一动”型

动一电一动”型 1 . (2007山东济南)如图所示,水平放置的光滑平行金属导轨上有一质量为 m 的 金属棒ab.导轨地一端连接电阻 R ,其他电阻均不计,磁感应强度为 B 的匀强磁场垂直 I 齐 科匕科 于导轨平面向下,金属棒 ab 在一水平恒力F 作用下由静止起向右运动.贝则(卑*弓焉宦T A .随着ab 运动速度的增大,其加速度也增大 B .外力F 对ab 做的功等于电路中产生的电能 C .当ab 做匀速运动时,外力 F 做功的功率等于电路中的电功率 D ?无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能 2、如图所示,有两根和水平方向成 角的光滑平行的金属轨道,上端 接有可变电阻 R ,下端足够长,空间有垂直于轨道平面的匀强磁场, 磁感强 度为B , —根质量为 m 的金属杆从轨道上由静止滑下?经过足够长的时间 后,金属杆的速度会趋近于一个最大速度 V m ,则() A .如果B 增大,v m 将变大 B .如果 变大,V m 将变大 C .如果R 变大,v m 将变大 D .如果m 变小,v m 将变大 3. 如图所示,一光滑平行金属轨道平面与 水平面成 角,两导轨上端用一电阻 R 相连,该装置处于匀强磁场中, 磁场方向垂直轨道平面向上。 质量为m 的金属杆ab ,以初 速度V 0从轨道底端向上滑行,滑行到某一高度 h 后又返回 到底端。若运动过程中,金属杆保持与导轨垂直且接触良 好,并不计 质量=m i =m 2 电阻=r i =r 2 长度=L I =L 2 摩擦力f i =f 2, 电阻=r i =r 2 质量=m i =m 2 长度=L I =L 2 开始时,两杆做变加速运动;稳定时, 两杆以相同的加速度做匀变速直线运 动。 稳定时,若FW 2,则PQ 先变加速后匀 速运动;若F>2f ,则PQ 先变加速,之 后两杆匀加速运动。 F M P * Q r Q F P

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

电磁感应中的杆导轨类问题大模型解题技巧

电磁感应中的杆导轨类问题大模型解题技巧集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧 电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下: 类型一:单杆+电阻+导轨模型类 【初建模型】 【例题1】(2017·淮安模拟)如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。 整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平 面向下。将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆 cd由静止释放,下滑距离x时达到最大速度。重力加速度为g,导 轨电阻不计,杆与导轨接触良好。求: (1)杆cd下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。 【思路点拨】: 【答案】:(1)g sinθ,方向沿导轨平面向下;,方向沿导轨平面向下;(2)mgx sinθ- 【解析】:(1)设杆cd下滑到某位置时速度为v,则杆产生的感应电动势E=BLv 回路中的感应电流I= 杆所受的安培力F=BIL 根据牛顿第二定律有mg sinθ-=ma 当速度v=0时,杆的加速度最大,最大加速度a=g sinθ,方向沿导轨平面向下 当杆的加速度a=0时,速度最大,最大速度v m=,方向沿导轨平面向下。 (2)杆cd从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sinθ=Q总+mv m 2 又Q杆=Q总,所以Q杆=mgx sinθ-。 【内化模型】 单杆+电阻+导轨四种题型剖析 题型一(v0≠0)题型二(v0=0)题型三(v0=0)题型四(v0=0) 说明杆cd以一定初速 度v0在光滑水平 轨道上滑动,质 量为m,电阻不 计,两导轨间距 为L 轨道水平光滑, 杆cd质量为m, 电阻不计,两导 轨间距为L,拉 力F恒定 倾斜轨道光滑,倾 角为α,杆cd质量 为m,两导轨间距为 L 竖直轨道光滑, 杆cd质量为m, 两导轨间距为L

电磁感应中导体棒类问题归类剖析

电磁感应中导体棒类问题归类剖析 电磁感应中的导轨上的导体棒问题是历年高考的热点。其频考的原因,是因为该类问题是力学和电学的综合问题,通过它可以考查考生综合运用知识的能力。解滑轨上导体棒的运动问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。 一、滑轨上只有一个导体棒的问题 滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。 (一)含电源闭合电路的导体棒问题 例1 如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、 质量为m的金属棒ab,导轨左端接有内阻不计、电动势为E的电源组成回路, 整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S 串联。当闭合电键后,求金属棒可达到的最大速度。 图1 解析闭合电键后,金属棒在安培力的作用下向右运动。当金属棒的速度为 v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。 金属板速度最大时,有 解得

点评本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等) (二)闭合电路中的导体棒在安培力之外的力作用下的问题 1. 导体棒在外力作用下从静止运动问题 例2(全国高考题)如图2,光滑导体棒bc固定在竖直放置的足够长的平行金属导轨上,构成框架abcd,其中bc棒电阻为R,其余电阻不计。一质量为m 且不计电阻的导体棒ef水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直框面。若用恒力F向上拉ef,则当ef匀速上升时,速度多大? 图2 解析本题有两种解法。方法一:力的观点。当棒向上运动时,棒ef受力如图3所示。当ef棒向上运动的速度变大时,ef棒产生的感应电动势变大,感应 =BIL变大,因拉力F和重力mg都电流I=E/R变大,它受到的向下的安培力F 安 不变,故加速度变小。因此,棒ef做加速度越来越小的变加速运动。当a=0时(稳定条件),棒达到最大速度,此后棒做匀速运动(达到稳定状态)。当棒匀速运动时(设速度为),由物体的平衡条件有 图3

电磁感应中的导轨问题

电磁感应中的导轨问题 一、单棒问题:基本模型 阻尼式 电动式 发电式 二、含容式单棒问题:基本模型 放电式 无外力充电式 有外力充电式 三、无外力双棒问题:基本模型 无外力等距式 无外力不等距式 四、有外力双棒问题:基本模型 有外力等距式 有外力不等距式 ·阻尼式单棒: 1.电路特点:导体棒相当于电源。 2.安培力的特点:安培力为阻力,并随速度减小而减小。 3.加速度特点:加速度随速度减小而减小。 4.运动特点:a 减小的减速运动 5.最终状态:静止 6.三个规律 (1)能量关系: (2)动量关系: (3)瞬时加速度: 7.变化:(1)有摩擦(2)磁场方向不沿竖直方向 2 22 B B l v F B Il R r == +2 2 () B F B l v a m m R r = = +2 0102 m v Q -=0m v q B l =R r Q R Q r =00B Il t m v -??=-22 ()B F B l v a m m R r ==+1

·发电式单棒 1.电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv 2.安培力的特点:安培力为阻力,并随速度增大而增大 3.加速度特点:加速度随速度增大而减小 4.运动特点:a 减小的加速运动 5.最终特征:匀速运动 6.两个极值: (1) v=0时,有最大加速度: (2) a=0时,有最大速度: 7.稳定后的能量转化规律: 8.起动过程中的三个规律 (1)动量关系: m F t B L q m g t m v μ--=- (2)能量关系: 2 12 E m F s Q m g S m v μ=++ (3)瞬时加速度: B F F m g a m μ--= 9.几种变化 (1) 电路变化(并联式)(2)磁场方向变化 (3)拉力变化(若匀加速拉杆则F 大小恒定吗?) (4) 导轨面变化(竖直或倾斜)加沿斜面恒力、通过定滑轮挂一重物、加一开关 ·电容放电式: 1.电路特点:电容器放电,相当于电源;导体棒受安培力而运动。 2 电动势,导致电流减小,直至电流为零,此时UC=Blv 3.运动特点:a 渐小的加速运动,最终做匀速运动。 4.最终特征:匀速运动,但此时电容器带电量不为零。 5.最大速度vm μ μ m F m g a m μ-=μ μ 2 2 -+= ()() m F m g R r v B l μ2 () m m m B L v F v m g v R r μ=++

电磁感应中的杆和导轨问题

电磁感应中的杆+导轨问题 “杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是各种考试的热点,考查的知识点多,题目的综合性强,物理情景富于变化,是我们学习中的重点和难点。导轨放置方式可分为水平、竖直和倾斜;轨道可能光滑,也可能粗糙;杆可能有电阻也可能没有电阻;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,多种情景组合复杂,题目形式多变。 下面是几种最基本的模型及分析,有兴趣(无兴趣可以无视)的同学可以学习、体会、研究。 需要注意的是:模型中的结论是基于表中所述的基本模型而言,不一定有普遍性,物理情景有变化,结论可能不同,但分析的方法是相同的、有普遍性的。 1.单杆水平式 物理模型 匀强磁场与导轨垂直,磁感应强度为B,棒ab长为L,质量为m, 初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电 阻不计 动态分析设运动过程中某时测得的速度为v,由牛顿第二定律知棒ab的加速度为a= F m-= B2L2v mR,a、v同向,随速度的增加,棒的加速度a 减小,当a=0时,v最大,电流I= BLv m R不再变化 收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化 物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒质量为m,电阻为R,导轨光滑,电阻不计 动态分析棒ab刚释放时a=g sin α,棒ab的速度v↑→感应电动势E=BLv↑→电流I= E R↑→安培力F=BIL↑→加速度a↓,当安培力F =mg sin α时,a=0,速度达到最大v m= mgR sin α B2L2 收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化 3、有初速度的单杆 物理模型杆cd以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻

电磁感应典型例题和练习进步

电磁感应 课标导航 课程内容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析

知识:安培力的大小与方向 例1. (09年上海物理)13.如图,金属棒ab置于水平 放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B, 磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef 内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 答案:收缩,变小 点评:深刻领会楞次定律的内涵 热点关注 知识:电磁感应中的感应再感应问题 例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒 PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动. 则PQ所做的运动可能是 A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动

电磁感应中杆+导轨模型问题

电磁感应中“杆+导轨”模型问题 例1、相距L=的足够长金属导轨竖直放置,质量m1=1kg 的金属棒ab 和质量m2=的金属棒cd ,均通过棒两端的套环水平地套在金属导轨上,如图1所示,虚线上方磁场的方向垂直纸面向里,虚线下方磁场的方向竖直向下,两处磁场磁感应强度大小相同。ab 棒光滑,cd 棒与导轨间动摩擦因数μ=,两棒总电阻为Ω,导轨电阻不计。ab 棒在方向竖直向上、大小按图2所示规律变化的外力F 作用下,从静止开始沿导轨匀加速运动,同时cd 棒也由静止释放。(g=10m/s2) (1)求ab 棒加速度的大小和磁感应强度B 的大小; (2)已知在2s 内外力F 做了的功,求这一过程中两金属棒产生的总焦耳热; (3)求出cd 棒达到最大速度所需的时间t0,并在图3中定性画出cd 棒所受摩擦力fcd 随时间变化的图线。 解: (1), 所 以 , (2分) 由图2的截距可知, ,, (2分) 由图2的斜率可知, ,, (2 分) (2)

, (2分) , (2分) (3) ,,所以有, ,,(2分) 2分) ( 例2、如图所示,两条光滑的金属导轨相距L =1m,其中MN段平行于PQ段,位于同一水平面内,NN0段与QQ0段平行,位于与水平面成倾角37°的斜面内,且MNN0与PQQ0均在竖直平面内。在水平导轨区域和倾斜导轨区域内分别有垂直于水平面和斜面的匀强磁场B1和B2,且B1=B2=。ab和cd是质量均为m=、电阻均为R=4Ω的两根金属棒,ab置于水平导轨上,cd置于倾斜导轨上,均与导轨垂直且接触良好。从t=0时刻起,ab棒在外力作用下由静止开始沿水平方向向右运动(ab棒始终在水平导轨上运动,且垂直于水平导轨),cd棒受到F=(N)沿斜面向上的力的作用,始终处于静止状态。不计导轨的电阻。(sin37°=)(1)求流过cd棒的电流强度Icd随时间t变化的函数关系; (2)求ab棒在水平导轨上运动的速度vab随时间t变化的函数关系; (3)求从t=0时刻起,内通过ab棒的电荷量q; (4)若t=0时刻起,内作用在ab棒上的外力做功为W=16J,求这段时间内cd棒产生的焦耳热Qcd。

电磁感应综合问题(解析版)

构建知识网络: 考情分析: 楞次定律、法拉第电磁感应定律是电磁学部分的重点,也是高考的重要考点。高考常以选择题的形式考查电磁感应中的图像问题和能量转化问题,以计算题形式考查导体棒、导线框在磁场中的运动、电路知识的相关应用、牛顿运动定律和能量守恒定律在导体运动过程中的应用等。备考时我们需要重点关注,特别是导体棒的运动过程分析和能量转化分析。 重点知识梳理: 一、感应电流 1.产生条件???? ? 闭合电路的部分导体在磁场内做切割磁感线运动 穿过闭合电路的磁通量发生变化 2.方向判断? ???? 右手定则:常用于切割类 楞次定律:常用于闭合电路磁通量变化类 3.“阻碍”的表现???? ? 阻碍磁通量的变化增反减同阻碍物体间的相对运动来拒去留 阻碍原电流的变化自感现象 二、电动势大小的计算

三、电磁感应问题中安培力、电荷量、热量的计算 1.导体切割磁感线运动,导体棒中有感应电流,受安培力作用,根据E =Blv ,I =E R ,F =BIl ,可得F =B 2l 2v /R . 2.闭合电路中磁通量发生变化产生感应电动势,电荷量的计算方法是根据E =ΔΦΔt ,I =E R ,q = I Δt 则q =ΔΦ/R ,若线圈匝数为n ,则q =nΔΦ/R . 3.电磁感应电路中产生的焦耳热,当电路中电流恒定时,可以用焦耳定律计算,当电路中电流发生变化时,则应用功能关系或能量守恒定律计算. 四、自感现象与涡流 自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L 。线圈的自感系数L 与线圈的形状、长短、匝数等因数有关系。线圈的横截面积越大,匝数越多,它的自感系数就越大。带有铁芯的线圈其自感系数比没有铁芯的大得多。 【名师提醒】 典型例题剖析: 考点一:楞次定律和法拉第电磁感应定律 【典型例题1】 (2016·浙江高考)如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( ) A .两线圈内产生顺时针方向的感应电流 B .a 、b 线圈中感应电动势之比为9∶1 C .a 、b 线圈中感应电流之比为3∶4

电磁感应中的双杆双动导轨滑轨能量动量问题大综合

电磁感应中的“双杆问题” 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。 下面对“双杆”类问题进行分类例析 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 [例5] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。 (1)求作用于每条金属细杆的拉力的大小。 (2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。 解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv 由闭合电路的欧姆定律,回路中的电流强度大小为: 因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。 由以上各式并代入数据得N (2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28× 10-2J。 2.“双杆”同向运动,但一杆加速另一杆减速 当两杆分别沿相同方向运动时,相当于两个电池反向串联。 [例6] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd的初速度v0。若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少。 (2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少? 解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流。ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动。在ab棒的速度大于cd棒的速度时,回路总有感应电流,ab棒继续减速,cd棒继续加速。两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v作匀速运动。 (1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有根据能量守恒,整个过程中产生

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的 ??B t 叫磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时 , 且导线与磁感线互相垂直(l B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+== 222ω, 故2 21l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。 公式三:ω···S B n E m =——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁

电磁感应导轨电路中的电容问题

导轨电路中的电容问题 1.两相互平行且足够长的水平金属导轨MN 、PQ 放在竖直平面内,相距0.4m ,左端接有平行板电容器,板间距离为0.2m ,右端接滑动变阻器R 。水平匀强磁场磁感应强度为10T ,垂直于导轨所在平面,整个装置均处于上述匀强磁场中,导体棒CD 与金属导轨垂直且接触良好,棒的电阻为1Ω,其他电阻及摩擦不计。现在用与金属导轨平行,大小为2N 的恒力F 使棒从静止开始运动。已知R 的最大阻值为2Ω,g=10m/s 2-。则: ⑴ 滑动变阻器阻值取不同值时,导体棒处于稳定状态时拉力的功率不一样,求导体棒处于稳定状态时拉力的最大功率。 ⑵当滑动触头在滑动变阻器中点且导体棒处于 稳定状态时,一个带电小球从平行板电容器左侧,以某一速度沿两板的正中间且平行于两极板射入后,在两极板间恰好做匀速直线运动;当滑动触头位于最下端且导体棒处于稳定状态时,该带电小球以同样的方式和速度射入,小球在两极板间恰好做匀速圆周运动,则小球的速度为多大。 | 解:(1)当棒达到匀速运动时,棒受到的安培力F 1与外力F 相平衡,即 F=F 1=BIL ① (1分) 此时棒产生的电动势E=BL v ,则电路中的电流。 I = E R +r = BL v R +r ② (1分) 由①②式得此时棒的速度 V =F(R +r) B 2L 2 ③ (1分) 拉力功率 P =FV =F 2 (R +r) B 2L 2 ④ (1分) 由④式知回路的总电阻越大时,拉力功率越大, 当R=2Ω时,拉力功率最大,P m =(W) (1分) (2)当触头滑到中点即R=1Ω时,由③式知棒匀速运动的速度 ~ v 1=F(R +r) B 2L 2 =(m/s) (1分) 导体棒产生的感应电动势 E 1=BL v 1=10××=1(V) (1分) 电容器两极板间电压 U 1=E 1R R +r =(V) (1分) 由于棒在平行板间做匀速直线运动,则小球必带正电,此时小球受力情况如图所示,设小球的入射速度为v 0,由平衡条件知: F+f=G 即 q U 1 d +q v 0B=mg ⑤ (2分) 当滑头滑至下端即R=2Ω时,棒的速度 R M N 【 D F

电磁感应综合练习题1

高二物理(理班)电磁感应的八种典型案例 【案例1】感应电动势的计算 (1)导体棒平动切割磁感线产生的感应电动势 练习1.如图所示,导轨与电流表相连,导轨的宽度为d,处于向里的大小为B的匀强磁场中,一根导线沿着导轨以速度v向右运动,求导线上产生的感应电动势. (2)导体棒转动产生的感应电动势 练习2.若导体棒半径为r,处于匀强磁场B中,以角速度ω匀速转动,则导线产生的感应电动势的大小是多少? (3)磁场变化产生的感生电动势 练习3.正方形线框边长为L、质量为m、电阻为R,线框的上半部 处于匀强磁场中,磁场的磁感应强度按B=kt的规律均匀增强,细 线能承受的最大拉力为T=2mg,从t=0起经多少时间绳被拉断? 【案例2】感应电流大小计算问题 练习4.由两个同种材料,同样粗细的导线制成圆环a、b已知其半径之比为2:1,在B中充满了匀强磁场,当匀强磁场随着时间均匀变化时,圆环a、b的感应电流之比为多少?

【案例3】阻碍“磁通量的变化” 练习5.判定下列各种情况下灯泡中是否有感应电流,若有则写明在ab 处感应电流的方向 (1)导体棒匀速向右运动 ( (2)导体棒匀加速向右运动 ( (3 )导体棒匀减速向右运动 ( (4)导体棒匀减速向左运动 ( 练习6. (1)当线圈a 中有电流,电流方向为逆时针且大小均匀增加时,线圈b 中的感应电流方向应为( )。 (2)若线圈b 中有电流,电流方向为逆时针且大小均匀增加时,线 圈a 中的感应电流方向应为( )。 【案例4】阻碍导体的相对运动——“跟着走” 练习7.线圈A 闭合,线圈B 开口,当条形磁铁插入线圈的过程中,线圈A 、 B 如何运动? 【案例5】电磁感应的能量问题 练习8.如图所示,导体棒向右匀速运动切割磁感线,已知匀 强磁场为B ,轨道宽度为L ,切割速度为v ,外电阻为R ,导体棒的电阻为R ’,求:安培力及t 时间内所做的功。

完整版电磁感应综合典型例题

电磁感应综合典型例题 【例11电阻为R的矩形线框abed,边长ab=L, ad=h,质量为m 自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁 场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线 框中产生的焦耳热是 _________ ?(不考虑空气阻力) 【分析】线框通过磁场的过程中,动能不变。根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热?所以,线框通过磁场过程中产生的焦耳热为 Q=W=mg- 2h=2mgh 【解答1 2mgh

【说明】本题也可以直接从焦耳热公式Q=l2Rt进行推算: 设线框以恒定速度v通过磁场,运动时间 从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感 线产生的感应电流的大小为 cd边进入磁场时的电流从d到c, cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上, 大小恒为 据匀速下落的条件,有 因线框通过磁场的时间,也就是线框中产生电流的时间,所以据 焦耳定律,联立(I )、(2)、(3)三式,即得线框中产生的焦耳热 为

Q=2mgh 两种解法相比较,由于用能的转化和守恒的观点,只需从全过程 考虑,不需涉及电流的产生等过程,计算更为简捷. 【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1 Q的矩形线圈,从离匀强磁场上边缘高h i=5m处由静止自由下落.进 入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运 动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s,求: (1)匀强磁场的磁感强度B; (2)磁场区域的高度h2;

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案 一、法拉第电磁感应定律 1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。导线的电阻不计,求0至t1时间内 (1)通过电阻R1上的电流大小及方向。 (2)通过电阻R1上的电荷量q。 【答案】(1) 2 02 3 n B r Rt π 电流由b向a通过R1(2) 2 021 3 n B r t Rt π 【解析】【详解】 (1)由法拉第电磁感应定律得感应电动势为 2 202 2 n B r B E n n r t t t π π ?Φ? === ?? 由闭合电路的欧姆定律,得通过R1的电流大小为 2 02 33 n B r E I R Rt π == 由楞次定律知该电流由b向a通过R1。 (2)由 q I t =得在0至t1时间内通过R1的电量为: 2 021 1 3 n B r t q It Rt π == 2.光滑平行的金属导轨MN和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP间接有阻值R=2.0Ω的电阻,其它电阻不计,质量 m=2.0kg的金属杆ab垂直导轨放置,如图(a)所示.用恒力F沿导轨平面向上拉金属杆ab,由静止开始运动,v?t图象如图(b)所示.g=10m/s2,导轨足够长.求: (1)恒力F的大小; (2)金属杆速度为2.0m/s时的加速度大小; (3)根据v?t图象估算在前0.8s内电阻上产生的热量.

高中物理电磁感应经典例题总结

1.如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 答案:收缩,变小 解析:由于金属棒ab 在恒力F 的作用下向右运动,则abcd 回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。则此过程 ( BD ) A.杆的速度最大值为 B.流过电阻R 的电量为 C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量 D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量 解析:当杆达到最大速度v m 时,022=+- -r R v d B mg F m μ得()()22d B r R mg F v m +-=μ,A 错;由公式 () ()r R BdL r R S B r R q +=+= += ??Φ ,B 对;在棒从开始到达到最大速度的过程中由动能定理有: K f F E W W W ?=++安,其中mg W f μ-=,Q W -=安,恒力F 做的功与摩擦力做的功之和等于杆动能的变 化量与回路产生的焦耳热之和,C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D 对。 3.(09·浙江·17)如图所示,在磁感应强度大小为B 、方向竖直向上的匀强磁场中,有一质量为m 、阻值为R 的闭合矩形金属线框abcd 用绝缘轻质细杆悬挂在O 点,并可绕O 点摆动。金属线框从右侧某一位置静止开始释放,在摆动到左侧最

电磁感应综合应用例题

电磁感应综合应用例题 图9-2-10 1.如图9-2-10所示,在水平面内固定着U形光滑金属导轨,轨道间距为50 cm,金属导体棒ab质量为0.1 kg,电阻为0.2 Ω,横放在导轨上,电阻R的阻值是0.8 Ω(导轨其余部分电阻不计).现加上竖直向下的磁感应强度为0.2 T的匀强磁场.用水平向右的恒力F=0.1 N拉动ab,使其从静止开始运动,则().A.导体棒ab开始运动后,电阻R中的电流方向是从P流向M B.导体棒ab运动的最大速度为10 m/s C.导体棒ab开始运动后,a、b两点的电势差逐渐增加到1 V后保持不变D.导体棒ab开始运动后任一时刻,F的功率总等于导体棒ab和电阻R的发热功率之和

图9-2-14 2.如图9-2-14所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2. (1)求框架开始运动时ab速度v的大小; (2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.

图9-2-13 4.如图9-2-13所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0. 5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)(). A.2.5 m/s 1 W B.5 m/s 1 W C.7.5 m/s9 W D.15 m/s9 W 5.如图1所示,MN、PQ为足够长的平行金属导轨,间距L=0.50 m,导轨平面与水平面 间夹角θ=37°,N、Q间连接一个电阻R=5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0 T.将一根质量为m=0.050 kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd处时,其速度大小开始保持不变,位置cd与ab之间的距离s=2.0 m.已知g=10 m/s2,sin 37°=0.60,cos 37°=0.80.求: 图1 (1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd处的速度大小; (3)金属棒由位置ab运动到cd的过程中,电阻R产生的热量.

相关主题
文本预览
相关文档 最新文档