当前位置:文档之家› 运算放大器稳定性分析(一)

运算放大器稳定性分析(一)

运算放大器稳定性分析(一)
运算放大器稳定性分析(一)

运算放大器稳定性分析(一)

上网日期: 2007年10月24日

关键字:运算放大器稳定性寄生电感

作者:Tim Green,TI公司Burr-Brown产品战略发展经理

1.0 引言

本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz的电压反馈运放。选择增益带宽小于20MHz的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板(PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz的运放、实际设计并构建真实世界电路中得来的。

本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。

图1.0 稳定性分析工具箱

图字(上、下):数据资料信息、技巧、经验、Tina SPICE仿真、测试;

目的:学习如何用数据资料信息、技巧、经验法则、Tina SPICE仿真及测试来“更容易地”分析和设计运放,以确保环路稳定性;

注:用于统一增益带宽小于20MHz的电压反馈运放的技巧与经验法则。

1.1 波特图(曲线)基础

幅度曲线的频率响应是电压增益改变与频率改变的关系。这种关系可用波特图上一条以分贝(dB) 来表示的电压增益比频率(Hz) 曲线来描述。波特幅度图被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴则为采用线性刻度的电压增益(dB) ,y轴最好是采用方便的每主格45°刻度。波特图的另一半则是相位曲线(相移比频率),并被描绘成以“度”来表示的相移比频率关系。波特相位曲线亦被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴为采用线性刻度的相移(度),y轴最好是采用方便的每主格45°刻度。

图1.1 幅度与相位波特曲线(图)

图字(上、下):Aol曲线、幅度曲线、频率、相位曲线。

幅度波特图要求将电压增益转换成分贝(dB) 。进行增益分析时,我们将采用以dB(定义为20Log10A)表示的电压增益,其中A为以伏/伏表示的电压增益。

图1.2 幅度波特曲线分贝(dB) 定义

图1.3定义一些常用的波特图术语:

图1.3 更多波特曲线定义

图字(上、下):roll-off rate(下降速率)——增益随频率减小;decade(十倍频程)——频率按x10增加或按x1/10减小,从10Hz到100 Hz为一个decade(十倍频程);octave(倍频程)——频率按x2增加或按x1/2减小,从10Hz到20 Hz为一个octave(倍频程);

在电压增益波特图上,增益随频率变化的斜线可定义成按+20dB/decade或-20dB/decade增加或减小。另一种描述同样斜线的方法是按+6dB/octave或-6dB/octave增加或减小(参见图1.4)

以下推导证明了20dB/decade与6dB/octave的等效性:

ΔA(dB) = A(dB) at fb ?C A(dB) at fa

ΔA(dB) = *Aol(dB) - 20log10(fb/f1)] ?C [Aol(dB) - 20log10(fa/f1)]

ΔA(dB) = Aol(dB) - 20log10(fb/f1) ?C Aol(dB) + 20log10(fa/f1)]

ΔA(dB) = 20log10(fa/f1) ?C 20Log10(fb/f1)]

ΔA(dB) = 20log10(fa/fb)

ΔA(dB) = 20log10(1k/10k) = -20dB/decade

ΔA(dB) = 20log10(fb/fc)

ΔA(dB) = 20log10(10k/20k) = -6db/octave

-20dB/decade = -6dB/octave

因此:

+20dB/decade = +6dB/octave -20dB/decade = -6dB/octave

+40dB/decade = +12dB/octave -40dB/decade = -12dB/octave

+60dB/decade = +18dB/Octave -60dB/decade = -18dB/Octave

图1.4 幅度波特图:20dB/decade = 6dB/octave

极点.. 单个极点响应在波特图(幅度或增益曲线)上具有按-20dB/decade或-6db/octave 斜率下降的特点。在极点位置,增益为直流增益减去3dB。在相位曲线上,极点在频率fP 上具有-45°的相移。相位在fP的两边以-45°/decade的斜率变化为0°和-90°。单极点可用图1.5中的简单RC低通网络来表示。请注意极点相位是如何影响直到高于(或低于)极点频率10倍频程处的频率的。

图1.5 极点:波特曲线幅度与相位

图字:实际函数、直线近似、频率;

单极点电路等效电路图

极点位置= fp

幅度= -20dB/decade斜线

- 斜线从fP处开始、并继续随频率增加而下降

- 实际函数= -3dB down @ fp

相位= -45°/decade斜率通过fp

- fp以上10倍频程处相位= -90°

零点到单个零点响应在波特图(幅度或增益曲线)上具有按+20dB/decade或+6db/octave 斜率上升(对应于下降)的特点。在零点位置,增益为直流增益加3dB。在相位曲线上,零点在其频率fz上具有+45°的相移。相位在fz的两边以+45°/decade斜率变化为0°与+90°。单零点可用图1.6中的简单RC高通网络来表示。请注意零点相位是如何影响直到高于(或低

于)零点频率10倍频程处的频率的。

图1.6 零点:波特曲线幅度与相位

关键字:运算放大器稳定性寄生电感

图字:实际函数、直线近似、频率;

单零点电路等效电路图

零点位置= fz

幅度= +20dB/decade斜线

- 斜线从fz开始、并继续随频率增加而上升

- 实际函数= -3dB up @ fz

相位= +45°/decade斜率通过fz

- fz以上10倍频程处相位=+90°

- fz以下10倍频程处相位=0°

在波特幅度图上,很容易测量给定极点或零点的频率。由于x轴为频率的对数刻度,故这种技术允许用距离比来准确及迅速地确定感兴趣的极点或零点的频率。图1.7显示这种“对数刻度技巧”。

图1.7 对数刻度技巧

图字:fp=?、频率;

对数刻度技巧(fp=?)

1) 假设L=1cm, D=2cm

2) L/D=log10(fp)

3) ….

4) 对应的十倍频程内的频率为fp= 31.6Hz

5) ……,其中fp’为fp对1-10十倍频程归一化后

的频率,fp=31.6,fp’=3.16

1.2 直观元件模型

大多数运放应用都采用四种关键元件的组合,即:运放、电阻、电容和电感。为便于进行稳定性分析,最好是能拥有这些关键元件的“直观模型”。

用于交流稳定性分析的直观运放模型如图1.8所示。IN+ 与IN- 端之间的差分电压先被放大1倍并转化为单端交流电压源VDIFF,VDIFF然后再被放大K(f) 倍,其中K(f) 代表数据资料中的Aol(开环增益比频率曲线)。由此得到的电压VO再后接运放开环、交流小信号及输出电阻RO。电压通过RO后即为VOUT。

图1.8 直观运放模型

图1.9 定义用于交流稳定性分析的直观电阻模型。无论其工作频率如何,电阻均具有恒定的阻值。

图1.9 直观电阻模型

图1.10定义用于交流稳定性分析的直观电容模型,包括三个不同的工作区。在“直流”区,电容将被看成是开路。在“高频”区,电容则被看成是短路。在这二者之间,电容将被看成是一个受频率控制的电阻(阻抗1/Xc随频率增加而减小)。图1.11所示的SPICE仿真结果显示直观电容模型随频率变化的关系。

图1.10 直观电容模型

图1.11 直观电容模型SPICE仿真

图1.12定义用于交流稳定性分析的直观电感模型,包括三个不同的工作区。在“直流”区,电感将被看成是短路。在“高频”区,电感则被看成是开路。在这二者之间,电感将被看成是一个受频率控制的电阻(阻抗XL随频率增加而增加)。图1.13所示的SPICE仿真结果显示出

直观电感模型随频率变化的关系。

图1.12 直观电感模型

图1.13 直观电感模型SPICE仿真

1.3 稳定性标准

图1.14的下部显示代表一个带反馈运放电路的传统控制环路模型框图;上部显示与控制环路模型相对应的典型带反馈运放电路。我们将这种带反馈运放电路称为“运放环路增益模型”。请注意,Aol为运放数据资料Aol,且为运放的开环增益。β(贝它)为从VOUT上作为反馈返回的输出电压量。本例中的β网络为一个电阻反馈网络。

在推导VOUT/VIN时,我们能看到,可直接用Aol 及β来定义闭环增益函数。

图1.14 运放环路增益模型

图字:Aol:开环增益;β:反馈系数;Acl:闭环增益

从图1.14所示的运放开环增益模型中,我们能得出稳定闭环运放电路的标准。详细推导如图1.15所示。

在频率fcl上,环路增益(Aolβ) 为1或0dB,如果环路增益相移为+/-180°,则电路不稳定!在fcl上,环路增益相移距离180°的相位称为环路增益相位余量。对于临界阻尼表现良好的

闭环响应,我们要求环路增益相位余量大于45°。

图1.15 稳定性标准推导

图字:

VOUT/VIN= Aol/(1+ Aolβ)

如果:Aolβ= -1 则:VOUT/VIN= Aol/0 → ∞

如果:VOUT/VIN= ∞ → 无穷大增益则VIN中任何小的变化都会导致VOUT中的很大变化,而这又会反馈给VIN并导致VOUT中更大的变化→ 振荡→ 不稳定!!

A olβ:环路增益

Aolβ= -1 → +/-180°相移,幅度为1 (0dB)

fcl:Aolβ= 1 (0dB) 时的频率

稳定性标准:在Aolβ= 1 (0dB) 时的fcl频率上,相移< +/-180°

所需相位余量(离+/-180°相移的距离)≥ 45°

关键字:运算放大器稳定性寄生电感

1.4 环路稳定性测试

由于环路稳定性由环路增益(Aolβ) 的幅度与相位曲线决定,因此我们需要知道如何才能方便地分析环路增益幅度与相位。为做到这一点,我们需要打破闭环运放电路,并将一个小信号交流源插入到环路中,然后再测量幅度与相位并绘出完整的环路增益曲线图。图1.16显示运放环路增益控制模型的等效控制环路框图、以及我们准备用于环路增益测试的技术。

图1.16 传统环路增益测试

图字(上、下):

运放环路增益模型:运放为“闭环”

环路增益测试:在VOUT、地与VIN之间将环路打破,并插入一个交流源Vx,Aolβ=Vr / Vx 在分析用SPICE仿真构建的电路时,传统环路增益法利用一个电感及电容将闭环运放电路打破。很大的电感值可确保环路在直流上闭合(要求SPICE仿真能在进行交流分析以前先计算出直流工作点),但在感兴趣的交流频率上打开。很大的电容值可确保交流小信号源与直流隔开,但可直接与感兴趣的频率相连。图1.17显示用于传统环路增益测试的SPICE设置示意图。

图1.17 传统环路增益测试?C SPICE设置

图字(上、下):

运放环路增益模型:运放为“闭环”

SPICE环路增益测试:在VOUT、地与VIN之间将环路打破,并插入一个交流源Vx,Aolβ=Vr / Vx

在用SPICE仿真一个电路之前,我们想知道近似结果如何。请记住GIGO(垃圾进,垃圾出)!!贝它(β) 及其倒数(1/β) 连同数据资料Aol曲线,可在运行SPICE以前为我们提供一种用于环路增益分析一阶近似的强大方法。在后续几节中,我们将介绍计算(β) 及其倒数(1/β) 的

技巧与经验。图1.18定义运放电路的贝它(β) 网络。

图1.18 运放β网络

Aol曲线上叠加的1/β曲线,可提供环路增益(Aolβ) 曲线究竟如何的清晰画面。从图1.19中的推导中,我们可清楚地看出,当我们以dB值来在Aol曲线上绘出1/β时,Aolβ幅度曲线即为Aol 与1/β之差。请注意,Aolβ随频率的增加而减小。Aolβ是用于纠正VOUT/VIN或闭环响应中误差的增益。因此,随着Aolβ减小,VOUT/VIN响应精度降低,直到Aolβ降为0dB、而VOUT/VIN响应完全跟随Aol为止。

图1.19 取自Aol曲线与1/β曲线的环路增益信息

图字(上、下):开环响应Aol、Aolβ(环路增益)、频率;运放Aol上(以dB表示)绘出1/β

(以dB表示)、闭环响应

1/β ≈ Aol。

一旦我们在Aol上绘出1/β,有一种称为“闭合速度” 的简单一阶稳定性检查法。这种闭合速度稳定性检查,定义为1/β曲线与Aol曲线在fcl上(此时环路增益为0dB)的“闭合速度”。40db/decade的闭合速度意味着不稳定,因为它意味着在fcl以前有两个极点,而这可能意味着180°的相移。图1.20给出了4个例子,并将其各自的

闭合速度计算如下:

fcl1: Aol-1/β1 = -20dB/decade - +20dB/decade = -40dB/decade . 40dB/decade 闭合速度与不稳定

fcl2: Aol-1/β2 = -20dB/decade - 0dB/decade = -20dB/decade . 20dB/decade闭合速度与稳定

fcl3: Aol-1/β3 = -40dB/decade - 0dB/decade = -40dB/decade . 40dB/decade闭合速度与不稳定fcl4: Aol-1/β4 = -40dB/decade - -20dB/decade = -20dB/decade . 20dB/decade闭合速度与稳定

图1.20 环路增益稳定性闭合速度测试

1.5 环路增益稳定性举例

环路增益分析举例(图1.21)用来说明我们如何能从绘制在Aol曲线上的1/β曲线来分析运放的稳定性。这里,随着频率的增加,电容CF逐渐趋于短路,从而分别随频率的增加而降低β曲线的幅度(亦即电压反馈随频率增加而减小)或抬高1/β曲线的幅度。从闭合速度标准来看,我们预计该电路不稳定。

图1.21 环路增益稳定性举例

从Aol曲线上的1/β曲线,我们能绘出Aolβ(环路增益)幅度曲线(图1.22)。从环路增益幅度曲线,我们又能绘出环路增益相位曲线。从Aol曲线上的1/β曲线绘出Aolβ曲线的规则很简单:Aol曲线上的极点和零点即为Aolβ曲线上的极点和零点;1/β曲线上的极点和零点则为Aolβ曲线上的零点与极点。记住这一点的一种简单方法是,β用于Aolβ曲线,而1/β为β的倒数,因此我们预计Aolβ曲线会采用1/β曲线上极点与零点的倒数,而极点的倒数为零点,零点的倒数为极点。

图1.22 得自Aol曲线与1/β曲线的的闭环增益

图字:在fcl上:

相移= -180°

相位余量= 0

为从Aol及1/β曲线绘出Aolβ曲线:

Aol曲线上的极点为Aolβ(环路增益)曲线上极点

Aol曲线上的极点为Aolβ(环路增益)曲线上极点

1/β曲线上的极点为Aolβ(环路增益)曲线上零点

1/β曲线上的零点为Aolβ(环路增益)曲线上极点

(请记住:β为1/β的倒数)

1.6 1/β与闭环响应

VOUT/VIN闭环响应并非总是和1/β一样。在图1.23的示例中,我们可看出,交流小信号反馈受与RI并联的Rn-Cn网络的修改。随着频率的增加,我们看到该网络修改的结果反映在Aol曲线上的1/β曲线中。因此可将本例看成是一个反相取和运放电路。我们将通过RI的VIN 与通过Rn-Cn网络到地的信号相加。VOUT/VIN在低频上不会受此Rn-Cn网络的影响,且所需增益可看成是20dB。随着环路增益(Aolβ) 被Rn-Cn网络拉低至1 (0dB),即没有环路增益用于纠正误差,而VOUT/VIN则会在fcl以上频率上跟随Aol曲线。

图1.23 VOUT/VIN 比1/β

图字(上下、左右):Aol、SSBW(小信号带宽);在fcl上Aolβ=0(dB)、无环路增益用于纠正误差、VOUT/VIN响应跟随Aol曲

线;注:1/β为运放交流小信号闭环增益、VOUT/VIN常常与1/β不同。

参考文献:

1、Frederiksen,Thomas M.,“直观运放基础与应用”,修订版,McGraw-Hill公司,纽约,1988年。

2、Faulkenberry,Luces M.,“用于线性IC应用的运放入门”,第二版,John Wiley &Sons公司,纽约,1982

3、Tobey ?C Graeme ?CHuelsman,编辑,“Burr-Brown运放设计与应用”,McGraw-Hill公司,纽约,1971年

推荐:极低功耗的零漂移仪表放大器

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

土坡稳定性计算计算书7.9

土坡稳定性计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 基本参数: 放坡参数: 荷载参数: 土层参数:

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.2的要求。

圆弧滑动法示意图 三、计算公式: K sj=∑{c i l i+[ΔG i b i+qb i]cosθi tanφi}/∑[ΔG i b i+qb i]sinθi 式子中: K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值; c i --土层的粘聚力; l i--第i条土条的圆弧长度; ΔG i-第i土条的自重; θi --第i条土中线处法线与铅直线的夹角; φi --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; q --第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:

运算放大器

运算放大器 绪论 运算放大器是电压控制型电压源模型,其增益(放大倍数)非常大。运算放大器有5个端子、4个端口的有源器件。其符号和内部结构如图1所示: 图1 运算放大器模型和内部结构图 图中电压VCC和VEE是由外部电源提供,通常决定运算放大器的输出电压等级。符号“+”和“—”分别表示同相和反相。输入电压Vp和Vn以及输出电压Vo都是对地电压。 运算放大器的五个接线端构成了一个广义节点,如果电流按照图1所示定义,根据KCL (基尔霍夫电流定律)有如下公式: 因此,为了保持电流平衡,我们必须将所有电流都包括进来,这是根据有源器件的定义得出的。如果我们仅仅考虑输入和输出电流来列出KCL,则等式不成立,即: 运算放大器的等效电路模型如图2所示。电压Vi是输入电压Vp和Vn的差值即Vi=Vp -Vn。Ri是放大器的输入电阻,Ro是输出电阻。放大参数A称为开环增益。

运算放大器的开环结构定义为:运算放大器的结构中不包括将输入和输出端连接起来的回路。 图2 运算放大器的等效电路模型 如果输出端不接任何负载,输出电压为: 该公式说明,输出电压Vo是与输入电压Vp和Vn之差的函数。因此可以说该运算放大器是差值放大器。 大多数实际的运算放大器的开环放大倍数是非常大的。例如,比较常用的741型运算放大器,它的放大倍数为200000Vo/Vi,甚至一些运算放大器的放大倍数达到108 Vo/Vi。 反映输入电压和输出电压关系的曲线称为电压传输特性,而且该曲线是放大器电路设计和分析的基础。运算放大器的电压传输曲线如图3所示: 图3 电压传输特性曲线

注意:该曲线有2个变化区域,一个为在Vi=0V附近时,输出电压和输入电压成正比例放大,称之为线性区域;另一个为Vo随Vi改变而不变的区域,称之为饱和区(或非线性区)。 可以通过设计让运算放大电路工作在上述的2个区域。在线性区域Vo和Vi直线的斜率是非常大的,实际上,它与开环放大倍数A相等。例如,741运算放大器正负电源电压为VCC=+10V,VEE=-10V,Vo的饱和值(最大输出电压)一般在±10 V,而当A=200000 Vo/Vi 时,可以算出输入的电压非常小:10/200,000 = 50μV。

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 1.56 ; 基坑内侧水位到坑顶的距离(m): 14.000 ; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m)条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数:

土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第 i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

运算放大器电路分析详解

透解放大器 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

放大器的精度和稳定性

电路结构建议采用典型电路形式和厂商提供的电路,许多电路结构都是经过很多工程师们反复实验和验证过的。采用OP构成的放大器电路的精度主要与外部元器件参数有关,例如放大倍数与外接的电阻有关。 解决放大器的稳定性就比较复杂了,涉及到放大器的电路结构、PCB布局、电源供给、以及放大器所在的系统环境等等、等等。 一些建议如下: 与分立器件相比,现代集成运算放大器(op amp)和仪表放大器(in-amp)为设计工程师带来了许多好处。虽然提供了许多巧妙、有用并且吸引人的电路。往往都是这样,由于仓促地组装电路而会忽视了一些非常基本的问题,从而导致电路不能实现预期功能——或者可能根本不工作放大器电路设计:如何避免常见问题。 (1)最常遇到的一个应用问题是在交流(AC)耦合运算放大器或仪表放大器电路中没有提供偏置电流的直流(DC)回路。在图1中,一只电容器与运算放大器的同相输入端串联以实现AC耦合,这是一种隔离输入电压(VIN)的DC分量的简单方法。这在高增益应用中尤其有用,在那些应用中哪怕运算放大器输入端很小的直流电压都会限制动态范围,甚至导致输出饱和。然而,在高阻抗输入端加电容耦合,而不为同相输入端的电流提供DC通路,会出现问题。 图1 运算放大器AC耦合输入错误的连接形式 (2)在仪表放大器的输出端和ADC的输入端之间通常接一个简单的RC低通抗混叠滤波器以减少带外噪声。RC低通滤波器的典型值:R = 50Ω~ 200Ω,C = 1/(2πR F),按电路的-3 dB带宽设置C的取值。 (3)当从电源电压利用分压器为放大器提供参考电压时应保证PSR性能 一个经常忽视的问题是电源电压VS的任何噪声、瞬变或漂移都会通过参考输入按照分压比经过衰减后直接加在输出端。实际的解决方案包括旁路滤波以及甚至使用精密参考电压IC 产生的参考电压,例如ADR121,代替Vs分压。

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案) 3.1 集成运算放大器认识与基本应用 在太阳能充放电保护电路中要利用集成运算放大器LM317实现电路电压检测,并通过三极管开关电路实现电路的控制。首先来看下集成运算放大器的工作原理。 【项目任务】 测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。 R1 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 R1 15kΩR2 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 函数信号发生器函数信号发生器 (a)无反馈电阻(b)有反馈电阻 图3.1集成运算符放大器LM358测试电路(multisim) 【信息单】 集成运放的实物如图3.2 所示。 图3.2 集成运算放大 1.集成运放的组成及其符号 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3所示。输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3集成运算放大电路的结构组成 集成运放的图形和文字符号如图 3.4 所示。 图3.4 集成运放的图形和文字符号 其中“-”称为反相输入端,即当信号在该端进入时, 输出相位与输入相位相反; 而“+”称为同相输入端,输出相位与输入信号相位相同。 2.集成运放的基本技术指标 集成运放的基本技术指标如下。 ⑴输入失调电压 U OS 实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。规定在室温(25℃)及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS ,U OS 越小越好,一般约为 0.5~5mV 。 ⑵开环差模电压放大倍数 A od 集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od 。它是决定运放运算精度的重要因素,常用分贝(dB)表示,目前最高值可达 140dB(即开环电压放大倍数达 107 )。 ⑶共模抑制比 K CMRR K CMRR 是差模电压放大倍数与共模电压放大倍数之比,即od CMRR oc A K =A ,其含义与差动放大器中所定义的 K CMRR 相同,高质量的运放 K CMRR 可达160d B 。 ⑷差模输入电阻 r id r id 是集成运放在开环时输入电压变化量与由它引起的输入电流的变化量之比,即从输入端看进去的动态电阻,一般为M Ω数量级,以场效应晶体管为输入级的r id 可达104M Ω。分析集成运放应用电路时,把集成运放看成理想运算放大器可以使分析简化。实际集成运 放绝大部分接近理想运放。对于理想运放,A od 、K CMRR 、r id 均趋于无穷大。 ⑸开环输出电阻 r o r o 是集成运放开环时从输出端向里看进去的等效电阻。其值越小,说明运放的带负载能力越强。理想集成运放r o 趋于零。 其他参数包括输入失调电流I OS 、输入偏置电流 I B 、输入失调电压温漂 d UOS /d T 和输入失调电流温漂 d IOS /d T 、最大共模输入电压 U Icmax 、最大差模输入电压 U Idmax 等,可通过器件

利用Matlab分析运算放大器电路

能力拓展训练任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 利用Matlab分析运算放大器电路 初始条件: 1 Matlab软件6.3以上版本 2运算放大器等效电路 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1. 题目内容: 2. 课程设计说明书应包括: a)设计任务及要求 b)方案比较及认证 c)程序设计基本思想,程序流程图,部分源程序及注解 d)调试记录及结果分析 e)参考资料 f)附录:全部源程序清单 g)总结 时间安排: 2013年选题、查阅资料和方案设计 2013年编程 2013年调试程序,改进与提高 2013年撰写设计报告(有调试过程及结果的截屏) 2013年答辩和交课程设计报告 指导教师签名: 2013 年月日 系主任(或责任教师)签名:年月日

目录 1前言........................................................................................................................... 12系统分析................................................................................................................... 2 2.1任务及要求.................................................................................................... 2 2.2分析与计算.................................................................................................... 2 2.2.1电路频率响应分析............................................................................. 2 2.2.2自激分析............................................................................................. 33编程和仿真............................................................................................................... 44仿真结果与分析....................................................................................................... 55小结........................................................................................................................... 76心得体会................................................................................................................... 8参考文献...................................................................................................................... 9附录.......................................................................................................................... 10

运算放大器的稳定性6―电容性负载稳定性

运算放大器稳定性 第 6 部分(共 15 部分)电容性负载稳定性:R ISO 、高增益及 CF 、噪声增益 作者:Tim Green ,德州仪器 本系列的第六部分是新《电气工程》杂志 (Electrical Engineering ) 中“保持容性负载稳定的六种方法”栏目的开篇。这六种方法是 R ISO 、高增益及 CF 、噪声增益、噪声增益及 CF 、输出引脚补偿 (Output Pin Compensation ),以及具有双通道反馈的 R ISO 。本部分将侧重于讨论保持运算放大器输出端容性负载稳定性的前三种方法。第 7 和第 8 部分将详细探讨其余三种方法。我们将采用稳定性分析工具套件中大家都非常熟悉的工具来分析每种方法,并使用一阶分析法来进行描述。该描述方法是:通过 Tina SPICE 环路稳定仿真进行相关确认;通过 Tina SPICE 中的 V OUT /V IN AC 传递函数分析来进行检验;最后采用 Tina SPICE 进行全面的实际瞬态稳定性测试 (Transient Real World Stability Test)。在过去长达 23 年中,我们在真实环境以及实际电路情况下进行了大量测算,充分验证了这些方法的有效性。然而,由于资源的限制,本文所述电路并未进行实际制作,在此仅供读者练习或在自己的特定应用(如分析、合成、仿真、制作以及测试等)中使用。 运算放大器示例与 R O 计算 在本部分中,用于稳定性示例的器件将是一种高达 +/40V 的高电压运算放大器 OPA452。这种“功能强大的运算放大器”通常用于驱动压电致动器 (piezo actuator),正如您可能已经猜到的那样,该致动器大多为纯容性的。该放大器的主要参数如图 6.1 所示。图中未包含小信号 AC 开环输出阻抗 R O 这一关键参数,在驱动容性负载时,该参数对于简化稳定性分析极其重要。由于参数表中不含该参数,因而我们需要通过测量得出 R O 。由于 Analog & RF Models 公司 (https://www.doczj.com/doc/701329901.html,/%7Ewksands/) 的 W. K. Sands 为该放大器构建了 SPICE 模型,因而我们可用 Tina SPICE 来测量 R O 。对于数据表参数而言,W. K. Sands SPICE 模型已经过长期而反复的考证具有极高的精确性,更重要的是,它是真正的硅芯片部件! 运算放大器稳定性   OPA452 Supply: +/-10V to +/-40V Slew Rate: +7.2V/us, -10V/us Vout Saturation: Io=50mA, (V-)+5V, (V+)-5.5V Io=10mA, (V-)+2V, (V+)-2V 图 6.1:OPA542 重要参数 为了测试 R O ,我们在图 6.2 的开环增益和相位与OPA452 频率关系图上标注“工作点 (operating point )”。通过测试此“工作点”(无环路增益的频率与增益点)的 R OUT ,R OUT = R O (如欲了解R O 及 R OUT 的详细探讨,敬请参见本系列的第 3 部分)。 R O Test Point

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

运算放大器稳定性实验

●Hello,and welcome to the TI Precision Lab supplement for op amp stability. ●This lab will walk through detailed calculations,SPICE simulations,and real-world measurements that greatly help to reinforce the concepts established in the stability video series. ●你好,欢迎来到TI Precision Labs(德州仪器高精度实验室)的运放稳定 性环节。 ●这个实验会包括计算,SPICE仿真和实际测试。这些环节帮助大家对视频中 的概念加深理解。

●The detailed calculation portion of this lab can be done by hand,but calculation tools such as MathCAD or Excel can help greatly. ●The simulation exercises can be performed in any SPICE simulator,since Texas Instruments provides generic SPICE models of the op amps used in this lab. However,the simulations are most conveniently done in TINA-TI,which is a free SPICE simulator available from the Texas Instruments website.TINA simulation schematics are embedded in the presentation. ●Finally,the real-world measurements are made using a printed circuit board,or PCB,provided by Texas Instruments.If you have access to standard lab equipment,you can make the necessary measurements with any oscilloscope, function generator,Bode plotter,and±15V power supply.However,we highly recommend the VirtualBench from National Instruments.The VirtualBench is an all-in-one test equipment solution which connects to a computer over USB or Wi-Fi and provides power supply rails,analog signal generator and oscilloscope channels,and a5?digit multimeter for convenient and accurate measurements. This lab is optimized for use with the VirtualBench. ●本实验的计算可以通过實際計算,如果使用Mathcad或者Excel这样工具会 更好。

(完整版)土坡稳定性分析

第七章土坡稳定性分析 第一节概述 土坡就是由土体构成、具有倾斜坡面的土体,它 的简单外形如图7-1所示。一般而言,土坡有两种类 型。由自然地质作用所形成的土坡称为天然土坡,如 山坡、江河岸坡等;由人工开挖或回填而形成的土坡 称为人工土(边)坡,如基坑、土坝、路堤等的边坡。 土坡在各种内力和外力的共同作用下,有可能产生剪 图7-1 土坡各部位名称 切破坏和土体的移动。如果靠坡面处剪切破坏的面积 很大,则将产生一部分土体相对于另一部分土体滑动的现象,称为滑坡。土体的滑动一般系指土坡在一定范围内整体地沿某一滑动面向下和向外移动而丧失其稳定性。除设计或施工不当可能导致土坡的失稳外,外界的不利因素影响也触发和加剧了土坡的失稳,一般有以下几种原因: 1.土坡所受的作用力发生变化:例如,由于在土坡顶部堆放材料或建造建筑物而使坡顶受荷。或由于打桩振动,车辆行驶、爆破、地震等引起的振动而改变了土坡原来的平衡状态; 2.土体抗剪强度的降低:例如,土体中含水量或超静水压力的增加; 3.静水压力的作用:例如,雨水或地面水流入土坡中的竖向裂缝,对土坡产生侧向压力,从而促进土坡产生滑动。因此,粘性土坡发生裂缝常常是土坡稳定性的不利因素,也是滑坡的预兆之一。 在土木工程建筑中,如果土坡失去稳定造成塌方,不仅影响工程进度,有时还会危及人的生命安全,造成工程失事和巨大的经济损失。因此,土坡稳定问题在工程设计和施工中应引起足够的重视。 天然的斜坡、填筑的堤坝以及基坑放坡开挖等问题,都要演算斜坡的稳定性,亦既比较可能滑动面上的剪应力与抗剪强度。这种工作称为稳定性分析。土坡稳定性分析是土力学中重要的稳定分析问题。土坡失稳的类型比较复杂,大多是土体的塑性破坏。而土体塑性破坏的分析方法有极限平衡法、极限分析法和有限元法等。在边坡稳定性分析中,极限分析法和有限元法都还不够成熟。因此,目前工程实践中基本上都是采用极限平衡法。极限平衡方法分析的一般步骤是:假定斜坡破坏是沿着土体内某一确定的滑裂面滑动,根据滑裂土体的静力平衡条件和莫尔—库伦强度理论,可以计算出沿该滑裂面滑动的可能性,即土坡稳定安全系数的大小或破坏概率的高低,然后,再系统地选取许多个可能的滑动面,用同样的方法计算其稳定安全系数或破坏概率。稳定安全系数最低或者破坏概率最高的滑动面就是可能性最大的滑动面。 本章主要讨论极限平衡方法在斜坡稳定性分析中的应用,并简要介绍有限元法的概念。 182

恒智天成安全计算软件土坡稳定性计算

土坡稳定性计算计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:50; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000 基坑内侧水位到坑顶的距离(m):6.000

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式: 式子中: F s --土坡稳定安全系数; c --土层的粘聚力; l i--第i条土条的圆弧长度; γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角;

φ --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; h1i――第i条土水位以上的高度; h2i――第i条土水位以下的高度; γ' ――第i条土的平均重度的浮重度; q――第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs: 第1步:安全系数=1.417,标高=-2.000,圆心X=0.962米,圆心Y=1.344米,半径R=3.344米示意图如下:

运算放大器的稳定性4―环路稳定性主要技巧与经验

运算放大器的稳定性 第4部分(共15部分):环路稳定性主要技巧与经验 作者:Tim Green,TI公司 本系列的第4部分着重讨论了环路稳定性的主要技巧与经验。首先,我们将讨论45度相位及环路增益带宽准则,考察了在Aol 曲线与1/β曲线以及环路增益曲线Aolβ中的极点与零点之间的互相转化关系。我们还将讨论用于环路增益稳定性分析的频率“十倍频程准则”。这些十倍频程准则将被用于1/β、Aol及Aolβ曲线。我们将给出运放输入网络ZI与反馈网络ZF的幅度“十倍频程准则”。我们将开发一种用于在1/β曲线上绘制双反馈路径的技术,并将解释为何在使用双反馈路径时应该避免出现“BIG NOT”这种特殊情况。最后,我们将给出一种便于使用的实际稳定性测试方法。在本系列的第5部分中,这些关键工具的综合使用使我们能够系统而方便地稳定一个带有复杂反馈电路的实际运放应用。 环路增益带宽准则 已确立的环路稳定性标准要求在fcl处相移必须小于180度,fcl是环路增益降为零时的频率。在fcl处的相移与整个180度相移之间的差定义为相位余量。图4.0详细给出了建议用于实际电路的经验,亦即在整个环路增益带宽(f≤fcl)中设计得到135度的相移(对应于45度的相位余量)。这是考虑到,在实际电路中存在着功率上升、下降及瞬态情况,在这些情况下,运放在Aol曲线上的改变可能会导致瞬态振荡。而这种情况在功率运放电路中是特别不希望看到的。由于存在寄生电容与印制板布局寄生效应,因此这种经验还考虑在环路增益带宽中用额外的相位余量来考虑实际电路中的附加相移的。此外,当环路增益带宽中相位余量小于45度时,即可能在闭环传输函数中导致不必要的尖峰。相位余量越低及越靠近fcl,则闭环尖峰就会越明显。 180 135 45 Frequency (Hz) 90 θ -45 -135o Design for: < Loop Stability Criteria:<-180 degree phase shift at fcl -135 degree phase shift at all frequencies

运算放大器增益稳定性第3部分:AC增益误差分析

运算放大器增益稳定性,第 3 部分:AC 增益误差分析 作者:Miroslav Oljaca 德州仪器(TI)高级应用工程师和Henry Surtihadi TI 模拟设计工程师 增益带宽乘积的重要性 本小节将回顾运算放大器增益带宽乘积(GBWP) 即G×BW 概念。在计算AC 闭环增益以前需要GBWP 这一参数。首先,我们需要GBWP(有时也称作GBP),用于计算运算放大器闭环截止频率。另外,我们在计算运算放大器开环响应的主极点频率f0时也需要GBWP。在f0以下频率,第2 部分的DC 增益误差计算方法有效,因为运算放大器的开环增益为恒定;该增益等于A OL_DC (请参见参考文献 1 和参考文献2)。但是,超出f0频率以后,则必须使用AC 计算方法,我们将在后面小节详细讨论。 一般而言,如果运算放大器有直线、–20-dB/十倍频、开环增益滚降,则其具有恒定GBWP。就某个选定闭环增益而言,闭环增益开始下降的截止频率可通过将GBWP 除以理想闭环增益来计算得到。请注意,实际上得到的闭环响应–3-dB 点可能不会刚好等于增益峰值和其他非理想因数计算得到的滚降点。 图 1 显示了简化开环增益与TI OPA211 频率响应的对比情况。在产品说明书中,GBWP 针对两种不同的增益:1 (GBWP=45 MHz) 和100 (GBWP=80 MHz)。使用这两种增益规范的原因是OPA211 的开环增益响应在大约4MHz 到20MHz 频率区域有一个额外的极点-零点对。这是一个特例,其与先前的叙述(带直线-20-dB/十倍频滚降的运算放大器只有一个GBWP)相反。因此,80MHz 的GBWP 应用于计算100 或更高闭环增益运算放大器的截止频率,而45MHz 的GBWP 应用于2 或更低闭环增益的运算放大器。如果4MHz 以上频率区域需要使用更加精确的计算,则我们建议使用SPICE 仿真。 使用规定的GBWP 可让设计人员计算不同闭环增益的截止频率。运算放大器为单位增益结构时(闭环增益为1),截止频率为45MHz(45MHz/1),其也被称作运算放大器的单位增益带宽(UGBW)。如果运算放大器的闭环增益为100,则截止频率为800kHz (80MHz/100)。 若要计算OPA211 的主极点频率(f o),需使用80MHz 的GBWP。另外,80MHz 对100 或更高(最大为A OL_DC 值)的闭环增益有效。114dB 的值为室温下OPA211 的最小保证DC 开环增益,将用于A OL_DC。将所有这些参数代入至方程式 1 得到:

相关主题
文本预览
相关文档 最新文档