当前位置:文档之家› 有限元理论与方法讲

有限元理论与方法讲

有限元理论与方法讲
有限元理论与方法讲

讲 授 内 容

备 注 第13讲(第13周)

4.1 结构动力学问题有限元方法

动力学问题在国民经济和科学技术的发展中有着广泛的应用领域。最经常遇到的是结构动力学问题,它有两类研究对象:一类是在运动状态下工作的机械或结构,例如高速旋转的电机、汽轮机、离心压缩机,往复运动的内燃机、冲压机床,以及高速运行的车辆、飞行器等,它们承受着本身惯性及与周围介质或结构相互作用的动力载荷。如何保证它们运行的平稳性及结构的安全性,是极为重要的研究课题。另一类是承受动力载荷作用的工程结构,例如建于地面的高层建筑和厂房,石化厂的反应塔和管道,核电站的安全壳和热交换器,近海工程的海洋石油平台等,它们可能承受强风、水流、地震以及波浪等各种动力载荷的作用。这些结构的破裂、倾覆和垮塌等破坏事故的发生,将给人民的生命财产造成巨大的损失。正确分析和设计这类结构,在理论和实际上也都是具有意义的课题。

动力学研究的另一重要领域是波在介质中的传播问题。它是研究短暂作用于介质边界或内部的载荷所引起的位移和速度的变化,如何在介质中向周围传播,以及在界面上如何反射、折射等的规律。它的研究在结构的抗震设计、人工地震勘探、无损探伤等领域都有广泛的应用背景,因此也是近20多年一直受到工程和科技界密切关注的课题。

现在应用有限单元法和高速电子计算机,已经可以比较正确地进行各种复杂结构的动力计算,本章阐明如何应用有限单元法进行动力分析。

4.1.1 运动方程

结构离散化以后,在运动状态中各节点的动力平衡方程如下

F i +F d +P (t )=F e (2-2-1)

式中:F i 、F d 、P (t )分别为惯性力、阻尼力和动力荷载,均为向量;F e 为弹性力。 弹性力向量可用节点位移δ和刚度矩阵K 表示如下

F e =K δ

式中:刚度矩阵K 的元素K ij 为节点j 的单位位移在节点i 引起的弹性力。

根据达朗贝尔原理,可利用质量矩阵M 和节点加速度22t

??δ

表示惯性力如下

22i t

??-=δ

M F

式中:质量矩阵的元素M ij 为节点j 的单位加速度在节点i 引起的惯性力。 设结构具有粘滞阻尼,可用阻尼矩阵C 和节点速度

t

??δ

表示阻尼力如下 2d t

??-=δC

F 式中:阻尼矩阵的元素C ij 为节点j 的单位速度在节点i 引起的阻尼力。 将各力代入式(2-2-1),得到运动方程如下

)(22t t t

P K δδC δM =+??+?? (2-2-2)

t ??=δδ ,22t

??=δδ 则运动方程可写成

)( t P δK δC δ

M =++ (2-2-3) 在地震时,设地面加速度为a ,结构相对于地面的加速度为δ

,结构各节点的实际加速度等于a +δ ,在计算惯性力时须用它代替式(2-2-3)中的δ

。至于弹性力和阻尼力,则分别取决于结构的应变和应变速率,即取决于位移δ和速度δ

,与地面加速度无关。 2.2.2 质量矩阵

下面用m 表示单元质量矩阵,M 表示整体质量矩阵。求出单元质量矩阵后,进行适当的组合即

可得到整体质量矩阵。组合方法与由单元刚度矩阵求整体刚度矩阵时相似。

在动力计算中可采用两种质量矩阵,即协调质量矩阵和集中质量矩阵。 1.协调质量矩阵

从运动的结构中取出一个微小部分,根据达朗贝尔原理,在它的单位体积上作用的惯性力为

22i t

??-=r

p ρ

式中:ρ为材料的密度。

在对结构进行离散化以后,取出一个单元,并采用如下形式的位移函数

e δN r =

2

2i t

e

??-=δN p ρ 再利用荷载移置的一般公式求得作用于单元节点上的惯性力为

????????-==2

2T

i T

i d d t V V e

e

δN N p N F ρ

e e δ

m F -=i 可见,单元质量矩阵为

???=V d T N N m ρ (2-2-4)

如此计算单元质量矩阵,单元的动能和位能是互相协调的,因此叫做协调质量矩阵。

2.集中质量矩阵

假定单元的质量集中在它的节点上,质量的平移和转动可同样处理。这样得到的质量矩阵是对角线矩阵。

单元集中质量矩阵定义如下:

???=

V d T ?ρ?m (2-2-5)

式中,?为函数i ?的矩阵,i ?在分配给节点i 的区域内取l ,在域外取0。

由于分配给各节点的区域不能交错,所以由上式计算的质量矩阵是对角线的。

3.平面等应变三角形单元集中质量矩阵与协调质量矩阵

设单元重量为W ,将它3等分,分配给每一节点,得到单元集中质量矩阵如下

?????

??

??

???????????=1000000100000010000001000000100000013g W m (2-2-6) 单元协调质量矩阵为

??????????????

???????????????

?=

210

4

10

4

100210410414102104100410210414104102100410410213g W m (2-2-7) 在单元数目相同的条件下,两种质量矩阵给出的计算精度是相差不多的。集中质量矩阵不但本身易于计算,而且由于它是对角线矩阵,可使动力计算简化很多。对于某些问题,如梁、板、壳等。由于可省去转动惯性项,运动方程的自由度数量可显著减少。当采用高次单元时,推导集中质量矩阵是困难的。另外,只要离散化时保持了单元之间的连续性,由协调质量矩阵算得的频率代表结构真实自振频率的上限。

2.2.3 阻尼矩阵

如前所述,结构的质量矩阵[M ]和刚度矩阵[K ]是由单元质量矩阵[m ]和单元刚度矩阵[M ]e 经过集合而建立起来的。相对来说,阻尼问题比较复杂,结构的阻尼矩阵[C ]不是由单元阻尼矩阵经过集合而得到的,而是根据已有的实测资料,由振动过程中结构整体的能量消耗来决定阻尼矩阵的近似值。

1.单自由度体系的阻尼

单自由度体系的自由振动方程为

0=++δδδ

k c m 式中:m 为质量;c 为阻尼系数;k 为刚度系数;δ为变位。

上式两边除以m 后得到

022=++δωδζωδ

其中,m k /=

ω,()ωζm c 2/=,ζ称为阻尼比,ω为体系的自振频率(角频率)。

设初始条件为:当t =0时,δ=δ0,δ =0

v ,符合这些初始条件的解为

()???

?

?

?

++

-=t v t t d d

0d 0sin cos exp ωωζωδωδζωδ (2-2-8)

2d 1ζωω-=

体系的自振频率为ωd ,其振幅随着时间而逐渐衰减。

根据实测资料,大多数结构的阻尼比都是很小的数,较多为ζ=0.01~0.10,一般都小于0.20。可见,阻尼对自振频率的影响是很小的,通常可取ωd =ω。

2.多自由度体系的阻尼

如果假定阻尼力正比于质点运动速度,从运动的结构中取出一微小部分,在它的单位体积上作用的阻尼力为

e t

δN r p αραρ

-=??-=d 式中:α为比例常数;ρ为材料密度;N 为形函数。

利用荷载移置的一般公式求得作用于单元e 的节点上的阻尼力如下

e e V V δ

N N p N F d d T

d T d ρα??-== 即

e e δ

C F d -= 而

m N N C αρα==?V d T

(2-2-9)

可见,此时单元阻尼矩阵正比于单元质量矩阵。如果假定阻尼力正比于应变速度,则阻尼应力可表

e t

δDB εD

σ ββ=??-=d 所以作用于单元e 的节点上的阻尼力为

e e e V V δC δ

DB B δB F d d T d T

d -=-==??β 其中

e e V K δ

DB B C ββ==? d T (2-2-10) 可见,此时单元阻尼矩阵正比于单元刚度矩阵K e 。

前面已经说过,通常是根据实测资料,由振动过程中结构整体的能量消耗来决定阻尼的近似值,因此不是计算单元阻尼矩阵,而直接计算结构的整体阻尼矩阵C 。一般采用如下的线性关系,并称为瑞利(Rayleigh)阻尼,即

K M C βα+= (2-2-11)

其中的系数α和β根据实测资料决定。

现在说明如何计算α和β。设i φ和j φ为两个振型。对式(2-2-11)的两边先后乘以i φ,再前乘以T

j

φ得到

i j i j i j K φφM φφC φφT

T T βα+= (2-2-12)

根振型正交性再由式(2-2-12)得到

()

()()j i j i m pj

j i j i j =≠+== 0

2

T T βωαC φφC φφ

其中

j j pj m M φφT =

j j j ωζβωα22=+ (2-2-13)

pj j j j j m ωζ2T =C φφ

由式(2-2-13)得到

2

2j j j βωωα

ζ+

= (2-2-14) 实测两个阻尼比即可求解α与β。

结构动力学方程主要采用振型叠加法和直接积分法。前者用到振型正交条件,但不同的振型之间不能解耦时(在结构与地基的相互作用问题中,地基的阻尼往 往大于结构本身的阻尼,对于结构和地基应分别给以不同的α与β值),应采用直接积分法求解。

2.2.4 结构自振频率与振型

在式(2-2-3)中,令P (t )=0,得到自由振动方程。在实际工程中,阻尼对结构自振频率和振型的影响不大,因此可进一步忽略阻尼力,得到无阻尼自由振动的运动方程

0 =+δ

M δK (2-2-15) 设结构作下述简谐运动

t ωcos φδ=

把上式代人式(2-2-15),可得到齐次方程

0)(2=-φM K ω (2-2-16)

在自由振动时,结构中各节点的振幅{Ф}不全为零,所以结构自振频率方程为

02=-M K ω (2-2-17)

结构的刚度矩阵[K ]和质量矩阵[M ]都是n 阶方阵,其中n 是节点自由度的数目,所以上式是关于ω2

的n 次代数方程,由此可求出结构的自振频率

ω1≤ω2≤ω3≤…≤ωn

对于每个自振频率,由式(2-2-16)可确定一组各节点的振幅值? i =[φ i 1,φ i 2,…,φ in ]T ,它们互相之间应保持固定的比值,但绝对值可任意变化,它们构成一个向量,称为特征向量,在工程上通常称为结构的振型。

因为在每个振型中,各节点的振幅是相对的,其绝对值可取任意数值。在实际工作中,常用以下两种方法之一来决定振型的具体数值:

(1)规准化振型:取? i 的某一项,例如取第n 项为1,即φ in =1,于是

? i =[φ i 1,φ i 2,…,1]T (2-2-18)

这样的振型称为规准化振型。

(2)正则化振型:选取φ ij 的数值,使

1T =i i M φφ (2-2-19)

这样的振型称为正则化振型。

设已求得一振型[]

T

21,,,in

i i i φφφ =φ,如令

in ij ji φφφ/= (2-2-20)

则得到的[]T

21,,,in i i i φφφ =φ为规准化振型。如令

c ij ji /φφ= (2-2-21)

[]

2

/1T i

i c M φφ=

则得到的[]T

21,,,in i i i φφφ =φ为正则化振型。

令 i i pi m M φφT = (2-2-22)

当M 为集中质量矩阵时,则

[]∑==?

?????

???????????????

???=21

221212

1

0000

00

s is

s in i i n in i i pi m m m m m φφφφφφφ

当i φ为正则化振型时,有

m pi =1

令 pi i i i i i i pi m k 22T T ωω===M φφK φφ (2-2-23) 式中,m pi 和k pi 分别称为第i 阶振型相应的广义质量和广义刚度。 由式(2-2-23)得

pi pi i m k /=ω (2-2-24)

[例2-3]求解K ?=ω2M ?的振型,其中

??????????----=210141012K ,??

??

?

?????----=210141012M

求解说明

频率方程为

05.021

141

01

5.022

22

2=-------=-ωωωωM K

求得三个自振频率为

221=ω,42

2=ω,623

将221=ω代入式(2-2-16)中,得到第1振型必须满足的方程组如下

φ11-φ12+0=0,-φ11+2φ12-φ13=0,φ11-φ12+φ13=0

联立前两个方程解出

φ11=φ13,φ12=φ13

取φ13=1,得到规准化的第一振型为

?1=[1 1 1]T

用同样方法得到第2、3振型为

?2=[-1 0 1]T ?3=[1 -1 1]T

由式(2-2-21)得到正则化振型如下

?1=[1/2 1/2 1/2]T

?2=[-1 0 1]T

?3=[1/2 -1/2 1/2]T

2.2.5 振型叠加法求解结构的受迫振动

目前,常用的求解结构受迫振动的方法有两种,即振型叠加法和直接积分法。 用振型?i 的线性叠加来表示处于运动状态中的结构位移向量

()()()()∑==+++=n

i i i n n t t t t 1

2211ηηηηφφφφδ (2-2-25)

用M

φT j 前乘上式的两边,由于振型正交性,等式右边的n 项中只剩下i =j 这一项,即 ()()

t m t j pj j j j j ηη==M φφM δφT

T 由此得到

()pi

i i m t M δ

φT =

η (2-2-26) i η和i η

的初始值可表示为 ()pi i i m )

0(0T M δφ=

η (2-2-27) ()pi

i i m )0(0T δ

M φ =

η (2-2-28) 现在考虑下列运动方程的求解:

)( t P δK δC δ

M =++ 把式(2-2-25)代入上式,得到

)(1

1

1

t n

i i i n i i i n i i i P φK φC φM =++∑∑∑===ηηη

对上式两边前乘以T j

φ,并令C =αM +βK ,得到

())

(T

1

T 1

T

1

T t j n

i i i j n i i i j

n

i i i j

P φK φφφK M φM φφ

=+++∑∑∑===ηηβαη 由于振型正交性,得到

())

(T 22t m m m j i pi i i pi i i pi P φ=+++ηωηβωαη 由于i i i ωζβωα22=+,上式进一步化为

()n i t m j pi

i i i i i i ,,3,2,1 )(12T

2 ==++P φηωηωζη

(2-2-29) 这是二阶常微分方程,这样的方程共有n 个,它们是互相独立的。式(2-2-29)在形式上与单自由度体系的运动方程相同。其解答可用数值积分方法计算,也可用Duhamel 积分计算如下:

()()(

)

()()()()?

?

????+++-=

---

?t t t P m t di di i i i i di i t di t t

pi

di i i i i

i ωωηωζη

ωητ

τωτωηωζτωζsin 00cos 0e d sin e

10

*

(2-2-30)

其中

21i i d ζωω-=

())(T *t t P i P φ=

把ηi (t )代人式(2-2-25),即得到所需解答。在用有限元方法进行结构动力分析时,自由度数目n

可以达到几百甚至几千,但由于高阶振型对结构动力反应的影响一般都很小,通常只要计算一部分低阶振型就够了。例如,对于地震荷载,一般只要计算前面5~20个振型。对于爆炸和冲击荷载,就需要取更多的振型,有时需取出多达2n /3个振型进行计算,而对于振动激发的动力反应,有时只有一部分中间的振型起作用。

运动方程(2-2-3)是二阶常微分方程组,可用数值积分方法直接求解。应用于动力问题的直接积分方法很多,有线性加速度方法、Wilson 方法、Newmark 方法等,此不赘述。

有限元基础知识归纳

有限元知识点归纳 1.、有限元解的特点、原因? 答:有限元解一般偏小,即位移解下限性 原因:单元原是连续体的一部分,具有无限多个自由度。在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。 2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49 (1)在节点i处N i=1,其它节点N i=0; (2)在单元之间,必须使由其定义的未知量连续; (3)应包含完全一次多项式; (4)应满足∑Ni=1 以上条件是使单元满足收敛条件所必须得。可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。 4、等参元的概念、特点、用时注意什么?(王勖成P131) 答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。即: 为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即: 其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。称前者为母单元,后者为子单元。 还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。 5、单元离散?P42 答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。每个部分称为一个单元,连接点称为结点。对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。这种单元称为常应变三角形单元。常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。 6、数值积分,阶次选择的基本要求? 答:通常是选用高斯积分 积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。选择时主要从两方面考虑。一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

有限元分析基本理论问答 基础理论知识

1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. ?梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么 答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. ?简述整体刚度矩阵的性质和特点 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 11. 简述整体坐标的概念 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’Y’Z’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 15.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元理论基础

有限元理论基础

有限元理论基础 2.1 数值模拟技术 2.1.1数值模拟技术简介 在工程技术领域中许多力学问题和场问题,实质上就是在一定的边界条件下求解一些微分方程。对于少数简单问题,人们可以通过建立它们的微分方程与边界约束求出该问题的解析解。但是对于比较复杂的数学方程问题以及不规则的边界条件通过激吻戏法往往难以求解,而需要借助各种数值模拟方法活的相应的工程数值解,这就是所谓的数值模拟技术。 在实际工程领域中,用数值模拟技术可以对复杂的工程结构进行受力和响应分析,这样可以在设计或者加工前预知实体结构工作状态下的大概情况。 目前在工程实际应用中,常用的数值求解方法有:有限单元法、有限差分法、边界元等但从实用性和使用范围来说,有限单元法则是随着计算机技术的发展而被广泛应用的一种行之有效的数值计算方法。 2.2.2 有限元法 有限元法是一种基于能量原理的数值计算

方法,是解决工程实际问题的一种有效的数值计 算工具。它是里茨法的另一种表示形式,它可应用里茨法分析的所有弹性理论。 限元法是处理连续的结构体离散或有限个单元集合,也就是将连续的求解域离散为一定数量的单元集合体。且每个单元都具有一定的节点,相邻单元通过节点相互连续,同时使用等效节点力代替作用于单元上的力和选定场函数的节点值作为基本未知量。并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律:进而利用力学中的某些变分原理去建立用以求解节点未知量的有限元法方程,从而将一个连续域中的无限自由度问题化为离散域中的有限自由度问题。求解后,可利用解出的节点值和设定的插值函数确定整个单元集体上的场函数。有限元求解问题中的单元分析:t t t a k F= 式中::t F单元节点作用力。 t K:单元刚度矩阵。 t a:单元节点位移。 通过单元分析确定单元刚度矩阵,建立单元节点作用力和单元为伊关系。有限元求解问题时建立 的结构整体平衡方程:P KU=

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元分析理论基础

有限元分析概念 有限元法:把求解区域瞧作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状与大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性与复杂的边界条件 有限元模型:它就是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:就是利用数学近似的方法对真实物理系统(几何与载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元就是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也就是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程就是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力与应变就是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有她们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题就是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系就是非线性关系。研究这类问题一般都就是假定材料的应力与应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触与摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。 有限元理论基础

有限元理论与方法-第3讲

讲 授 内 容 备 注 第3讲(第3周) 3. θ i i U u , 为例, 作用于杆单元的节点力是[U ij V ij ]T ,而作用于节点i 的节点力是[-U ij -V ij ]T 。将节点脱离出来,受力分析如图1-4b 所示,在水平和垂直方向的节点受力平衡方程为 ? ?? =---=---00ip im ij i ip im ij i V V V Y U U U X (1-2-15) 由式(1-2-14)知道杆单元ij 在节点i 的节点力为 j ij i ii ij ij ij V U δK δK F +=? ?? ???= (1-2-16) 其它单元施于节点i 的节点力同样可以写出,一起代入式(1-2-15),得到 i p ip m im j ij i e ii P δK δK δK δK =+++?? ? ??∑ (1-2-17) 每个节点都有一对平衡方程如上,对于全部节点i =1,2,…,N 的结构,得到2N 阶线性方程组,即结构的 节点平衡方程组 P δK = (1-2-18) 其中 T 21],...,,[N δδδδ= T 21],...,,[N P P P P = 式中,δ为全部节点位移组成的列阵;P 为全部节点荷载组成的列阵;K 为结构的整体刚度矩阵。 4.总体刚度矩阵的合成 由单元刚度矩阵合成结构的整体刚度矩阵通常采用两种方法,一种为编码法,一种为大域变换矩阵法,前者对自由度较少的结构简单明了,后者特别适合计算机编程运算。下面重点阐述后者。 结构总体刚度矩阵[K ]与单元刚度矩阵[K ]e 之间的关系为 () e e e e G K G K ∑=T (1-2-19)

有限元理论与方法

第一章 绪论 有限元发展过程: 有限元法在西方起源于收音机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德教授,于1954—1955年间分阶段在《Aircraft Engineering 》上发表上许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书内容提供了有限元法的理论基础。美国的、 、 和等人于1956年发表了了篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,并说明了如何利用计算机进行分析。美国于1960年在一篇介绍平面应力分析的论文中,首先提出了有限元的名字。1965年英国及其合作者解决了将有限元法应用于所有场的问题,使有限元法的应用更加广泛。 有限元法的基本思路: 有限元法的基本思路和基本原理以结构力学中的位移法为基础,把复杂的结构或连续体看成为有限个单元的组合,各单元彼此在节点处连续而组成整体,把连续体分成有限个单元和节点,称之为离散化,先对单元进行特性分析,然后根据各单元在节点处的平衡协调条件建立方程,综合后作整体分析。 这样一分一合,先离散再综合的过程,就把复杂结构或连续体的计算问题转化为简单单元的分析与综合问题。 有限元分析中可采取三种方法: 位移法——取节点位移作为基本未知数 力 法——取节点力作为基本未知数 混合法—— 有限元法分析过程: 1、结构离散化(单元划分) 2、选择位移模式 为了能用节点位移表示单元体的位移、应变和应力,在分析连续体时,必须对单元中位移的分布做出一定的假定,也就是假定位移是坐标的某种简单函数,这种函数称为位移模式或位移函数(形函数)。 {}[]{}e u N δ= (1) 3、分析单元的力学特性 (1)利用几何方程:由位移表达式导出用点位移表示单元应变的关系式 {}[]{} e εδ=B {}ε为单元内任一点的应变列阵 (2) 非线性有限元 线性有限元 几何非线性 材料非线性 有限元

有限元法中的几个基本概念

诚信·公平·开放·共赢 Loyalty Fair Opening Win-win 有限元法中的几个基本概念 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。 这些单元仅在顶角处相互联接,称这些联接点为结点。 离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。 通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。 在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰富了文本编辑功能,改善了用户的视觉体验,方便用户快速便捷的对脚本或程序进行编辑、编译与调试。其中并行版在前后处理上进行了相应的改进。

有限元法的理论基础

有限元法的理论基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元

有限元方法理论及其应用

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不 限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 将一维杆单元分成三段加以推导,并应用驻值条件0p D ?∏=?,我们得到节点的平衡 方程[K]{D}{R}=,即: 12 2341100112106012112600118u u AE cL u L u -?? ???? ?? ????--??????= ??????--??????????-???? ?? 我对此提出了几点疑问: 1) 为什么边界条件u 1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2) 为什么刚度矩阵[K]会奇异? 3) 为什么平衡方程本身是矛盾的,而加上边界条件u 1=0之后就能解出一个唯一的近似解? 4) 为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u 1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u 1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u 1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出了四个,显然这四个方程不可能线性无关,所以刚度矩阵奇异。

有限元理论与方法

第一章 绪论 有限元发展过程: 有限元法在西起源于收音机和导弹的结构设计,发表这面文章最早而且最有影响的是西德J.H.Argyrb 教授,于1954—1955年间分阶段在《Aircraft Engineering 》上发表上多有关这面的论文,并在此基础上写成了《能量原理与结构分析》,此书容提供了有限元法的理论基础。美国的M.T.Turner 、 R.W.cloagh 、 H.C.martin 和L.J.Topp 等人于1956年发表了了篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的法,并说明了如利用计算机进行分析。美国于1960年在一篇介绍平面应力分析的论文中,首先提出了有限元的名字。1965年英国及其合作者解决了将有限元法应用于所有场的问题,使有限元法的应用更加广泛。 有限元法的基本思路: 有限元法的基本思路和基本原理以结构力学中的位移法为基础,把复杂的结构或连续体看成为有限个单元的组合,各单元彼此在节点处连续而组成整体,把连续体分成有限个单元和节点,称之为离散化,先对单元进行特性分析,然后根据各单元在节点处的平衡协调条件建立程,综合后作整体分析。 非线性有限元 线性有限元 几何非线性 材料非线性 有限元

这样一分一合,先离散再综合的过程,就把复杂结构或连续体的计算问题转化为简单单元的分析与综合问题。 有限元分析中可采取三种法: 位移法——取节点位移作为基本未知数 力 法——取节点力作为基本未知数 混合法—— 有限元法分析过程: 1、结构离散化(单元划分) 2、选择位移模式 为了能用节点位移表示单元体的位移、应变和应力,在分析连续体时,必须对单元中位移的分布做出一定的假定,也就是假定位移是坐标的某种简单函数,这种函数称为位移模式或位移函数(形函数)。 {}[]{}e u N δ= (1) 3、分析单元的力学特性 (1)利用几程:由位移表达式导出用点位移表示单元应变的关系式 {}[]{}e εδ=B {}ε为单元任一点的应变列阵 (2) (2)利用物理程,由应变的表达式导出用节点位移表示单元应力的关系式 {}[][]{}[]{}e D D δδε=B = (3) {}δ是单元任一点的应力列阵 []D 是材料的弹性矩阵 (3)利用虚功原理建立作用于单元上的节点力和节点位移之间的关系式,即单元的刚度程(平衡程) []{}{}e e K R δ=

有限元法的理论基础

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 2.2有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元可以是四面体、长方体和六面体等。为合理有效地表示连续体,需要适当选择单元的类型、数目、大小和排列方式。 离散化的模型与原来模型区别在于,单元之间只通过节点相互连接、相互作用,而无其他连接。因此这种连接要满足变形协调条件。离散化是将一个无限多自由度的连续体转化为一个有限多自由度的离散体过程,因此必然引起误差。主要有两类:建模误差和离散化误差。

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 我对此提出了几点疑问: 1)为什么边界条件u1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2)为什么刚度矩阵[K]会奇异? 3)为什么平衡方程本身是矛盾的,而加上边界条件u1=0之后就能解出一 个唯一的近似解? 4)为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出

了四个,显然

这四个方程不可能线性无关,所以刚度矩阵奇异。 对于第三个问题,首先我们应该明确方程区别于等式,虽然左右两边都是用“=”连接,但是方程只在特殊条件下取得定解。由于平衡方程是在没有约束的条件下推导出来的,显然它不可能满足等式要求。宏观上看,系统在没有外部约束,而又施加有外力,显然系统会产生加速度而绝不会平衡。所以平衡方程本身是矛盾的。而加上边界条件之后,不但满足了平衡的前提,还改变了矩阵的结构和性质,所以有解。但是,由于我们提前假设了位移线性变化,相当于人为对单元施加了额外约束,让位移按照我们假设的规律变化,所以得到的解是过刚的近似解。但对于方程本身而言是精确解。 对于第四个问题,其力学的作用机理类似于作用力与反作用力,由于刚度矩阵不表征方向,所以其大小是相等的。 1.2 有限元法的思想 有限元法是求解连续介质力学问题的数值方法,更一般意义是一种分析结构问题和连续场数学物理问题的数值方法。 有限元法的基本思想是离散化和分片插值。 即把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。 求解得到节点值后就可以通过设定的插值函数确定单元上以至个集合体上的场函数。对每个单元,选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件。单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用弹性力学的有关公式,计算出各单元的应力、应变,当各单元小到一定程度,那么它就代表连续体各处的真实情况。

有限元理论与方法讲

讲 授 内 容 备 注 第13讲(第13周) 4.1 结构动力学问题有限元方法 动力学问题在国民经济和科学技术的发展中有着广泛的应用领域。最经常遇到的是结构动力学问题,它有两类研究对象:一类是在运动状态下工作的机械或结构,例如高速旋转的电机、汽轮机、离心压缩机,往复运动的内燃机、冲压机床,以及高速运行的车辆、飞行器等,它们承受着本身惯性及与周围介质或结构相互作用的动力载荷。如何保证它们运行的平稳性及结构的安全性,是极为重要的研究课题。另一类是承受动力载荷作用的工程结构,例如建于地面的高层建筑和厂房,石化厂的反应塔和管道,核电站的安全壳和热交换器,近海工程的海洋石油平台等,它们可能承受强风、水流、地震以及波浪等各种动力载荷的作用。这些结构的破裂、倾覆和垮塌等破坏事故的发生,将给人民的生命财产造成巨大的损失。正确分析和设计这类结构,在理论和实际上也都是具有意义的课题。 动力学研究的另一重要领域是波在介质中的传播问题。它是研究短暂作用于介质边界或内部的载荷所引起的位移和速度的变化,如何在介质中向周围传播,以及在界面上如何反射、折射等的规律。它的研究在结构的抗震设计、人工地震勘探、无损探伤等领域都有广泛的应用背景,因此也是近20多年一直受到工程和科技界密切关注的课题。 现在应用有限单元法和高速电子计算机,已经可以比较正确地进行各种复杂结构的动力计算,本章阐明如何应用有限单元法进行动力分析。 4.1.1 运动方程 结构离散化以后,在运动状态中各节点的动力平衡方程如下 F i +F d +P (t )=F e (2-2-1) 式中:F i 、F d 、P (t )分别为惯性力、阻尼力和动力荷载,均为向量;F e 为弹性力。 弹性力向量可用节点位移δ和刚度矩阵K 表示如下 F e =K δ 式中:刚度矩阵K 的元素K ij 为节点j 的单位位移在节点i 引起的弹性力。 根据达朗贝尔原理,可利用质量矩阵M 和节点加速度22t ??δ 表示惯性力如下 22i t ??-=δ M F 式中:质量矩阵的元素M ij 为节点j 的单位加速度在节点i 引起的惯性力。 设结构具有粘滞阻尼,可用阻尼矩阵C 和节点速度 t ??δ 表示阻尼力如下 2d t ??-=δC F 式中:阻尼矩阵的元素C ij 为节点j 的单位速度在节点i 引起的阻尼力。 将各力代入式(2-2-1),得到运动方程如下 )(22t t t P K δδC δM =+??+?? (2-2-2)

有限元计算原理与方法..

1.有限元计算原理与方法 有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 1.1. 有限元分析的基本理论 有限元单元法的基本过程如下: 1.1.1.连续体的离散化 首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接 而成为一个整体。单元可采用各种类 型,对于三维有限元分析,可采用四 面 体单元、五西体单元和六面体 单元等。在Plaxis 3D Foundation 程序中,土体和桩体主要采用包 含6个高斯点的15节点二次楔 形体单元,该单元由水平面为6 节点的三角形单元和竖直面为四 边形8节点组成的,其局部坐标 下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的 8个成对节点四边形单元。 在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;

若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应 把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理; 若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布 荷载等效地移置到有关节点上去。 最后,还应建立一个适合所有单元的总体坐标系。 由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料 的由众多单元以一定方式连接成的离散物体。因此,用有限元法计算获得的结果 只是近似的,单元划分越细且又合理,计算结果精度就越高。与位移不同,应力 和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通 过对桩截面进行积分褥到。 1.1. 2. 单元位移插值函数的选取 在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移 作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]T f u v w =。 引入位移函数N (x,y,z )表示场变量在单元内的分布形态和变化规律,以便用 场变量在节点上的值来描述单元内任一点的场变量。因此在单元内建立的位移模 式为: {}[]{}e f N δ= (3-1) 其中:12315[][,,......]N IN IN IN IN =,I 为单位矩阵。 按等参元的特性,局部坐标(,,)ξηζ到整体坐标,,x y z ()的坐标转换也采用 与位移插值类似的表达式。经过坐标变化后子单元与母单元(局部坐标下的规则 单元)之间建立一种映射关系。不管内部单元或边界附近的单元均可选择相同的 位移函数,则为它们建立单元特性矩阵的方法是相同的。因此,对于15节点楔 形体单元体内各点位移在整体坐标系,,x y z ()下一般取:

浅析有限元方法的发展与应用

浅析有限元方法的发展与应用 摘要:1965年“有限元”这个名词第一次在我国出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元法(Finite Element Method,简写为FEM)是求解微分方程的一种非常有效的数值计算方法,用这种方法进行波动数值模拟受到越来越多的重视。 关键字:有限元法发展应用 Abstract:1965 the term "finite element" first appeared in our country, to this day the finite ele ment is widely used in engineering, has experienced more than 30 years of development history, the ory and algorithm have been becoming more complete.FEM (Finite Element Method, abbreviated a s FEM) is a very effective to solve the differential equation of numerical calculation Method of wav e numerical simulation by using this Method is more and more attention. Keywords: finite element method development Application 绪论 有限元法是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。它是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。 一、有限元的发展历程 有限元法的发展历程可以分为提出(1943)、发展(1944-1960)和后期(1961-二十世纪九十年代)三个阶段。有限元法是受内外动力的综合作用而产生的。 1943年,柯朗在《美国数学学会公报》(Bulletin of The American Mathematical Society)上发表了《平衡和振动问题的变分解法》 (Variational Methods for The Solution of Problems of Equilibrium And Vibration)一文,这篇文章实际上是他1941年在美国数学学

相关主题
文本预览
相关文档 最新文档