当前位置:文档之家› 运算放大器的稳定性4―环路稳定性主要技巧与经验

运算放大器的稳定性4―环路稳定性主要技巧与经验

运算放大器的稳定性4―环路稳定性主要技巧与经验
运算放大器的稳定性4―环路稳定性主要技巧与经验

运算放大器的稳定性

第4部分(共15部分):环路稳定性主要技巧与经验

作者:Tim Green,TI公司

本系列的第4部分着重讨论了环路稳定性的主要技巧与经验。首先,我们将讨论45度相位及环路增益带宽准则,考察了在Aol 曲线与1/β曲线以及环路增益曲线Aolβ中的极点与零点之间的互相转化关系。我们还将讨论用于环路增益稳定性分析的频率“十倍频程准则”。这些十倍频程准则将被用于1/β、Aol及Aolβ曲线。我们将给出运放输入网络ZI与反馈网络ZF的幅度“十倍频程准则”。我们将开发一种用于在1/β曲线上绘制双反馈路径的技术,并将解释为何在使用双反馈路径时应该避免出现“BIG NOT”这种特殊情况。最后,我们将给出一种便于使用的实际稳定性测试方法。在本系列的第5部分中,这些关键工具的综合使用使我们能够系统而方便地稳定一个带有复杂反馈电路的实际运放应用。

环路增益带宽准则

已确立的环路稳定性标准要求在fcl处相移必须小于180度,fcl是环路增益降为零时的频率。在fcl处的相移与整个180度相移之间的差定义为相位余量。图4.0详细给出了建议用于实际电路的经验,亦即在整个环路增益带宽(f≤fcl)中设计得到135度的相移(对应于45度的相位余量)。这是考虑到,在实际电路中存在着功率上升、下降及瞬态情况,在这些情况下,运放在Aol曲线上的改变可能会导致瞬态振荡。而这种情况在功率运放电路中是特别不希望看到的。由于存在寄生电容与印制板布局寄生效应,因此这种经验还考虑在环路增益带宽中用额外的相位余量来考虑实际电路中的附加相移的。此外,当环路增益带宽中相位余量小于45度时,即可能在闭环传输函数中导致不必要的尖峰。相位余量越低及越靠近fcl,则闭环尖峰就会越明显。

180

135

45

Frequency

(Hz)

90

θ

-45

-135o

Design for: <

Loop Stability Criteria:<-180 degree phase shift at fcl

-135 degree phase shift at all frequencies

Why?:

Because Aol is not always “Typical”

Power-up, Power-down, Power-transient ?Undefined “Typical”Aol

Allows for phase shift due to real world Layout & Component Parasitics

图4.0:环路增益带宽准则

图字(上下、左右):Aolβ(环路增益)相位曲线、-135°“相移”、频率 (Hz)、45°“相位余量”

环路稳定性标准:在fcl处相移< -180度

设计目的:在所有< fcl 的频率上,都有相移≤ -135度

原因:因为Aol (开环增益)并不总是“典型”,考虑到实际电路布局与器件的寄生效应,存在着功率上升、下降及暂态现象→这些是未定义的“典型” Aol 。

极点与零点转换技术

图4.1给出了环路增益曲线与Aol 曲线之间的关系,并包括了一条1/β曲线。此关系使我们能够利用厂商提供的运放数据资料中的Aol 曲线来在图中绘制我们的反馈曲线1/β。从这两张图,我们可以方便地推断出环路增益曲线中的情况,从而更加方便地总结出,为得到良好的稳定性我们应该对反馈进行怎样的调整。考虑到环路增益曲线是一条“开环”曲线,而Aol 已经是一条开环曲线,因此Aol 曲线中的极点就是环路增益曲线中的极点,而Aol 曲线中的零点就是环路增益曲线中的零点。1/β曲线为小信号交流闭环增益曲线。如果我们想要断开环路来查看反馈网络的影响,则当分析网络时我们将看到一个倒数关系。用于记住从1/β曲线到环路增益曲线转换的更简便方法就是,环路增益曲线是Aol β图,而闭环反馈曲线则是1/β曲线。因此,既然β是1/β的倒数,那么1/β曲线中的极点就成为环路增益曲线 (Aol β) 中的零点,而1/β曲线中的零点就成为环路增益曲线中的极点。 020

40

6080100

Frequency (Hz)

图4.1:极点与零点转换技术

图字:

Aol&1/β曲线、环路增益曲线 (Aol β) 从Aol&1/β曲线来绘制Aol β曲线:

Aol 曲线中的极点为Aol β(环路增益)曲线中的极点 Aol 曲线中的零点为Aol β(环路增益)曲线中的零点

1/β曲线中的极点为Aol β(环路增益)曲线中的零点 1/β曲线中的零点为Aol β(环路增益)曲线中的极点 (请记住:β为1/β的倒数)

A (d

B )

To Plot Aol βfrom Aol & 1/β Plot:Poles in Aol curve are poles in Aol β(Loop Gain)Plot curve are (Loop Gain) Plot Poles in 1/βcurve are (Loop Gain) Plot curve are poles in Aol β(Loop Gain) Plot [Remember: βis the reciprocal of 1/β]Zeros in Aol zeros in Aol βzeros in Aol βZeros in 1/β

十倍频程准则

图 4.2详细描述了在环路增益曲线中的“十倍频程准则”。这些十倍频程准则将被用于1/β曲线,Aol 曲线及Aol β(环路增益)曲线,我们可以从Aol 曲线及1/β曲线直接推导而来。对于本图所示的电路,Aol 曲线在大约100kHz 处包含了第二个极点fp2,这是因为存在容性负载CL 及运放的R O ,详细讨论将在本系列的第6部分中给出。我们将建立一个满足我们环路增益带宽准则(即f ≤ fcl 时余量为45度)的反馈网络。我们将利用我们对环路增益图 (Aol β) 的了解,使用1/β曲线及Aol 曲线图来对反馈网络进行分析与综合。在环路增益曲线10Hz 处给出了第一个极点fp1,这说明在10Hz 处相移为 -45度,在100Hz 处相移为 -90度。在1kHz 、fz1、1/β曲线的零点处,我们在环路增益曲线上增加了一个极点,在1kHz 处增加了另外 -45度的相移。现在,在1kHz 处,总的相移为 -135度。但如果我们从fz1开始继续增加频率,则在10kHz 处相移将达到 -180度!因此我们增加了fp3,作为1/β曲线上的极点,这在环路增益曲线上是10kHz 处的零点(在10kHz 处相移为 +45度,在10kHz 以上及以下斜率为+45度/decade )。这保证了1kHz 处的相移为 -135度,并使得从1kHz 到10kHz 的相位曲线都平坦地位于 -135度(请记住极点和零点对于它们实际频率位置处的上十倍频程和下十倍频程频率都有影响)。fp2在环路增益曲线

100kHz 处又增加了一个极点,这是因为fp2是取自Aol 曲线。在fp3所在的10kHz 与fp2所在的100kHz 处,我们希望两者之间没有相移,因为fp3是环路增益曲线的零点而fp2则是环路增益曲线的极点。

因此,如果我们保持极点与零点之间相隔十倍频程,则可避免它们之间的相移继续减少,因为它们各自对所在位置的上、下十倍频程都有影响。环路增益十倍频程准则最后的关键点是, fp3应置于距fcl 一个十倍频程远处。这是考虑到,在我们可以达到一个余量稳定状态以前,Aol 会向低频偏移十倍频程。当遇上最坏情况时,就是Aol 随时间和温度发生了漂移,此时,许多IC 设计者都会将观测到的数字2读成1(也就是说,1MHz 的统一增益带宽运放可能会从500kHz 偏移到2MHz )。我们推荐我们的十倍频程准则,因为它更容易记住并在波特图上可以方便地看出。额外的相位余量设计不会带来不便,但如果同时要求带宽、稳定性与性能话,那么2变1准则仍不失为一个好的选择。

我们预计在环路增益离开100kHz 以前,该电路的V OUT /V IN 曲线都平的,之后它将跟随Aol 曲线变化。

V OUT Cn 0

20406080100

A (d

B )

Poles: fp1, fp2, fz1; Zero: fp3phase shift at fz1

OU T IN

图4.2:极点与零点转换技术

图字:环路增益图解: 极点:fp1、fp2及fz1;零点:fp3 获得良好环路稳定性的经验:

将fp3置于离fz1的1个十倍频程以内

fz1处, fp1和fz1 =-135°相移

fp3≤ decade 将避免相移进一步降低 将fp3置于fcl 至少一个十倍程以下位置

容许Aol 曲线左移一个十倍频程

图4.3给出了有关图4.2所示电路的环路增益相位曲线的一阶人工分析预测。我们在1MHz 处增加了另一个极点fp4,来模拟真实世界中典型的双极点运放。

图字:单个极点和零点曲线、最终曲线

-45-90

+45+90P h a s e S h i f t (d e g )

P h a s e S h i f t (d e g )+450+90Individual Pole & Zero Plot

为检验我们的一阶环路相位分析,我们用Tina SPICE 构建了我们的运放电路,如图4.4所示。同时我们还用SPICE 环路增益测试来对Aol 曲线与1/β曲线进行了测量。

O U T I N

图4.4:Tina SPICE 电路:SPICE 环路增益测试

图字:简单运放交流SPICE 模型

图4.5给出了Aol 和1/β的Tina SPICE 仿真结果,并将其与我们一阶人工分析进行了仔细的相关比较。

我们的Tina SPICE 仿真也被用来绘制环路增益与环路相位曲线。图4.6给出了环路相位曲线,它是基于我们一阶人工分析得到的预测。 T

G a i n (d B )

P h a s e [d e g ]

图4.6:Tina SPICE 电路:环路增益与环路相位

图字:环路增益、环路相位

为检验我们的V OUT/V IN预测是否正确,我们将Tina SPICE电路修改成如图4.7所示的电路并进行仿真。

O U T

图4.7:Tina SPICE电路: V OUT/V IN

图字:简单运放交流SPICE模型

图4.8给出了V OUT/V IN的Tina SPICE仿真结果。我们看到V OUT/V IN传输函数从大约10kHz开始,有一个微小的上

升。这是因为环路增益由于存在Rn-Cn网络而开始明显下降。但这与我们得到的一阶人工分析预测结果相差不

大。一个值得再次提醒的关键点是,V OUT/V IN并非总是与1/β一致。

T

Frequency (Hz)

G

a

i

n

(

d

B

)

图4.8:Tina SPICE电路:V OUT/V IN 传输函数

ZI 和 ZF幅度十倍频程准则

我们从本系列的第2部分了解到ZI和ZF网络。图4.9详细给出了ZI输入网络中的幅度“十倍频程准则”。如果

我们标定Rn = RI/10(Rn在数值上比RI小“十倍”),则我们可以确定在高频情况下,当Cn阻抗短路时,Rn

将把高频设置为RF/Rn。这样标定使我们能更容易地绘出1/β曲线中起主要作用的一阶结果。幅度十倍频程准则

的另一个优势是它迫使我们加入极点/零点对——fp与fz,这样在其彼此一个十倍频程以内,以及因此在fp与fz

之间,相移将保持平坦。

图4.9:ZI 幅度十倍程准则

图字:

ZI :低频处1/β=RF/RI 标定Rn = RI/10 这样在高频处: Cn=0

Rn 比 RI 占优势 →1/β≈RF/RI fp=1/(2) πRn Cn ???fz=1/(2) πRI Cn ???

图4.10给出了ZF 反馈网络中的幅度“十倍频程准则”。如果我们标定Rp = RF/10(Rp 在数值上比RF 小“十倍”),则我们可以确定在高频情况下,当Cp 的阻抗短路时,Rp 将把高频设置为Rp/RI 。这样标定使我们更容易绘出1/β图中起主要作用的一阶结果。正如在输入网络ZI 中一样,幅度十倍频程准则的另一个优势是它迫使我们加入一个极点/零点对fp 和fz ,这样在其彼此一个十倍频程以内,以及因此在fp 与fz 之间,相移将保持平坦。

图4.10:ZF 幅度十倍频程准则

图字:

ZF :低频处1/β=RF/RI 标定Rp = 1/10RF 这样在高频处:

Rp 比 RF 占优势 →1/β≈Rp/RI

fp=1/(2),fz=1/(2)

πRF Cp ???πRp Cp ???

双反馈路径

随着本系列的不断深入,我们将看到,常常运用反馈电路来确保获得良好的运放稳定性,需要使用一个以上的反馈路径。为更方便地分析和综合此类多级反馈,我们将使用叠加原理。图4.11定义了叠加原理。在此,我们将先单独分析每个影响,然后再将主要影响作为我们反馈的最终结果。

图4.11:叠加原理

摘自:Smith,Ralph J ,“电路、器件与分析”,John Wiley&Sons 公司,1973年第三版,纽约。

图字:

叠加原理:如果起因和影响线性相关,则同时起作用的几个起因造成的总的影响就等同于单个起因每次单独作用的影响之和。

在图4.12中,我们看到一个使用了两条反馈路径的运放电路。第一条反馈路径FB#1,位于运放的外部,经过Riso 和CL 后返回,并经过RF 和RI 回到运放的输入端。第二条反馈路径FB#2,位于运放的外部,经过CF 然后返到运放的输入端。这里分别绘制了与这些反馈等效的1/β曲线。此推导的详细过程将在本系列的后续部分给出。当围绕运放使用一个以上反馈路径时,为运放提供最大反馈电压的反馈路径就成为主要的反馈路径。这意味着如果为每个反馈都绘制了1/β图,则在给定频率处,1/β最小的反馈就将在该点起主要作用。请记住,最小的1/β即最大的β,而由于β = V FB /V OUT ,因此最大的β即表明反馈到运放输入端的电压最大。请记住一个简单的类比,即:如果两个人对着你的同一只耳朵讲话,那么哪个你听得更清楚一些呢——当然是讲话声较大的那个!所以运放将会“听”具有最大β或最小1/β的反馈路径。在FB#1或 FB#2的任何频率上,运放所看到的的净1/β曲线应该是较低的那个。 Superposition:Dual Feedback Networks:

If cause & and effect are linearly related, the total effect of several causes acting simultaneously is equal to the sum of the effects of the individual causes acting one at a time.

From: Smith, Ralph J. Circuits, Devices, And Systems. John Wiley & Sons, Inc. New York. Third Edition, 1973.

Two people are talking in your ear. Op amp has two feedback paths

β= V FB /V OUT ). This implies the β!

图4.12:双反馈网络

?Use Superposition

?Analyze & Plot each FB# 1/β?Smallest FB# dominates 1/β

?1/β= 1/(β1 –β2)02040

6080100A (d B )

类比:两个人同时对着你的耳朵讲话。你更能听见哪个呢?当然是讲话声大的那个!

双反馈:有两条反馈路径在对运放“讲话”,它主要倾听反馈电压较大的路径 (β = V FB /V OUT ),这意味着最小的1/β值! 双反馈网络: - 采用叠加原理

- 分析每个FB#1/β并绘图、 - 最小FB# 决定了1/β - 1/β=1/(β1-β2)。

当围绕一个运放使用双反馈路径时,有一个极其重要的情况必须避免,即“BIG NOT ”。如图4.13所示,其中的运放电路导致反馈路径中产生BIG NOT 现象,该现象在1/β曲线中可看到,图中1/β斜率从+20db/decade 突然变成了-20dB/decade 。这种改变意味着,在1/β曲线上有中一个复共轭极点,这样相应地在环路增益曲线上即有一个复共轭零点。复零点与极点在其对应的频率上引起一个 +/-90度的相移。此外,复零点/复极点的相位斜率,在其出现频率位置附近的一个狭窄频带内可从+/-90度变化至+/-180度。复零点/复极点的产生在闭环运放响应中可能会引起严重的增益尖峰,这是很不希望看到的情况,尤其在功率运放电路中。

Dual Feedback and the BIG NOT Slope changes from to severe :1/β+20db/decade -20dB/decade ?Implies a “complex conjugate pole ”in the 1/βPlot. ?Implies a “complex conjugate zero”in the Aol β(Loop Gain Plot).?+/-90°phase shift at frequency of complex zero/complex pole.?Phase slope from +/-90°/decade slope to +/-180°in narrow band near frequency of complex zero/complex pole depending upon damping factor.?Complex zero/complex pole can cause gain peaking in closed loop response.

图4.13:双反馈与BIG NOT

图字:警告:这对你的电路可能很危险! 双反馈和BIG NOT :

1/β斜率从+20db/decade 变成-20dB/decade - 表明在1/β曲线上有一个“复共轭极点”

- 表明在Aol β(环路增益)曲线上有一个“复共轭零点” - 在复零点/复极点的频率处有+/-90度的相移

- 在复零点/复极点所出现频率位置附近的一个狭窄频带内,相位频率可以从+/-90°/decade 变化至+/-180°,这取决于不同的阻尼系数

- 复零点/复极点在闭环响应中可能会引起严重的增益尖峰

图4.14给出了不同阻尼系数情况下复共轭极点的幅度图。不论阻尼系数如何,极点都表现为双极点且斜率为-40dB/decade 。但相位将给出不同的情况。

图4.14:复共轭极点幅度举例

摘自:Dorf, Richard C.,“现代控制系统”,Addison-Wesley 出版公司,麻省雷丁,第三版,1981年。

图4.15给出了复共轭极点的相位图。很明显,由于阻尼系数不同,故相移相对于单纯双极点而言可能会有极大的

不同。在双极点情况下,我们预计在该频率处的相移为 -90度,斜率为-90 degree/decade(阻尼系数 =1)。

摘自:Dorf, Richard C.,“现代控制系统”,Addison-Wesley 出版公司,麻省雷丁,第三版,1981年。

实际稳定性测试

完成一阶人工分析后,再用SPICE 仿真来进行合理性检查,我们即能建立起自己的运放电路。如果有一种简便的方法可以判断实际相位余量是否就是我们分析得到的预测结果的话,那么这将带来许多便利。许多实际运放电路都是双极点、二阶及系统响应这些因素占优势。参见图4.16,一个典型的运放Aol 曲线在10Hz 至100Hz 范围内有一个低频极点,在其统一增益转换频率处、或者其后不远处有另一个高频极点。如果采用单纯的电阻反馈,我们会看到环路相位曲线将呈现出双极点系统效应。对于更复杂的运放电路来说,总的环路增益与环路相位曲线通常都是由双极点响应来决定的。二阶系统的闭环行为得到了很好的定义,并能为我们提供一种用于实际稳定性检查的强大技术。

020

4060

80100

A (d

B )

图4.16:运放电路的交流行为

图字(上、下):大部分运放电路都采用众所周知的二阶系统响应行为来进行充分的分析,模拟及进行测试。 大部分运放都有两个极点占优势: Aol 曲线给出了一个低频极点fp1 Aol 曲线还有一个高频极点fp2

fp2通常位于fcl 处以获得统一增益

这就在统一增益处产生45度的相位余量

图4.17给出了详细的实际暂态稳定性测试。将一个小幅度方波馈入闭环运放电路中作为VIN 源,在环路增益带宽中选择一个频率,但这个频率要足够高以便于触发示波器。1kHz 对大部分应用来都说是一个不错的测试频率。调整V IN 以使V OUT 为200mVpp 或更小。我们感兴趣的是电路的小信号交流行为,以找出交流稳定工作点。为此,我们不希望在输出上有较大的信号摆动,这可能也包含了一些大信号限制,例如摆动速率、输出电流限制或输出级电压饱和等。V offset 提供了一种机制,以在整个输出电压范围内上下移动输出电压以寻找在所有工作点条件下的交流稳定工作点。对许多电路(尤其是驱动容性负载的电路)来说,最差的稳定性情况是输出接近于零(对双电源运放应用)、且直流负载电流很小或完全没有的时候,因为这样会导致运放的开环小信号阻抗R O 达到最大值。记下方波输出上的过冲与振铃量,并将其与图4.18所示的二阶瞬态曲线进行对比。从与您的测量电路最匹配的曲线上记下相应的阻尼系数。在图4.19中 的二阶阻尼系数比相位余量曲线的y 轴上找出此相应的阻尼系数,X 轴包含了二阶电路的相位余量。

Most Op Amps are dominated by Two Poles:Often fp2 is at fcl for unity gain This yields 45 degrees phase margin at unity gain Aol curve shows a low frequency pole, fp1Aol curve also has a high frequency pole, fp2

V OU T

图4.17:实际瞬态稳定性测试

图字:测试技巧: - 选择测试频率<

- 调整V IN 幅度以产生“小信号”交流输出方波

- 通常最坏情况是当V offset =0时→ 最大运放R O 值 (I OUT =0) - 任意改变V offset 来检验所有输出工作点,以找出稳定工作点

- 令范围=交流耦合与扩展垂直范围刻度,以便找出V OUT 小信号方波上的过冲、下冲及振铃量。

图4.18:二阶瞬态曲线

摘自:Dorf, Richard C.,“现代控制系统”,Addison-Wesley 出版公司,麻省雷丁,第三版,1981年。

?Choose test frequency << fcl

?Adjust V IN amplitude to yield “Small Signal” AC Output Square Wave ?Worst case is usually when V Offset = 0 ?Largest Op Amp R O (I OUT = 0)?Use V Offset as desired to check all output operating points for stability

?Set scope = AC Couple & expand vertical scope scale to look for amount of overshoot, undershoot, ringing on V OUT small signal square wave

图4.19:二阶阻尼系数比相位余量

摘自:Dorf, Richard C.,“现代控制系统”,Addison-Wesley 出版公司,麻省雷丁,第三版,1981年。

参考文献:

1、Frederiksen,Thomas M. ,“直观运放,从基础到应用”,修订版,McGraw-Hill出版公司,纽约,1988

2、Dorf,Richard C.,“现代控制系统”, Addison-Wesley出版公司,麻省雷丁,第三版,1981年。

3、Smith,Ralph J.,“电路、器件与系统”,John Wiley & Sons出版公司,纽约,第三版,1973年。.

实训讲座内容

实训讲座内容 基础知识回顾(以讲解为主,以实训为辅) ※基本技能知识(涂序枝) 一、基本工具及常用仪器使用 二、基本元器件识别及测试 三、布局、布线 要求:布局、布线原则,实例分析,在纸质万用板练习布局、布线 四、焊接技术:万用板、焊接方法 要求:训练各种焊接及拆卸技术 ※模电基础知识(胡文龙) 一、半导体器件: 二极管的使用:整流,开关(与门电路,或门电路),指示,照明 三极管的使用:开关电路,放大电路(驻极体的单元电路) 二、运算放大器:LM339、LM393、LM324、比例放大、比较器、积分、微分 三、NE555(NE556)电路 单稳态电路,施密特触发器,脉冲信号发生器 要求:结合实际电路讲解P181 图7-28 ※数电基础知识(袁芳) 要求:以芯片应用为主,多结合实际电路; 目标:学生能掌握芯片的使用方法 一、逻辑门:与、或、非门(由二极管组成) 二、触发器:RS触发器等 三、组合电路:选择器、比较器、译码器、显示器 四、时序电路:计数器 单元电路实训(讲解、实训并重) ※重要器件(相应控制电路) 传感器:1、热敏电阻 2、光敏电阻 3、压敏电阻 4、红外发射接收 5、驻极体(声

音收集) 开关器件:光耦开关、继电器、晶闸管 声光输出器件:数码管、蜂鸣器 ※基本单元电路 一、电源:LM317,LM337, 78XX系列, 79 XX系列 1、核心器件 2、电路原理图 3、印制版图 4、注意事项 二、延时电路:电阻电容三极管组成的开关电路,运算放大器,NE555的单稳态电路 三、波形产生:NE555,与非门(CD4011),施密特触发器(CD4069)、RC三极管 四、任意方式编码及显示电路:CD4511+共阴极数码管,CD40110+共阴极数码管,直接接限流电阻显示特定的数字 五、传感器级相关电路:热敏电阻,光敏电阻,驻极体(声音收集) 六、开关电路:按键开关,自锁开关,无锁开关,拨码开关,继电器 七、计数器(循环、可预置):CD4017,CD40110,CD40192 八、报警电路:有源蜂鸣器,无源蜂鸣器,红色发光二极管 综合设计实训(模拟大赛、实战为主) 内容待定 常用的芯片 LM339、LM393、NE555(NE556),CD4011,CD40110,CD4017,CD4511,CD40192,LM358,LM324、4N25、74LS192、LM317;;三极管9011、9013、9014、9018、8050为NPN 型 注意:LM393、LM339使用时输出端应外加上拉电阻)

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

运算放大器应用设计的技巧总结

运算放大器应用设计的几个技巧 一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA?级,选择输入电流pA?级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。 二、运算放大器的偏置设置 在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。 三、如何解决运算放大器的零漂问题? 有网友指出,一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象发生,如何解决这个问题? 对此,网友“Frank”分析道,有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。 网友“camel”和“windman”还从数学分析的角度对造成零漂的原因进行了详细分析,认为除了使干扰源漂移小以外还必须使传感器、缆线电阻要大,运放的开环输入阻抗要高、运放的反馈电阻要小,即反馈电阻的作用是为了防止漂移,稳定直流工作点。但是反馈电阻太小的话,也会影响到放大器的频率下限。所以必须综合考虑! 而嘉宾张世龙则建议,对于电荷放大器输出电压不归零的现象,一般采用如下办法来解决: 1)采用开关电容电路的技巧,使用CDS采样方式可以有效消除offset电压;2)采用同步检测电路结构,可以有效消除offset电压。

放大器的精度和稳定性

电路结构建议采用典型电路形式和厂商提供的电路,许多电路结构都是经过很多工程师们反复实验和验证过的。采用OP构成的放大器电路的精度主要与外部元器件参数有关,例如放大倍数与外接的电阻有关。 解决放大器的稳定性就比较复杂了,涉及到放大器的电路结构、PCB布局、电源供给、以及放大器所在的系统环境等等、等等。 一些建议如下: 与分立器件相比,现代集成运算放大器(op amp)和仪表放大器(in-amp)为设计工程师带来了许多好处。虽然提供了许多巧妙、有用并且吸引人的电路。往往都是这样,由于仓促地组装电路而会忽视了一些非常基本的问题,从而导致电路不能实现预期功能——或者可能根本不工作放大器电路设计:如何避免常见问题。 (1)最常遇到的一个应用问题是在交流(AC)耦合运算放大器或仪表放大器电路中没有提供偏置电流的直流(DC)回路。在图1中,一只电容器与运算放大器的同相输入端串联以实现AC耦合,这是一种隔离输入电压(VIN)的DC分量的简单方法。这在高增益应用中尤其有用,在那些应用中哪怕运算放大器输入端很小的直流电压都会限制动态范围,甚至导致输出饱和。然而,在高阻抗输入端加电容耦合,而不为同相输入端的电流提供DC通路,会出现问题。 图1 运算放大器AC耦合输入错误的连接形式 (2)在仪表放大器的输出端和ADC的输入端之间通常接一个简单的RC低通抗混叠滤波器以减少带外噪声。RC低通滤波器的典型值:R = 50Ω~ 200Ω,C = 1/(2πR F),按电路的-3 dB带宽设置C的取值。 (3)当从电源电压利用分压器为放大器提供参考电压时应保证PSR性能 一个经常忽视的问题是电源电压VS的任何噪声、瞬变或漂移都会通过参考输入按照分压比经过衰减后直接加在输出端。实际的解决方案包括旁路滤波以及甚至使用精密参考电压IC 产生的参考电压,例如ADR121,代替Vs分压。

仪表放大器的应用技巧(摘)

仪表放大器电路设计技巧 Charles Kitchin,Lew Counts 美国模拟器件公司 长期以来,为仪表放大器供电的传统方法是采用双电源或双极性电源,这具有允许正负输入摆幅和输出摆幅的明显优势。随著元器件技术的发展,单电源工作已经成为现代仪表放大器一个越来越有用的特性。现在许多数据采集系统都是采用低电压单电源供电。对于单电源系统,有两个至关重要的特性。首先,仪表放大器的输入范围应当在正电源和负电源之间(或接地电压)扩展。其次,放大器的输出摆幅也应当接近电源电压的两端(R-R),提供一个与电源电压的任一端或地电位相差100mV(或小于100mV)以内的输出摆幅(V-+0.1V~V+-0.1V)。比较起来,一个标准的双电源仪表放大器的输出摆幅只能与电源电压的任一端或地电位相差1V或2V以内。当采用5V 单电源工作时,这些仪表放大器仅具有1V或2V输出电压摆幅,而真正的R-R输出仪表放大器能提供几乎与电源电压一样高的峰峰输出摆幅。另一个重要点是单电源或R-R仪表放大器采用双电源仍能工作(甚至更好)并且通常其工作电源电压比传统的双电源器件低。 电源解耦是一个经常被工程师忽视的重要细节。通常,旁路电容器(典型值为0.1μF)连接在每个IC的电源引脚和地之间。尽管通常情况适合,但是这在实际应用中可能无效或甚至产生比根本没有旁路电容器更坏的瞬态电压。因此考虑电路中的电流在何处产生,从何处返回和通过什麽路径返回是很重要的问题。一旦确定,应当在地周围和其他信号路径周围旁路这些电流。 通常,像运算放大器一样,大多数单片仪表放大器都有其以电源的一端或两端为参考端的积分器并且应当相对输出参考端解耦。这意味著对于每颗晶片在每个电源引脚与仪表放大器的参考端在PCB上的连接点之间应连接一个旁路电容器,如图1所示。 图1、电源旁路的推荐方法 1.输入接地返回的重要性 当使用仪表放大器电路时出现的一个最常见的应用问题是缺乏为仪表放大器的输入偏置电流提供一个DC返回路径。这通常发生在当仪表放大器的输入是容性耦合时。图2示出这样一个电路。

运算放大器技术合集:运放工作原理、基础及经典电路分析

运算放大器技术合集:运放工作原理、基础及经典电路分析 一、入门篇:运算放大器的工作原理、基础 *运算放大器的工作原理 运算放大器具有两个输入端和一个输出端,如图1-1所示,其中标有“+”号的输入端为“同相输入端”而不能叫做正端),另一只标有“一”号的输入端为“反相输入端”同样也不能叫做负端,如果先后分别从这两个输入端输入同样的信号,则在输出端会得到电压相同但极性相反的输出信号:输出端输出的信号与同相输人端的信号同相,而与反相输入端的信号反相。 运算放大器所接的电源可以是单电源的,也可以是双电源的,如图1-2所示。运算放大器有一些非常有意思的特性,灵活应用这些特性可以获得很多独特的用途,总的来说,这些特性可以综合为两条: 1、运算放大器的放大倍数为无穷大。 2、运算放大器的输入电阻为无穷大,输出电阻为零。 现在我们来简单地看看由于上面的两个特性可以得到一些什么样的结论。 首先,运算放大器的放大倍数为无穷大,所以只要它的输入端的输入电压不为零,输出端就会有与正的或负的电源一样高的输出电压本来应该是无穷高的输出电压,但受到电源电压的限制。准确地说,如果同相输入端输入的电压比反相输入端输入的电压高,哪怕只高极小的一点,运算放大器的输出端就会输出一个与正电源电压相同的电压;反之,如果反相输入端输入的电压比同相输人端输入的电压高,运算放大器的输出端就会输出一个与负电源电压相同的电压(如果运算放大器用的是单电源,则输出电压为零)。 其次,由于放大倍数为无穷大,所以不能将运算放大器直接用来做放大器用,必须要将输出的信号反馈到反相输入端(称为负反馈)来降低它的放大倍数。如图1-3中左图所示,R1的

运算放大器基础

运算放大器核心是一个差动放大器。 就是两个三极管背靠背连着。共同分担一个横流源的电流。三极管一个是运放的 正向输入,一个是反向输入。正向输入的三极管放大后送到一个功率放大电路放 大输出。 这样,如果正向输入端的电压升高,那么输出自然也变大了。如果反相输入端电 压升高,因为反相三级管和正向三级管共同分担了一个恒流源。反向三级管电流 大了,那正向的就要小,所以输出就会降低。因此叫反向输入。 当然,电路内部还有很多其它的功能部件,但核心就是这样的。 数字电路即为TTL或C-MOS逻辑电路,而谈到模拟电路,首先就应想到运算放大器。但是,这里讲的运算放大器是怎样一个器件呢? 简而言之,运算放大器是具有两个输入端,一个输出端,以极大的放大率将两输入端之间的电压放大之后,传递到输出端的一种放大器。 如果以电路符号来表示运算放大器,则如 右图,可表示为三角形。它的两个输入部分分 别叫做非倒相输入(1N+)和倒相输入(IN-)。 它以极大的放大率将倒相输入端与非倒相输 人端之间的电压放大,然后从输出端(OUT)输 出。 模拟/zh2002202 发表于2007-04-09, 14:09 1.“虚断”和“虚短”概念 如果为了简化包含有运算放大器的电子电路,总是假设运算放大器是理想的,这样就有“虚短”和“虚断”概念。 “虚短”是指在理想情况下,两个输入端的电位相等,就好像两个输入端短接在一起,但事实上并没有短接,称为“虚短”。虚短的必要条件是运放引入深度负反馈。 “虚断”是指在理想情况下,流入集成运算放大器输入端电流为零。这是由于理想运算放大器的输入电阻无限大,就好像运放两个输入端之间开路。但事实上并没有开 路,称为“虚断”。 2.集成运算放大器线性应用电路 集成运算放大器实际上是高增益直耦多级放大电路,它实现线性应用的必要条件是引入深度负反馈。此时,运放本身工作在线性区,两输入端的电压与输出电压成线 性关系,各种基本运算电路就是由集成运放加上不同的输入回路和反馈回路构成。 在分析由运放构成的各种基本运算电路时,一定要抓住不同的输入方式(同相或反相)和负反馈这两个基本点。 3.有源滤波电路

(完整版)集成运算放大器练习题

集成运算放大器测试题 指导老师:高开丽班级:11机电姓名:成绩: 一、填空题(每空1分,共20分) 1、集成运放的核心电路是电压放大倍数、输入电阻和输出电阻的电路。(填“低”、“高”) 2、集成运由、、、四个部分组成。 3、零漂的现象是指输入电压为零时,输出电压零值,出现忽大忽小得现象。 4、集成运放的理想特性为:、、、。 5、负反馈放大电路由和两部分组成。 6、电压并联负反馈使输入电阻,输出电阻。 7、理想运放的两个重要的结论是和。 8、负反馈能使放大电路的放大倍数,使放大电路的通频带展宽,使输出信号波形 的非线性失真减小,放大电路的输入、输出电阻。 二、选择题(每题3分,共30分) 1、理想运放的两个重要结论是() A 虚断VI+=VI-,虚短i I+=iI- B 虚断VI+=VI-=0,虚短i I+=iI-=0 C虚断VI+=VI-=0,虚短i I+=iI- D 虚断i I+=iI-=0,虚断VI+=VI- 2、对于运算关系为V0=10VI的运算放大电路是() A 反相输入电路 B 同相输入电路 C 电压跟随器 D 加法运算电路 3、电压跟随器,其输出电压为V0,则输入电压为() A VI B - VI C 1 D -1 4、同相输入电路,R1=10K,Rf=100K,输入电压VI为10mv,输出电压V0为 () A -100 mv B 100 mv C 10 mv D -10 mv 5、加法器,R1= Rf=R2=R3=10K, 输入电压V1=10 mv ,V2=20 mv ,

V3=30 mv,则输出电压为() A 60 mv B 100 mv C 10 mv D -60 mv 6、反相输入电路,R1=10K,Rf=100K,则放大倍数AVf为() A 10 B 100 C -10 D -100 7、根据反馈电路和基本放大电路在输出端的接法不同,可将反馈分为() A 直流反馈和交流反馈 B 电压反馈和电流反馈 C 串联反馈和并联反馈 D 正反馈和负反馈 8、电流并联负反馈可以使输入电阻()输出电阻() A 增大,减小 B 增大,增大 C 减小,减小 D 减小,增大 9、如果要求输出电压V0稳定,并且能减小输出电阻,在交流放大电路中应引入的负反馈是() A 电压并联负反馈 B 电流并联负反馈 C 电压串联负反馈 D 电流串联负反馈 10、根据反馈电路和基本放大电路在输入端的接法不同,可将反馈分为() A 直流反馈和交流反馈 B 电压反馈和电流反馈 C 串联反馈和并联反馈 D 正反馈和负反馈 三、画图题(每题10分,共20分) 1、画出一个电压放大倍数为-10,反馈电阻为100K的运算放大电路

运算放大器的稳定性6―电容性负载稳定性

运算放大器稳定性 第 6 部分(共 15 部分)电容性负载稳定性:R ISO 、高增益及 CF 、噪声增益 作者:Tim Green ,德州仪器 本系列的第六部分是新《电气工程》杂志 (Electrical Engineering ) 中“保持容性负载稳定的六种方法”栏目的开篇。这六种方法是 R ISO 、高增益及 CF 、噪声增益、噪声增益及 CF 、输出引脚补偿 (Output Pin Compensation ),以及具有双通道反馈的 R ISO 。本部分将侧重于讨论保持运算放大器输出端容性负载稳定性的前三种方法。第 7 和第 8 部分将详细探讨其余三种方法。我们将采用稳定性分析工具套件中大家都非常熟悉的工具来分析每种方法,并使用一阶分析法来进行描述。该描述方法是:通过 Tina SPICE 环路稳定仿真进行相关确认;通过 Tina SPICE 中的 V OUT /V IN AC 传递函数分析来进行检验;最后采用 Tina SPICE 进行全面的实际瞬态稳定性测试 (Transient Real World Stability Test)。在过去长达 23 年中,我们在真实环境以及实际电路情况下进行了大量测算,充分验证了这些方法的有效性。然而,由于资源的限制,本文所述电路并未进行实际制作,在此仅供读者练习或在自己的特定应用(如分析、合成、仿真、制作以及测试等)中使用。 运算放大器示例与 R O 计算 在本部分中,用于稳定性示例的器件将是一种高达 +/40V 的高电压运算放大器 OPA452。这种“功能强大的运算放大器”通常用于驱动压电致动器 (piezo actuator),正如您可能已经猜到的那样,该致动器大多为纯容性的。该放大器的主要参数如图 6.1 所示。图中未包含小信号 AC 开环输出阻抗 R O 这一关键参数,在驱动容性负载时,该参数对于简化稳定性分析极其重要。由于参数表中不含该参数,因而我们需要通过测量得出 R O 。由于 Analog & RF Models 公司 (https://www.doczj.com/doc/5115069941.html,/%7Ewksands/) 的 W. K. Sands 为该放大器构建了 SPICE 模型,因而我们可用 Tina SPICE 来测量 R O 。对于数据表参数而言,W. K. Sands SPICE 模型已经过长期而反复的考证具有极高的精确性,更重要的是,它是真正的硅芯片部件! 运算放大器稳定性   OPA452 Supply: +/-10V to +/-40V Slew Rate: +7.2V/us, -10V/us Vout Saturation: Io=50mA, (V-)+5V, (V+)-5.5V Io=10mA, (V-)+2V, (V+)-2V 图 6.1:OPA542 重要参数 为了测试 R O ,我们在图 6.2 的开环增益和相位与OPA452 频率关系图上标注“工作点 (operating point )”。通过测试此“工作点”(无环路增益的频率与增益点)的 R OUT ,R OUT = R O (如欲了解R O 及 R OUT 的详细探讨,敬请参见本系列的第 3 部分)。 R O Test Point

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

运算放大器稳定性实验

●Hello,and welcome to the TI Precision Lab supplement for op amp stability. ●This lab will walk through detailed calculations,SPICE simulations,and real-world measurements that greatly help to reinforce the concepts established in the stability video series. ●你好,欢迎来到TI Precision Labs(德州仪器高精度实验室)的运放稳定 性环节。 ●这个实验会包括计算,SPICE仿真和实际测试。这些环节帮助大家对视频中 的概念加深理解。

●The detailed calculation portion of this lab can be done by hand,but calculation tools such as MathCAD or Excel can help greatly. ●The simulation exercises can be performed in any SPICE simulator,since Texas Instruments provides generic SPICE models of the op amps used in this lab. However,the simulations are most conveniently done in TINA-TI,which is a free SPICE simulator available from the Texas Instruments website.TINA simulation schematics are embedded in the presentation. ●Finally,the real-world measurements are made using a printed circuit board,or PCB,provided by Texas Instruments.If you have access to standard lab equipment,you can make the necessary measurements with any oscilloscope, function generator,Bode plotter,and±15V power supply.However,we highly recommend the VirtualBench from National Instruments.The VirtualBench is an all-in-one test equipment solution which connects to a computer over USB or Wi-Fi and provides power supply rails,analog signal generator and oscilloscope channels,and a5?digit multimeter for convenient and accurate measurements. This lab is optimized for use with the VirtualBench. ●本实验的计算可以通过實際計算,如果使用Mathcad或者Excel这样工具会 更好。

如何根据“虚短”和“虚断”计算运放放大电路的放大倍数

如何根据“虚短”和“虚断”计算运放放大电路的放大倍数 课程介绍运放专题讲解,重点讲解了运放的内部电路结构,帮助深入理解运放的工作原理。运放是设计使用非常频繁且非常重要器件,通常在信号放大,电流采样电路里常见,对于初学者经常感到困惑,所以掌握好能够帮助你很好的分析电路,使你在处理信号电路设计时得心应手。如果您想深入学习硬件电路设计其他相关内容,请点击如下课程链接:* 张飞硬件电路设计与开发-入门篇(三极管/MOS管/运放/电路设计)-> http://t./topic/3l?_trackid=page2072项目名称:智能空气净化系统课程宗旨:通过实际的项目学习,让大家快速成长为一名有经验的能够独立做项目的研发工程师或高级工程师。受众群体有哪些?a、如果你还是学生,正厌倦于枯燥的课堂理论课程,想得到电子技术研发的实战经验; b、如果你即将毕业或已经毕业,想积累一些设计研发经验凭此在激烈竞争的就业大军中脱颖而出,找到一份属于自己理想的高薪工作; c、如果你已经工作,却苦恼于技能提升缓慢,在公司得不到加薪和快速升迁; d、如果你厌倦于当前所从事的工作,想快速成为一名电子研发工程师从事令人羡慕的研发类工作。通过学习课程你能学到哪些?1、什么叫推挽电路?什么叫射极输出?推挽电路为什么能实现电压跟随,电流放大?为什么推挽电路不会出现串红现象?2、什么叫运算放大器?为什么说运放在电路设计中有着极其重要的作用。3、详细讲解运算放大器内部三大结构。4、详细讲解三极管放大电路,什么叫三极管的Q点,以及Q点如何设置,以及由此引出的直流偏置电路,什么叫交流耦合,交流信号如何传递耦合,输出极性如何? 5、什么叫差分输入?为什么要引入差分输入,如何提高差分信号的放大能力? 6、什么叫共模干扰?如何抑制共模干扰? 7、什么叫反馈,负反馈,反馈的重要作用,详细讲解运放为什么引入深度负反馈才能工作在放大区。为什么说运放的反馈网络是工作稳定的? 8、详细讲解运放的四种构成形态,电压串联,电压并联,电流串联,电流并联,以及如何判断? 9、详细讲解为什么引入深度负反馈后的运放有着“虚短”和“虚断”的两个重要特征。10、如何设计运放放大电路,如何根据“虚短”和“虚断”计算放大倍数。

运算放大器的稳定性4―环路稳定性主要技巧与经验

运算放大器的稳定性 第4部分(共15部分):环路稳定性主要技巧与经验 作者:Tim Green,TI公司 本系列的第4部分着重讨论了环路稳定性的主要技巧与经验。首先,我们将讨论45度相位及环路增益带宽准则,考察了在Aol 曲线与1/β曲线以及环路增益曲线Aolβ中的极点与零点之间的互相转化关系。我们还将讨论用于环路增益稳定性分析的频率“十倍频程准则”。这些十倍频程准则将被用于1/β、Aol及Aolβ曲线。我们将给出运放输入网络ZI与反馈网络ZF的幅度“十倍频程准则”。我们将开发一种用于在1/β曲线上绘制双反馈路径的技术,并将解释为何在使用双反馈路径时应该避免出现“BIG NOT”这种特殊情况。最后,我们将给出一种便于使用的实际稳定性测试方法。在本系列的第5部分中,这些关键工具的综合使用使我们能够系统而方便地稳定一个带有复杂反馈电路的实际运放应用。 环路增益带宽准则 已确立的环路稳定性标准要求在fcl处相移必须小于180度,fcl是环路增益降为零时的频率。在fcl处的相移与整个180度相移之间的差定义为相位余量。图4.0详细给出了建议用于实际电路的经验,亦即在整个环路增益带宽(f≤fcl)中设计得到135度的相移(对应于45度的相位余量)。这是考虑到,在实际电路中存在着功率上升、下降及瞬态情况,在这些情况下,运放在Aol曲线上的改变可能会导致瞬态振荡。而这种情况在功率运放电路中是特别不希望看到的。由于存在寄生电容与印制板布局寄生效应,因此这种经验还考虑在环路增益带宽中用额外的相位余量来考虑实际电路中的附加相移的。此外,当环路增益带宽中相位余量小于45度时,即可能在闭环传输函数中导致不必要的尖峰。相位余量越低及越靠近fcl,则闭环尖峰就会越明显。 180 135 45 Frequency (Hz) 90 θ -45 -135o Design for: < Loop Stability Criteria:<-180 degree phase shift at fcl -135 degree phase shift at all frequencies

运算放大器使用技巧

运算放大器使用技巧 一、采用哪种放大器 运算放大器基本电路有反相放大器及同相放大器,在实际使用中如何选择? 如果输入与输出要求反相,当然要采用反相放大器,若放大的是交流信号,并无相位要求则可以采用同相放大器或反相放大器。采用哪种好呢?这要根据具体情况来分析。 采用反相放大器的优点是:运放不管有无输入信号,其两输入端电位始终近似为零.两输入端之间仅有低于μV级的差动信号(或称差模信号).而同相输入放大器的两个输入端之间除有极小的差模信号外,同时还存在较大的共模电压。虽然运放有较大的共模抑制比,但多少也会因共模电压带来一些误差。同相放大器的优点是输入阻抗极高,因此输入电阻取大取小影响不大,而反相放大器的输入阻抗Zi与输入电阻Ri大小有关(输入阻抗Zi等于输人电阻Ri) 例如,输入阻抗要求100kΩ;增益要求300,则若采用反相放大器时,Ri=100kΩ,Rf=30MΩ.这样大的反馈阻值对通用运放很难正常工作了,在这种情况时,采用同相放大器更合适。 另外,还要看信号源的内阻大小。某些传感器的内阻较大,若采用输入阻抗较小的放大电路,会影响测量精度、在这种情况时采用同相放大器更为合适。 这里介绍一种既采用反相放大器,而且也不采用阻值大的反馈电阻的电路,如图1 所示这电路中的反馈电 阻Rf不直接接在输出端, 而按在由R1、R2组成分 压器的中点A。现对此电 路进行一些分析。 此电路要求输入阻抗为100KΩ,增益为-500。按一般反相放大器设计,Ri=100 K Ω,Rf=50MΩ。 A点的分压比为R1/(R1+R2)=1/500,且有R1《Rf。根据“虚短”及“虚断”原则,可以列出下式: Ii=Vi/100KΩ=If, IfRf=-VA,

如何理解三极管放大电路中的补偿功能

如何理解三极管放大电路中的补偿功能 课程介绍运放专题讲解,重点讲解了运放的内部电路结构,帮助深入理解运放的工作原理。运放是设计使用非常频繁且非常重要器件,通常在信号放大,电流采样电路里常见,对于初学者经常感到困惑,所以掌握好能够帮助你很好的分析电路,使你在处理信号电路设计时得心应手。如果您想深入学习硬件电路设计其他相关内容,请点击如下课程链接:* 张飞硬件电路设计与开发-入门篇(三极管/MOS管/运放/电路设计)-> http://t./topic/3l?_trackid=page2072项目名称:智能空气净化系统课程宗旨:通过实际的项目学习,让大家快速成长为一名有经验的能够独立做项目的研发工程师或高级工程师。受众群体有哪些?a、如果你还是学生,正厌倦于枯燥的课堂理论课程,想得到电子技术研发的实战经验; b、如果你即将毕业或已经毕业,想积累一些设计研发经验凭此在激烈竞争的就业大军中脱颖而出,找到一份属于自己理想的高薪工作; c、如果你已经工作,却苦恼于技能提升缓慢,在公司得不到加薪和快速升迁; d、如果你厌倦于当前所从事的工作,想快速成为一名电子研发工程师从事令人羡慕的研发类工作。通过学习课程你能学到哪些?1、什么叫推挽电路?什么叫射极输出?推挽电路为什么能实现电压跟随,电流放大?为什么推挽电路不会出现串红现象?2、什么叫运算放大器?为什么说运放在电路设计中有着极其重要的作用。3、详细讲解运算放大器内部三大结构。4、详细讲解三极管放大电路,什么叫三极管的Q点,以及Q点如何设置,以及由此引出的直流偏置电路,什么叫交流耦合,交流信号如何传递耦合,输出极性如何? 5、什么叫差分输入?为什么要引入差分输入,如何提高差分信号的放大能力? 6、什么叫共模干扰?如何抑制共模干扰? 7、什么叫反馈,负反馈,反馈的重要作用,详细讲解运放为什么引入深度负反馈才能工作在放大区。为什么说运放的反馈网络是工作稳定的? 8、详细讲解运放的四种构成形态,电压串联,电压并联,电流串联,电流并联,以及如何判断? 9、详细讲解为什么引入深度负反馈后的运放有着“虚短”和“虚断”的两个重要特征。10、如何设计运放放大电路,如何根据“虚短”和“虚断”计算放大倍数。

运算放大器增益稳定性第3部分:AC增益误差分析

运算放大器增益稳定性,第 3 部分:AC 增益误差分析 作者:Miroslav Oljaca 德州仪器(TI)高级应用工程师和Henry Surtihadi TI 模拟设计工程师 增益带宽乘积的重要性 本小节将回顾运算放大器增益带宽乘积(GBWP) 即G×BW 概念。在计算AC 闭环增益以前需要GBWP 这一参数。首先,我们需要GBWP(有时也称作GBP),用于计算运算放大器闭环截止频率。另外,我们在计算运算放大器开环响应的主极点频率f0时也需要GBWP。在f0以下频率,第2 部分的DC 增益误差计算方法有效,因为运算放大器的开环增益为恒定;该增益等于A OL_DC (请参见参考文献 1 和参考文献2)。但是,超出f0频率以后,则必须使用AC 计算方法,我们将在后面小节详细讨论。 一般而言,如果运算放大器有直线、–20-dB/十倍频、开环增益滚降,则其具有恒定GBWP。就某个选定闭环增益而言,闭环增益开始下降的截止频率可通过将GBWP 除以理想闭环增益来计算得到。请注意,实际上得到的闭环响应–3-dB 点可能不会刚好等于增益峰值和其他非理想因数计算得到的滚降点。 图 1 显示了简化开环增益与TI OPA211 频率响应的对比情况。在产品说明书中,GBWP 针对两种不同的增益:1 (GBWP=45 MHz) 和100 (GBWP=80 MHz)。使用这两种增益规范的原因是OPA211 的开环增益响应在大约4MHz 到20MHz 频率区域有一个额外的极点-零点对。这是一个特例,其与先前的叙述(带直线-20-dB/十倍频滚降的运算放大器只有一个GBWP)相反。因此,80MHz 的GBWP 应用于计算100 或更高闭环增益运算放大器的截止频率,而45MHz 的GBWP 应用于2 或更低闭环增益的运算放大器。如果4MHz 以上频率区域需要使用更加精确的计算,则我们建议使用SPICE 仿真。 使用规定的GBWP 可让设计人员计算不同闭环增益的截止频率。运算放大器为单位增益结构时(闭环增益为1),截止频率为45MHz(45MHz/1),其也被称作运算放大器的单位增益带宽(UGBW)。如果运算放大器的闭环增益为100,则截止频率为800kHz (80MHz/100)。 若要计算OPA211 的主极点频率(f o),需使用80MHz 的GBWP。另外,80MHz 对100 或更高(最大为A OL_DC 值)的闭环增益有效。114dB 的值为室温下OPA211 的最小保证DC 开环增益,将用于A OL_DC。将所有这些参数代入至方程式 1 得到:

运算放大器16个基本运算电路概论

一、 电路原理分析与计算 1. 反相比例运算电路 输入信号从反相输入端引入的运算,便是反相运算。反馈电阻R F 跨接在输出端和反相输入端之间。根据运算放大器工作在线性区时的虚开路原则可知:i -=0,因此i 1=i f 。电路如图1所示, 图1 根据运算放大器工作在线性区时的虚短路原则可知:u -=u +=0。 由此可得: 01 f i R u u R =- 因此闭环电压放大倍数为: 1 o f uo i u R A u R = =- 2. 同相比例运算电路 输入信号从同相输入端引入的运算,便是同相运算。电路如图2所示,

图2 根据运算放大器工作在线性区时的分析依据:虚短路和虚开路原则 因此得: 1 (1)f o i R u u R =+ 开环电压放大倍数 1 1o f uf i u R A u R = =+ 3. 反相输入加法运算电路 在反相输入端增加若干输入电路,称为反向输入加法运算电路。电路如图3 所示, 图3 计算公式如下, 12 12 ( )o f u u u R R R =-+ 平衡电阻213////f R R R R =,当13f R R R ==时,输出电压012()u u u =-+ 4. 减法运算电路 减法运算电路如图4所示,输入信号1i u 、2i u 分别加至反相输入端和同相

输入端,这种形式的电路也称为差分运算电路。 图4 输出电压为: 2211231 (1)f f o i i R R R u u u R R R R =+ -+ 当123f R R R R ===时,输出电压21o i i u u u =- 5. 微分运算电路 微分运算电路如图5所示, 图5 电路的输出电压为o u 为: 21 i o du u R C dt =- 式中,21R C 为微分电路的时间常数。若选用集成运放的最大输出电压为OM U ,则21R C 的值必须满足: 21max ()OM i U R C du dt <= 6. 积分运算电路 积分运算电路如图6所示,

相关主题
文本预览
相关文档 最新文档