当前位置:文档之家› 面齿轮传动的特点及其啮合原理

面齿轮传动的特点及其啮合原理

面齿轮传动的特点及其啮合原理
面齿轮传动的特点及其啮合原理

内平动齿轮传动

内平动齿轮传动 1、内平动齿轮传动原理 图1所示为内平动齿轮减速器工作原理图。该机构的平动发生器为平行四边形机构ABCD ,外平动固定在平行四边形机构的连杆BC 的中心线上。当曲柄AB 转动时它随同连杆做平面运动,并驱动内齿轮2做减速转动输出。 2、传动比的计算 由图2可知,做平动的构件上各点的绝对速度处处相等。所以平动构件上的P 点和B 点的绝对速度相等。P 点是两啮合齿轮的速度瞬心,也是两啮合齿轮的绝对速度的重合点。在齿轮1点上做P 点的绝对速度为V P 1,由于齿轮1随同连杆BC 一起做平动,故有, V P 1=V B =)(1211R R w l w AB -= 齿轮2绕圆心O 2转动,故齿轮2上的P 点速度为:

R w V P 222= P 点为两速度的瞬心,故有 V P 1V p 2= ?R w R R w 22121)(=- 即 Z Z Z R R R w w i 1 2 2 1 2 2 2 1 12 -=-== ; 当Z 2与Z 1之差较小时,可获得 很大的传动比, 99~1712 =i 3、齿廓间的相对滑动率 齿面的滑动率是指两齿廓相对滑过的弧长与齿面滑过的全弧长之比的极限值。因而齿廓间存在滑动,从而导致齿面的磨损或胶合破坏。齿轮副相对滑动率是低速传动时决定齿廓磨损程度的关键因素之一,也决定这齿轮件摩擦力矩大小和方向,还影响着齿轮弹流润滑的非稳态效应。在其它条件相同情况下,滑动率的绝对值大,齿面的磨损就大,所以它是衡量齿轮传动质量的一个重要指标。 滑动率也称滑动系数。通常滑动系数表示齿面间相对滑动程度。滑动系数就是轮齿接触点K 处两齿面间的相对切向速度(即滑动速度)与该点切向速度的比值。 设内啮合中的外齿轮与内齿轮在任一点K 接触。外齿轮为主动,内齿轮从动,V k 1 、V 2k 分别为外齿轮、内齿轮在K 点的圆周速度,V t k 1 、V t k 2分别为其在K 点沿齿面的切向速度,则滑动率由以下两式表示: 外齿轮 V V V t k t t k 12k 11 -=η 内齿轮 V V V t k t k t k 2122-=η 在过接触点R 处之公切线上的速度分量为

基于MATLAB的齿轮传动系统优化设计

基于MATLAB的齿轮传动系统优化设计 摘要:某高速重载齿轮进行了优化设计,在分析齿轮在各工况下的弯曲强度后,根据齿轮的优化设计原则,选择齿轮体积最小为优化设计原则,对传动齿轮中的小齿轮进行了优化设计,设计模数、齿数、齿宽系数、螺旋角为变量,根据各参数的设计要求来确定约束条件,同时根据齿根弯曲疲劳强度和齿面接触疲劳强度进行条件约束,最后用MATLAB进行编程计算,最后得出优化后的结果,该结果满足要求。本文的研究对机械系统的优化设计具有指导意义和工程应用价值。关键词:齿轮;优化设计;MATLAB; 0引言 优化设计是近年发展起来的一门新的学科,也是一项新技术,在工程设计的各个领域都已经得到了更为广泛的应用。通过实际的应用过程表明:工程设计中采用优化设计这种新的科学设计方法,不仅使得在解决复杂问题时,能够从众多纷繁复杂的设计方案中找到尽可能完善的或者最适合的设计方案,而且,采用这种方法还能够提高设计效率和设计质量,使其的经济和社会效益都非常明显。优化设计的理论基础是数学规划,采用的工具是计算机。 优化设计具有一般的设计方法所不具备的一些特点。优化设计能够使各种设计参数自动向更优的方向进行调整,直到找到一个尽可能完善的或最适合的设计方案。一般的设计方法只是依靠设计人员的经验来找到最佳方案,这样不足以保证设计参数一定能够向更优方向调整,也不能够保证一定能找到最适合的设计方案。优化设计的手段是采用计算机,在很短的时间内就可以分析一个设计方案,并判断方案的优劣、是否可行,因此就能够从大量的方案中选出更加适合的设计方案,这是常规设计所不能比的。 1 机械系统优化设计方法概述 许多机械工程设计都需要进行优化。优化过程可以分为三个部分:综合与分析、评价、改变参数三部分组成。其中,综合与分析部分的主要功能是建立产品设计参数与设计性能、设计要求之间的关系,这也就是一个建立数学模型的过程。评价部分就是对该产品的性能和设计要求进行分析,这就相当于是评价目标函数是否得到改善或者达到最优,也就是检验数学模型中的约束条件是否全部得到满足。改变参数部分就是选择优化方法,使得目标函数(数学模型)得到解,同时根据这种优化方法来改变设计参数。 在许多机械工程设计问题中,优化设计的目标是多种多样的,按照所追求的目标的多少,目标函数可以分为单目标函数和多目标函数。以多级齿轮传动系统设计过程为例,要求在满足规定的传动比和给定最小齿轮、大齿轮直径的条件下,追求系统的转动惯量最小,箱体的体积最小,各级传动中心距和最小,承载能力最高,寿命最长等,这就是一个多目标函数。目标函数作为评价方案中的一个很重要的标准,它不一定有明显的物理意义、量纲,它只是代表设计指标的一个值。所以,目标函数的建立是否正确是优化设计中很重要的一项工作,它既要反映用户的需求,又要敏感地、直接地反映设计变量的变化,对优化设计的质量及计算难易程度都有一定的影响。表2.1给出了常用优化设计中的可供选择的优化目标。 优化设计问题的前提是选择优化设计方法,选用哪个方法好,这就主要是由优化设计方法的特性和实际设计问题的具体情况来决定。一般来讲,评价一种优

齿轮啮合原理考题

一、基本概念(35分) 1.解释齿轮的瞬心线? 如图示,假设O 1和O 2是平面啮合时用来传递运动的两平行轴,从1O 轴向2O 轴传递回转运动,在垂直于轴线1O 和2O 的平面内,构件1和2的相对运动可以归结为两条共轭曲线的相互滚动,这两条相互滚动的共轭曲线就是瞬心线。 2.解释齿轮的瞬时回转轴? 答:两齿轮在空间任意点M 处的相对运动速度v 12 ,由式 v v r w r w v 2010221112 -+?-?=可以证明,空间上任意一点处的v 12 是和这个点绕某 个定轴作一定的螺旋运动时形成的线速度相同的。轴线k 称为瞬时回转轴,简称瞬时轴。 3.解释齿轮的瞬轴面? 答:让瞬时回转轴k 绕两个齿轮的轴线回转,可以得到两个双曲回转面P1及P2,它们称为两齿轮的瞬轴面。则P1和P2在k 轴处是相切的,当它们在切线处的相对运动速度v 12 =0,两瞬轴面作纯滚动。反之,它们会产生相对的的滑动。 4.解释共轭齿形? 答:齿轮传动过程中,两瞬心线作相对的纯滚动,两齿形则应时时保持相切接触(有相对滑动),它们常称为互相共轭的齿形或者共轭齿形。则得到,共轭齿形的公法线一定通过该瞬时的瞬心点P 。 5.解释啮合面? 答:配对曲面∑1和∑2在每一瞬时彼此沿一条线相接触,该线称作瞬时接触线。啮合面是表示在与机架刚性固接的固定坐标系f S 中的瞬时接触线族。啮合面用下列方程表 示:()(),,,,0f f u f u r r θφθφ== 。 式中:11 f f M r r = ,这里4×4矩阵1 f M 描述从1S 到f S 的坐标 变换。 6.解释齿廓渐屈线? 答:一条曲线的渐近线是该曲线的曲率中心的轨迹,也是原曲线的法线族的包络。 如图示,图中原曲线为渐开线,1M 、2M 、3M 为渐开线

内啮合齿轮参数计算

内啮合齿轮参数计算 已知:m=2.5、Z1=15、Z2=19、α0=28°、ha*=1.0、C*=0.25、π=3.14159 分度圆d1=m×Z1=37.5 mm (外齿轮) d 2=m×Z2=47.5 mm (内齿轮) 基圆d b1=m×Z1×cosα0=33.1105 mm d b2=m×Z2×cosα0=41.9400 mm 基节t b1=t b2=π×m×cosα0=6.9346 mm 齿顶高ha1=ha*×m=2.5 mm ha2=ha*×m=2.5 mm 齿根高h f1=(ha*+C*)m=3.125 mm h f2=(ha*+C*)m=3.125 mm 齿顶圆直径 da1=d1+2 ha1=42.5 mm da2=d2-2 ha2+Δda=42.9949 mm Δda=2 ×ha*2×m÷Z2÷tgα0 齿根圆直径d f1=d1-2 h f1=31.25 mm d f2=d2+2 h f2=53.75 mm 全齿高h1=ha1+h f1=5.625 mm h 2=(d f2-da2)÷2=5.375 mm 齿顶圆压力角αa1=arccos(d b1÷da1)=38.824442° αa2=arccos(d b2÷da2)=12.718233° 重合度ε=(1÷2π)×[Z1 (tgαa1-tgα0) -Z2 (tgαa2-tgα0)]=1.577 中心距a=m÷2×(Z2-Z1)÷2=5 mm 齿顶厚Sα1=da1×(π÷2÷Z1+invα0-invαa1)=0.8724 mm Sα2=da2×(π÷2÷Z2-invα0-invαa2)=1.5452 mm 齿顶厚对应角度αd1=360÷(da1×π÷Sα1)=2.352229° αd2=360÷(da2×π÷Sα2)=4.118326° 分度圆弧齿厚S1=m×(π÷2)=3.927 mm S 2=m×(π÷2)=3.927 mm

机械设计齿轮传动设计答案解析

题10-6 图示为二级斜齿圆柱齿轮减速器, 第一级斜齿轮的螺旋角 1 β的旋 向已给出。 (1)为使Ⅱ轴轴承所受轴向力较小,试确定第二级斜齿轮螺旋角β的旋向, 并画出各轮轴向力、径向力及圆周力的方向。 (2)若已知第一级齿轮的参数为:Z 1 =19,Z 2 =85,m n =5mm,0 20 = n α,a=265mm, 轮1的传动功率P=,n 1 =275 r/min。试求轮1上所受各力的大小。 解答: 1.各力方向:见题解10-6图。 2.各力的大小:m N 045 . 217 m N 275 25 .6 9550 9550 1 1 1 ? = ? ? = ? =n P T 148 . 11 , 9811 .0 265 2 ) 85 19 ( 5 2 ) ( cos2 1 1= = ? + ? = + =β β a z z n m ; mm 83 . 96 cos 1 1 = =β z n m d; N 883 tan , N 1663 cos tan , N 4483 2000 1 1 1 1 1 1 1 1 1 = = = = = =β β α t a t r t F F n F F d T F ; 题10-7图示为直齿圆锥齿轮-斜齿圆柱齿轮减速器,为使Ⅱ轴上的轴向力 抵消一部分,试确定一对斜齿圆柱齿轮螺旋线的方向;并画出各齿轮轴向力、径向 力及圆周力的方向。 解答:齿轮3为右旋,齿轮4为左旋; 力的方向见题解10-7图。 题解 题

↓ 题10-9 设计一冶金机械上用的电动机驱动的闭式斜齿圆柱齿轮传动, 已知:P = 15 kW,n 1 =730 r/min,n 2 =130 r/min,齿轮按8级精度加工,载荷有严重冲击,工作时间t =10000h,齿轮相对于轴承为非对称布置,但轴的刚度较大,设备可靠度要求较高,体积要求较小。(建议两轮材料都选用硬齿面) 解题分析:选材料→确定许用应力→硬齿面,按轮齿的弯曲疲劳强度确定齿轮的模数→确定齿轮的参数和几何尺寸→校核齿轮的接触疲劳强度→校核齿轮的圆周速度 解答:根据题意,该对齿轮应该选用硬齿面,其失效形式以轮齿弯曲疲劳折断为主。 1. 选材料 大、小齿轮均选用20CrMnTi 钢渗碳淬火([1]表11-2),硬度为56~62HRC ,由[1]图 11-12 和[1]图11-13查得:MPa 1500,MPa 430lim lim ==H F σσ 2.按轮齿弯曲疲劳强度进行设计 (1)确定FP σ 按[1]式(11-7 P227)计算,取6.1,2min ==F ST S Y ;齿轮的循环次数: 8111038.41000017306060?=???==at n N ,取11=N Y ,则: 538MPa MPa 16 .124301m in lim 1=??== N F ST F FP Y S Y σσ (2)计算小齿轮的名义转矩T 1

齿轮啮合原理作业

硕士学位课程考试试卷 考试科目:齿轮啮合原理 考生姓名:考生学号: 学院:专业:机械设计及理论考生成绩: 任课老师(签名) 考试日期:2013 年6月日午时至时

一、 基本概念(每题3分,共计24分) 1.解释齿轮的瞬心线? 答:对于作平面运动的两个构件1和2,瞬心线是瞬时回转中心在坐标系i S (i=1,2)中的轨迹。当坐标系i S 绕i O 转动时,瞬时回转中心I 就会描绘出瞬心线。当齿轮传动比为常数时,瞬心I 保持在1O 2O 上的位置,瞬心线是半径分别为12ρρ和的两圆。当齿轮传动比不是常数时,瞬心在回转运动传递过程中沿1O 2O 移动,瞬心线是非圆形曲线,呈封闭的或者不封闭的。当一个构件回转运动时,另一个构件直移运动时,瞬心线是一个圆和与圆相切的直线。 2.解释平面曲线的曲率? 答:如图1所示,用s 表示曲线的弧长。考察曲线上分别与s 和s s +?对应的两个相邻的点M 和N ,如图1(a)所示,点M 和N 之间的弧长s ?,而α?是点M 和N 处的两条切线之间的夹角。当点N 趋近于点M 时,比值s α ??的极限称为曲线在点M 处的曲率(标记为K )。将K 取倒数得1 K 称为曲线在点M 处的曲率半径(标记为c ρ)。 这里的c ρ是极限(密切)圆的半径,而极限圆是当两个相邻点N 和'N 趋近于点M 时通过点M 和该两个相邻点画出来的,如图1(b)所示。我们把圆心C 称为曲率中心。 图1 平面曲线的曲率 3.解释齿廓渐屈线? 答:齿廓渐屈线是给定齿廓曲线 曲率中心的轨迹,同时也是给定齿廓 曲线密切圆圆心的轨迹,如图2所示。 从图上可以看出,齿廓曲线上每一点 的法线都是和其渐屈线相切的,换句 话说,齿廓渐屈线是齿廓曲线法线的 包络。

偏心齿轮传动的快速优化设计要点

机械设计课程设计 设计题目:偏心齿轮传动的快速优化设计学校: 专业:机械设计与制造2012级秋 姓名: 指导老师: 完成设计时间:

目录 摘要 (2) 绪论 (3) 1 偏心齿轮简介化原理 (4) 2 偏心齿轮快速优化设计 (5) 2.1 偏心齿轮传动设计计算公式推导 (5) 2.2 偏心齿轮优化设计模型的建立 (6) 2.3偏心齿轮优化设计的程序实现 (8) 2.4偏心齿轮优化设计示例 (9) 结论 (10) 参考文献 (11)

摘要 偏心齿轮虽然在制造上与普通渐开线齿轮无异,却属于变传动比的非圆齿轮传动,设计计算十分复杂。本文将优化设计概念引入非圆齿轮设计,使非圆齿轮设计方法从传统的基于分析的设计发展为基于综合的设计,避免了带有较大盲目性的参数试凑和反复校验过程, 提高了非圆齿轮传动设计的科学性和一次成功率。 关键词:偏心齿轮非圆齿轮优化目标规划

绪论 齿轮机构是应用最为广泛的机械传动机构, 具有传递功率大、效率高、传动准确可靠、寿命长、结构紧凑等优点。通常所说的齿轮传动是指传动比为常数的齿轮传动, 其主要功能是传递匀速运动和恒定的动力(功率), 而非圆齿轮则更多地作为运动控制元件使用, 广泛应用于轻工、纺织、烟草、食品等机械中[1~ 5 ], 在机构创新设计中具有重要作用。 非圆齿轮传动20世纪30年代就已出现, 20世纪50年代原苏联学者李特文在文献[1]中首次建立了非圆齿轮传动的系统理论, 20世纪70年代起这项技术被介绍到国内, 并开始进行系统研究, 但至今应用有限, 甚至在我国机械专业的本科生教材中都未包含这部分内容。其重要原因在于, 非圆齿轮设计计算复杂, 制造也很困难。进入20世纪70年代以后, 由于计算机技术和数控技术的发展和广泛应用, 使制约非圆齿轮应用的两大难点都有了得以克服的可能, 因而掀起了新的一轮非圆齿轮研究及应用热潮, 国外甚至有人将其称为非圆齿轮的“再发明( Rediscovering)”, 不仅开展非圆齿轮传动的研究, 而且开展了非圆带、链传动的研究, 形成一个内容丰富的非匀速比传动研究领域[ 4 ]。由于齿轮数控技术的发展, 非圆齿轮的制造已不再困难, 但是, 非圆齿轮设计计算复杂这一难点尚未得到根本克服, 具体表现在以下两点。 1)现有文献中给出的某些计算公式作为分析计算工具无疑是正确的, 但是如果将其用于设计计算, 则缺乏可操作性, 例如, 文献[ 4 ]中给出的偏心齿轮计算公式以瞬时啮合角作为基本变量, 要求计算时首先设定α值, 其“缺点是α角的设定范围不易掌握, 而且几何中心距的变化情况、特别是它的最小值l min不能直接求出”。[ 4 ] 2)现有文献中给出的设计方法( 包括计算机辅助设计方法) 均属于基于分析的设计方法, 即, 给定一组参数, 得到分析计算(校核计算)结果, 如发现不妥, 则修改给定参数, 再作分析与校核, 具有较大的盲目性。 本文将优化设计概念引入非圆齿轮设计, 使非圆齿轮设计方法从传统的基于分析的设计发展为基于综合的设计, 避免了带有较大盲目性的参数试凑和反复校验过程, 提高了非圆齿轮传动设计的科学性和一次成功率, 力求从根本上扭转由于非圆齿轮设计计算复杂困难而限制其广泛应用的局面。

齿轮传动的可靠性优化设计

齿轮传动的可靠性优化设计 摘要:主要目的是把可靠性优化设计和常规设计方法结合起来,说明优化设计在实际生产中的先进性和实用性。根据数学和可靠性设计理论建立齿轮传动的可靠性优化设计的数学模型,探讨其计算方法。结果可靠性优化设计优于常规设计方法,说明可靠性优化设计方法是一种更具有科学,更符合客观实际的设计方法。 关键词:可靠性齿轮传动优化设计齿轮 0 引言 齿轮传动广泛应用于各种机械设备中,它是利用两齿轮的轮齿相互啮合传递动力和运动的机械传动,具有结构紧凑、效率高、寿命长等特点。齿轮传动的随机性是指其设计参数的随机性,先量变后质变,人们常常只注重“唯一性”、“正确性”,追求质变的同时却忽略了量变。采用可靠性优化设计可以使齿轮的随机参量取值更加合理,并使其结构更加规范。 直齿圆柱齿轮是机械传动常用零件,工作中它要承受交变载荷。齿轮设计、制造都很重要的。它是机械中重要的传动部件,它的质量,体积和成本在整个设备中占有很大比重。如果发生故障,会严重影响设备的正常运转,因此,齿轮传动质量的好坏直接影响整个机器性能,设计一个质量轻,结构可靠的齿轮传动必大受人们的欢迎。 通常齿轮传动的设计是将齿轮所受载荷,应力和强度都视为定值,按一定的强度条件进行设计或校核,这种常规设计安全系数一般比较保守,不仅造成材料的浪费,增加成本,往往由于一个参数的改变,而影响其他参数的确定,并且考虑齿轮传动的应力,强度及各几何参数的不确定性,引起的误差与实际不符,也不能保证绝对的安全。设

计的齿轮传动质量差,可靠性低,承载能力小。因此,为了使齿轮传动设计既贴近实际工况,又有最优方案,提出将优化设计和可靠性设计理论有机结合起来的设计方法,该方法无论对缩小尺寸,减轻质量,提高承载能力和保证设计可靠性均有现实意义。可靠性设计方法认为作用在齿轮上的载荷和材料性能等都不是定值,而是随机变量,具有明显的离散性质,在数学上必须用分布函数来描述,由于齿轮的载荷和材料性能等都是随机变量,所以必须用概率统计的方法求解。齿轮可靠性设计认为齿轮存在一定的失效可能性,并且可以定量地回答齿轮在工作中的可靠程度,从而弥补常规设计的不足,它已成为质量保证,安全性保证,产品责任预防等不可缺少的依据和手段。 1 齿轮传动可靠性优化设计的数学模型 设计一对齿轮传动(目标函数为体积或质量最小),已知条件:传递功率N=20 KW,小齿轮转速n=1000rpm,传动比u=3,小齿轮材料为40Cr,齿面淬火,大齿轮材料为45钢,调质处理, 齿轮制造精度为8级,中等冲击,单向传动, 每年工作300天,工作十年,要求齿轮强度的可靠度为0.98以上。 1.1 可靠性优化设计模型的建立方法 根据已知条件和设计要求,齿轮传动的可靠性优化设计数学模型的建立可选用均值模型。 求 X=|1,2 |T x x xn min E{f(X,ω)} s.t. p{g n(X,ω)30}3a n (n=1,2,3 n p) (1)

齿轮啮合原理大作业

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:齿轮啮合原理教师:林超 姓名:张清亮学号:20150713090 专业:车辆工程类别:车辆工程领域上课时间:2015 年9 月至2015 年11 月 考生成绩: 卷面成绩平时成绩课程综合成绩 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

一、基本概念(每题2分,共计20分) 1、解释齿廓渐屈线? 答:一条给定齿廓曲线的渐屈线是该齿廓曲线曲率中心的轨迹,也是该齿廓曲线密切圆圆心的轨迹(图 1.1)。齿廓曲线每一点的法线都和其渐屈线相切,因此,齿廓渐屈线也是齿廓法线族的包络。 在齿轮的瞬心线给出的情况下(图1.2),齿轮齿廓的渐屈线可由p r PC =+确定, 式中p为齿廓渐屈线的径矢,r为瞬心线的径矢。PC的模l由下式确定: sin() 1sin PC l r d u d λμ λ φ - == ?? + ? ?? 式中r r =。在图1.10的直角坐标系中,齿廓的渐屈线方程为: cos cos() sin sin() x r l y r l φφλ φφλ =++ ? ? =++ ? 图1.1 齿廓的渐屈线图1.2 齿廓渐屈线坐标系本题参考文献:李特文. 齿轮几何学与应用理论[M]. 国楷, 叶凌云, 范琳等, 译. 上海: 上海科学技术出版社, 2008. 2、解释平面曲线的曲率? 答:在图1.3中,用s表示曲线的弧长。考察曲线上分别与s和s s +?对应的两个相邻的点M和N,图1.3(a)。点M和N之间的弧长s?,而α ?是点M和N处的两条 切线之间的夹角。当点N趋近于点M时,比值 s α ? ? 的极限称为曲线在点M处的曲率 (标记为K),即 lim s K s α ?→ ? = ? 。在 lim= s d s ds αα ?→ ? ? 存在的条件下, d K ds α =。比值 s α ? ? 称为曲线在点M处的曲率半径(标记为 c ρ),即= c s ρ α ? ? ,且 1 = c K ρ。这里的 c ρ是极限(密切)圆的半径,极限圆是当两个相邻点N和'N趋近于点M时通过点M和该两个相邻点画出的,图1.3(b)。圆心C称为曲率中心。

圆柱齿轮传动的可靠性优化设计

、摘要 机械零部件的可靠性优化设计既能定量回答产品在运行中的可靠度,又能使产品的功能参数获得优化解,是一种更具工程实用价值的综合设计方法。本文结合圆柱齿轮减速机的可靠性优化设计,确立了相应的数学模型,得出其优化解,并通过实例计算,说明其优越性。 、设计题目 一、设计题目 圆柱齿轮传动的可靠性优化设计 内容:按可靠性优化设计方法设计一纺织机械用减速器,要求传递功率P=11KW/高速轴转速n i=200r/min,传动比i=u=5,载荷平稳,三班制工作,使用5年,设备利用率为90%要求可靠度 R=0.999。 二、设计目的 传统齿轮减速器的设计是让齿轮所承受的表面接触应力和弯曲应力乘以安全系数小于齿轮材料的许用应力,这样虽然可以保证减速器的工作要求,但是由于要满足减速器的可靠性要求安全系数一般都选的比较大,因此使物耗和成本增加。如果采用可靠性优化设计,既能定量回答产品在运行中的可靠度,又能使产品的功能参数获得优化解,是一种更具工程实用价值的综合设计方法。 三、设计任务 1、用可靠性设计方法完成圆柱齿轮的可靠性设计; 2、利用matlab编程求解在满足一定可靠度要求下的最优解; 3、绘制优化后的齿轮零件图。 三、设计说明 一、齿轮传动的失效分析及设计准则 1、齿轮传动是依靠主动轮轮齿的齿廓,推动从动轮轮齿的齿廓来实现的。当一对轮齿从进入啮合到脱离啮合的传动过程中,具有以下几个特点: (1)齿轮传动是靠齿面的推压,因此作用在轮齿上的力总是指向齿面。 (2)传动过程中,轮齿上的应力是变化的,齿面上任一点的接触应力都是从无到有,从小到大,再由大变小,最后变零的。从齿体来说,主要受到弯曲应力。

齿轮传动噪声优化设计研究

齿轮传动噪声优化设计研究 摘要 齿轮传动是机械传动的重要形式,它具有工作可靠、寿命长、结构紧凑、传动比准确、传动效率高、速度和功率的适用范围较广等优点。而齿轮传动产生的噪声是机械类所产生噪声的主 齿轮传动是机械传动的重要形式,它具有工作可靠、寿命长、结构紧凑、传动比准确、传动效率高、速度和功率的适用范围较广等优点。而齿轮传动产生的噪声是机械类所产生噪声的主要因素,因此,研究齿轮的优化降噪具有重要的意义。 1齿轮传动噪声产生的机理 齿轮啮合传动时,啮齿面上存在相对运动,因此齿轮啮合处将产生滑动摩擦力,相对滑动速度方向反向时,摩擦力大小、方向的改变导致啮合点间产生"节点脉冲";现象,此现象也是齿轮在理论啮合条件下存在的齿轮噪声源,而且随着齿轮传动效率增大、转速提高,其表面精度降低,噪声变大。此外,在齿轮的受力过程中,会产生一定程度的弹性变形,使齿轮运转不匀,产生转角误差,导致对齿轮系的冲击激励,形成"啮合齿轮力";,因此"节点脉冲";和"啮合冲击力";都是齿轮传动中噪声的产生源。 2齿轮噪声的产生因素 齿轮噪声的产生因素有许多,在齿轮传动噪声产生的原因当中,组装占15%、设计占35%、制造占30%、使用占20%,如图1所示。 3降低齿轮传动噪声的优化方案 3.1材料的选择 齿轮的材料最常用的是钢,其次是铸铁,还有有色金属、非金属等,但某些恶劣工作条件下的齿轮,用中碳钢或中碳低合金钢也不能保证使用性能,这时应选用合金碳钢(20CrMnTi、20CrMnMo),如表1所示,对于重载荷、有冲击的齿轴及齿轮,优先选用20CrMnMo 用于制造大齿轮。同时,随着非金属材料制造的零件强度和精度的提高,非金属的弹性模量小,传动时的噪声小。所以,一对啮合的齿轮,小齿轮用非金属材料,大齿轮用金属材料可

齿轮传动的特点和应用

齿轮传动的特点和应用 12.1 概述 12.1.1 齿轮传动的特点和应用 齿轮传动是应用极为广泛的传动形式之一。 特点:能够传递任意两轴间的运动和动力,传动平稳、可靠,效率高,寿命长,结构紧凑,传动速度和功率范围广。但需要专门设备制造,加工精度和安装精度较高,且不适宜远距离传动。 12.1.2 齿轮传动的类型 齿轮传动的类型很多,按照两齿轮传动时的相对运动为平面运动或空间运动,可将其分为平面齿轮传动和空间齿轮传动两大类 1(平面齿轮传动 平面齿轮传动是用于两平行轴之间的传动。 外啮合直齿圆柱齿轮传动内啮合直齿圆柱齿轮传动齿轮齿条传动(直齿条) 外啮合斜齿圆柱齿轮传动人字齿轮传动齿轮齿条传动(斜齿条) 2(空间齿轮传动 空间齿轮传动用于相交轴和交错轴之间的传动。

螺旋齿轮传动 直齿圆锥齿轮传动曲齿圆锥齿轮传动 (交错轴斜齿轮传动) 蜗杆传动准双曲面齿轮传动 齿轮传动的类型 外啮合直齿圆柱齿轮传动 内啮合 (轮齿与轴平行) 齿轮齿条平面齿轮运动 齿外啮合斜齿圆柱齿轮传动 (传递平行轴间的运动) 内啮合 (轮齿与轴不平行) 轮齿轮齿条 人字齿轮传动(轮齿成人字形) 传 直齿传递相交轴运动 (锥齿轮传动) 斜齿动空间齿轮运动 交错轴斜齿轮传动 (传递不平行轴间的运动) 传递交错轴运动蜗轮蜗杆传动 准双曲面齿轮传动 12.1.3 齿廓啮合基本定律 齿轮传动要求准确平稳,即要求在传动过程中,瞬时传动比保持不变,以免产生冲击、 振动和噪音。

不论齿廓在任何点接触,过接触点所作两齿廓的公法线必须与连心线交于一固定点,这 就是齿廓啮合基本定律。 12.2 渐开线齿轮 12.2.1 渐开线的形成及基本性质 1. 渐开线的形成 2(渐开线的性质 根据渐开线的形成,可知渐开线具有下列一些特性: 1)发生线沿基圆滚过的直线长度,等于基圆上被滚过的圆弧长度; 2)发生线KN是渐开线在任意点K的法线。因此,发生线上任一点的法线必切于基圆。 3)渐开线齿廓上某点的法线与该点的速度方向线所夹的锐角α称为该点的压力角。 k 由上式可知,渐开线上各点的压力角是不相等的。 4)渐开线的形状完全取决于基圆的大小。 如图所示,基圆半径相等,则渐开线相同;基圆半径愈小,则渐开线愈弯曲;基圆半径愈大,则渐开线愈平直;基圆半径为无穷大时,则渐开线就变成直线。 5)基圆内无渐开线。 12.2.2 渐开线标准直齿圆柱齿轮的基本参数和几何尺寸 1.齿轮各部分的名称和主要参数 齿轮各部分的名称 zp=pd d=(p/p)z m=p/p

基于matlab的齿轮优化设计

机械装备优化设计三级项目题目:基于MATLAB的齿轮优化设计的优化设计班级:12级机械装备二班 设计人员:王守东(120101010236) 荆雪松(120101010215) 武吉祥(120101010219)

一、优化设计问题分析: 所谓优化就是在处理各种事物的一切可能的方案中寻求最优的 方案。机械优化设计是把优化理论和技术应用到机械设计中,通过 对机械零件、机构乃至整个机械系统的优化设计,使其中某些设计 参数和指标获得最优值。绝对的最优,只有在某些理论计算中才能 达到,但对于实际的机械优化设计,都带有一定的客观性和相对性。 Matlab是美国Mathworks公司于1967年推出的用于科学计算的可视化软件包。其方便、友好的用户环境、强大的扩展能力使许 多领域的科学计算和工程应用节省时间、降低成本和提高效率。 许多机械工程设计都需要进行优化。优化过程可以分为三个部分:综合与分析、评价、改变参数三部分组成。其中,综合与分析 部分的主要功能是建立产品设计参数与设计性能、设计要求之间的 关系,这也就是一个建立数学模型的过程。评价部分就是对该产品 的性能和设计要求进行分析,这就相当于是评价目标函数是否得到 改善或者达到最优,也就是检验数学模型中的约束条件是否全部得 到满足。改变参数部分就是选择优化方法,使得目标函数(数学模型)得到解,同时根据这种优化方法来改变设计参数 二、优化设计方案选择: 机械设计优化设计中常采用的优化设计方法有进退法、黄金分 割法、共轭梯度法、坐标轮换法、复合形法等。下面设计一种齿轮 系统,并基于Matlab对系统进行优化设计。

高速重载齿轮时常会受到加速度大、冲击载荷大、启动、制动等的影响。因此,为保证运行的安全性和可靠性,齿轮弯曲强度的安全系数应高于接触强度的安全系数。齿轮的主要失效形式主要有:轮齿折断、齿面磨损、齿面胶合、齿面点蚀、塑性变形等。由此可见,高速重载齿轮的设计必须保证齿轮在整个工作寿命期间不失效,由于目前还没有建立起工程实际中行之有效的设计方法和设计数据,目前按照保证齿根弯曲疲劳强度和齿面接触疲劳强度两个准则来设计齿轮。 3.具体任务分工 MATLAB制作荆雪松 Word王守东武吉祥荆雪松 PPT王守东 4.优化设计内容与步骤 1、优化设计问题的数学建模 在同时含有不等式约束和等式约束的机械约束优化设计中常用罚函数法。这种方法可靠性高,精度高,且很适合于作维数较高的设计。 考虑约束优化问题 min f(X) X∈ En(1) s.t g i(X)≥ 0i= 1,2,...,p(2) h j(X) = 0j= 1,2,...,q(3)

齿轮基础知识问答

齿轮基础知识问答 1.什么是齿廓啮合基本定律,什么是定传动比的齿廓啮合基本定律?齿廓啮合基本定律的作用是什么? 答:一对齿轮啮合传动,齿廓在任意一点接触,传动比等于两轮连心线被接触点的公法线所分两线段的反比,这一规律称为齿廓啮合基本定律。若所有齿廓接触点的公法线交连心线于固定点,则为定传动比齿廓啮合基本定律。 作用;用传动比是否恒定对齿廓曲线提出要求。 2.什么是节点、节线、节圆?节点在齿轮上的轨迹是圆形的称为什么齿轮? 答:齿廓接触点的公法线与连心线的交点称为节点,一对齿廓啮合过程中节点在齿轮上的轨迹称为节线,节线是圆形的称为节圆。具有节圆的齿轮为圆形齿轮,否则为非圆形齿轮。 3.什么是共轭齿廊? 答:满足齿廓啮合基本定律的一对齿廓称为共轭齿廓。 4.渐开线是如何形成的?有什么性质? 答:发生线在基圆上纯滚动,发生线上任一点的轨迹称为渐开线。 性质:(1)发生线滚过的直线长度等于基圆上被滚过的弧长。 (2)渐开线上任一点的法线必切于基圆。 (3)渐开线上愈接近基圆的点曲率半径愈小,反之则大,渐开线愈平直。 (4)同一基圆上的两条渐开线的法线方向的距离相等。 (5)渐开线的形状取决于基圆的大小,在展角相同时基圆愈小,渐开线曲率愈大,基圆愈大,曲率愈小,基圆无穷大,渐开线变成直线。 (6)基圆内无渐开线。 5.请写出渐开线极坐标方程。 答:rk = rb / cos αk θk= inv αk = tgαk一αk 6.渐开线齿廓满足齿廓啮合基本定律的原因是什么? 答;(1)由渐开线性质中,渐开线任一点的法线必切于基圆 (2)两圆的同侧内公切线只有一条,并且两轮齿廓渐开线接触点公法线必切于两基圆,因此节点只有一个,即 i12 =ω1 / ω2 =O2P / O1P =r2′/ r1′= rb2 / rb1 = 常数 7.什么是啮合线? 答:两轮齿廓接触点的轨迹。 8.渐开线齿廓啮合有哪些特点,为什么? 答:(1)传动比恒定,因为i12 =ω1 /ω2=r2′/r1′ ,因为两基圆的同侧内公切线只有一条,并且是两齿廓接触点的公法线和啮合线,因此与连心线交点只有一个。故传动比恒定。 (2)中心距具有可分性,转动比不变,因为i12 =ω1 /ω2=rb2 / rb1 ,所以一对齿轮加工完后传动比就已经确定,与中心距无关。

硕士齿轮啮合原理考试作业

*************学校 硕士学位课程考试试卷》 考试科目:齿轮啮合原理 考生姓名:考生学号: 学院:机械工程学院专业:机械制造及自动化考生成绩: 任课老师(签名) 。

~ 一 基本概念 1.解释齿轮的瞬心线? 两平面啮合齿轮的传动比可以是可变的,也可以是恒定的,传动比函数将确定两齿轮的瞬时角速度比,后者随第一个齿轮的转角1?而变化 )(2:112112???ωωf dt d dt d i == = 类似的 () 121121?ωf i == 在1?的变化范围内,函数()112?f i =取有限的正值。假定从1 o 轴向2o 轴传递回转运动(如图), 在垂直于轴线1o 和2o 的平面内, 构件1 和构件2的相对运动可以归结为两条共轭曲线的相互滚动,这两条相互滚动的共轭曲线叫瞬心线。 在齿轮啮合原理中,把瞬心P 称为啮合节点。传动比恒定时,节点P 固定不动;传动比是变数时,节点P 在连心线21O O 上作相应的变动。每个齿轮的瞬心线,就是节点p 在与该齿轮相固连的坐标系中的轨迹,因而两齿轮的相对运动可以归结为它们的瞬心线作纯滚动。 " 2. 解释共轭齿廓? 凡满足齿廓啮合基本定律的一对齿轮的齿廓称共轭齿廓,共轭齿廓的齿廓曲线称为共轭曲线。 共轭齿廓在接触点处的公法线(简称为齿廓法线)必须通过瞬心线的瞬时切点。这是齿廓啮合的基本定理,确定了一对共轭齿廓的几何条件。 共轭齿廓的曲线: 在已知一条齿廓曲线) (1Γ 和两构件相对运动的条件下,与) (1Γ 相共轭的齿廓曲线) (2Γ 的曲率 2k 可用下式求得: )1()12()1(11)12()1(12n dt r d k dt r d k ?-=??? ? ??+ωυ (1) 式中 ) 1(n ——齿廓) (1Γ 的幺法矢; 1k ——) (1Γ 的相对曲率。 \ 当) (1Γ 以方程式1111) 1()()(j u y i u x r +=给出时,1k 由下式计算: 2/32121 1111 1)(y x y x y x k '+''''-'''= (2) 3.解释Willis 定理? Willis 定理也称为啮合基本定理,起表述如下:按给定角速比变化规

哈工大(威海)机械原理大作业齿轮-31概论

Harbin Institute of Technology 课程名称:机械原理大作业说明书设计题目:齿轮机构设计(31)院系: 班级: 设计者: 学号: 指导教师: 设计时间:2015年5月 哈尔滨工业大学(威海)

齿轮传动机构设计 1、设计题目 1.电动机 2,4.皮带轮 3.皮带 5,6,7,8,9,10,11,12,13,14.圆柱齿轮15,16.圆锥齿轮。 序 号 电机转速 (r/min) 输出轴转速 (r/min) 带传动最 大传动比 滑移齿轮传动定轴齿轮传动 最大传 动比 模数 圆柱齿轮圆锥齿轮 一对齿轮 最大传动 比 模 数 一对齿轮 最大传动 比 模 数311450 44 49 57 ≤2.5 ≤4 2 ≤4 3 ≤4 3 2、传动比的分配计算 电动机转速min / 1450r n=,输出转速m in / 57 1 r n o =,min / 49 2 r n o =m in / 44 3 r n o =,,带 传动的最大传动比5.2 max = p i,滑移齿轮传动的最大传动比4 m ax = v i,定轴齿轮传动的最大传动比

4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为 439.2557145011=== o n n i 592.2949145022===o n n i 955.3244145033===o n n i 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为, 5.2max =p i 滑移齿轮的传动比为1v i 、2v i 、3v i ,定轴齿轮传动的传动比为f i ,则总传动比 f v p i i i i 1max 1= f v p i i i i 2max 2= f v p i i i i 3max 3 = 令4max 3==v v i i 则可得定轴齿轮传动部分的传动比为 2955.34 5.2955 .32m ax m ax 3=?=?= v p f i i i i 滑移齿轮传动的传动比 088.32955.35.2439 .25max 11=?= ?= f p v i i i i 592.32955 .35.2592 .29max 22=?= ?= f p v i i i i 定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 4488.12955.3max 33=≤===d f d i i i 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求: 1、每对相互啮合的齿轮最好互为质数; 2、每对相互啮合的齿轮的中心距相同; 3、啮合齿轮5、6的传动比约为088.31=v i ,啮合齿轮7、8的传动比约为592.32=v i ,

齿轮啮合原理考题

1.解释齿轮的瞬心线? 如图示,假设O 1和O 2是平面啮合时用来传递运动的两平行轴,从1O 轴向2O 轴传递回转运动,在垂直于轴线1 O 和2O 的平面内,构件1和2的相对运动可以归结为两条共轭曲线的相互滚动,这两条相互滚动的共轭曲线就是瞬心线。 2.解释Willis 定理? Willis 定理也称为啮合基本定理,起表述如下:按给定角速比变化规律传递平行轴之间的回转运动的两个齿廓,其接触点处的公法线应当通过瞬时啮合节点。Willis 定理确定了按给定传动比规律传递运动的一对齿廓共轭的几何条件。不论对定传动比的平面啮合,还是对变传动比的平面啮合都是正确的。 2.解释齿轮的瞬时回转轴? 答:两齿轮在空间任意点M 处的相对运动速度v 12 为v v r w r w v 2 10221112-+?-?=可以证明,空间上任意一点处的 v 12 是和这个点绕某个定轴作一定的螺旋运动时形成的线速度相同的。该定轴称为瞬时回转轴,简称瞬时轴。在平 行轴或相交轴的齿轮副中,即为两齿轮作相对的瞬时回转运动的轴线,在交错轴齿轮副中,即为两齿轮作相对的瞬 时螺旋运动的轴线。 3.解释齿轮的瞬轴面? 答:让瞬时回转轴k 绕两个齿轮的轴线回转,可以得到两个双曲回转面P1及P2,它们称为两齿轮的瞬轴面。则P1和P2在k 轴处是相切的,当它们在切线处的相对运动速度 v 12 =0,两瞬轴面作纯滚动。反之,它们会产生相对的 的滑动。 4. 解释平面曲线的曲率 曲线上有两个相邻的点M 和N ,它们之间的弧长为s ?,两点处的切线之间的夹角为α?。当两点趋于重合时,比值 s α ??的极限称为曲线在点M 处的曲率(标记为K ),即0lim s K s α?→?=?。曲线的曲率就是针对曲线上某个点的切线方 向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。 曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径 4.解释共轭齿形? 答:齿轮传动过程中,两瞬心线作相对的纯滚动,两齿形则应时时保持相切接触(有相对滑动),它们常称为互相共轭的齿形或者共轭齿形,并且共轭齿形的公法线一定通过该瞬时的瞬心点P 。 5.解释啮合面? 答:配对曲面∑1和∑2在每一瞬时彼此沿一条线相接触,该线称作瞬时接触线。齿轮齿面上瞬时接触线的位置决定于运动参数φ,啮合面是表示在与机架刚性固接的固定坐标系f S 中的瞬时接触 线族。啮合面用下列方程表示: () (),,,,0f f u f u r r θφθφ==。式中: 11f f M r r =,这里4×4矩阵 1 f M 描述从1S 到f S 的坐标变换。 5. 写出Eulor-Savary 的方程式? 212111sin 11r r a x x +=??? ? ??±+ρρ 在两瞬心线内切的情况下,方程式中凹形瞬心线的曲率半径应取负值。类似

机械原理大作业-齿轮(优推内容)

三、 齿轮传动设计 一、设计题目 如图所示一个机械传动系统,运动由电动机1输入,经过机械传动系统变速后由圆锥齿轮16输出三种不同的转速。根据表中的传动系统原始参数设计该传动系统。 1.机构运动简图 1.电动机 2,4.皮带轮 3.皮带 5,6,7,8,9,10,11,12,13,14.圆柱齿轮 15,16.圆锥齿轮 2.机械传动系统原始参数 序 号 电机转速 (r/min) 输出轴转速(r/min ) 带传动最大传动比 滑移齿轮传动 定轴齿轮传动 最大传动比 模数 圆柱齿轮 圆锥齿轮 一对齿轮最多传动比 模数 一对齿轮最多传动比 模数 28 1450 40 45 50 <=2.5 <=4 2 <=4 3 <=4 3 二、传动比的分配计算 电动机的转速1450/min n r =,输出转速1n =50r/min ,2n =45r/min ,3n =40r/min, 带传动的最大传动比max 2.5p i =,滑移齿轮的传动的最大传动比max 4v i =,定轴齿轮传动的最大传动比max 4d i =。 15 4 9 10 13 23 1 5 6 7 8 11 14 12 16

根据系统的原始参数,系统的总传动比为1i = 1 n n =1450/50=29.00 2i = 2 n n =1450/45=32.222 3i =3n n =1450/40=36.25 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为max 2.5p i =,滑移齿轮的传动比为1v i 、2v i 和3v i ,定轴齿轮传动的传动比为f i 则总传动比为 1max 1p v f i i i i = 2max 2p v f i i i i = 3max 3p v f i i i i = 令3max 4v v i i == 则可得定轴齿轮传动部分的传动比为f i = max max 3 *v p i i i =4 *5.225.36=3.625 滑移齿轮传动的传动比为1v i = f p i i i *max 1= 9 .2*5.229 =4 2v i = f p i i i *max 2=9.2*5.222 .32=4.444 定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 d i =3f i =3625.3=1.536 三、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、 8、9和10、为角度变位齿轮,其齿数: 52,19,41,17,50,231098765======z z z z z z 它们的齿顶高系数1a h *=,顶隙系数0.25c *=,分度圆压力角=20a o ,实际中心距取mm a 73=。 根据定轴齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮11, 12, 13和14为角度变位齿轮,齿数:==1311z z 17,==1412z z 23。它们的齿顶高系数

相关主题
文本预览
相关文档 最新文档