当前位置:文档之家› 纳米二氧化钛结构与光催化性能关系

纳米二氧化钛结构与光催化性能关系

纳米二氧化钛结构与光催化性能关系
纳米二氧化钛结构与光催化性能关系

纳米二氧化钛结构与光催化性能关系

XXX

XXX

摘要纳米级二氧化钛由于具有无毒、化学稳定性好、比表面积大、成本低等优异性能深受科研工作者的关注。其所具有的光催化性能使其在降解大气及水体中污染物领域具有广阔前景。本文从纳米二氧化钛结构出发,阐述纳米二氧化钛光催化机理,并简要说明不同元素掺杂纳米二氧化钛后对其光催化性能的影响。

关键词纳米二氧化钛; 光催化; 结构; 掺杂

自1972年FuJiShima和HonclaIIJ发现TiO2单晶电极在紫外光照射下可分解水及Bard将光电化学理论扩展到半导体微粒光催化后,TiO2作为一种半导体光催化剂吸引诸多学者的研究。由于TiO2具有良好的化学稳定性、抗磨损性、较大的比表面积、无毒、成本低以及可以直接利用自然光等优点,利用TiO2光催化氧化法处理水中有机污染物等方面有广阔的应用前景。然而TiO2半导体光催化剂在实际应用中存在一些缺陷如:带隙较宽(E =3.2eV),只有在λ小于387.5 nm的紫外光激发下价带电子才能跃迁到导带上形成光生电子和空穴分离,而紫外光在自然光中仅占3%~5%,因此对自然光的利用率不高。另外半导体载流子的复合率很高,导致光量子效率很低,提高TiO2纳米粒子的光催化效率是利用TiO2光催化剂的关键。为了改善TiO2的光催化性能,研究工作者关于TiO2的制备方法、掺杂、催化剂载体、热处理等方面做了许多研究,其中掺杂因其容易实现、效果明显、应用范围广泛,而成为研究热点。[1]

1、纳米二氧化钛结构及其光催化机理

1.1 二氧化钛晶型

纳米二氧化钛具有锐钛矿,板钛矿及金红石型结构,其中以锐钛矿型光催化性能最好。其晶胞结构如下(其中红色为O,白色为Ti):

锐钛矿型:

板钛矿型:

金红石型:

1.2纳米二氧化钛催化机理

当阳光尤其是紫外光照射到半导体TiO2微粒上时,形成光生电子--空穴对。在电场的作用下,电子与空穴有效分离并迁移到TiO2微粒表面的不同位置。光生空穴有很强的获得电子能力,可夺取吸附于半导体微粒表面的有机物或溶剂中的电子,使原本不吸收入射光的物质活化而被氧化;电子受体则通过接受TiO2微粒表面的电子被还原,水溶液中的光催化氧化还原反应就在TiO2微粒表面进行。吸附于TiO2微粒表面的水分子被光生空穴氧化后,生成氧化能力和反应活性极强的氢氧自由基(·OH),上述机理表示如下:

TiO2 + hv → h+ + e+ (1)

H2 O + h+ →·OH + H+ (2)

光生电子还原水中的溶解氧, 通过反应(3)~(7)生成过氧化氢自由基(H2O·)和过氧化氢( H2O2 )。过氧化氢借助反应(8)~(11),依次生成氢氧自由基。

H+ + e- → H· (3)

O2 + e- →·O-2 (4)

·O-2 + H·→ HO-2 (5)

HO-2 + h+ → HO2· (6)

2HO2·→ O2 + H2O2 (7)

H2O2 + ·O-2 →·OH+ OH-+ O2 (8)

H2 O2 + hv →2·OH (9)

H2 O2 + e- →·OH+ OH-(10)

OH- + h+ →·OH (11)

·OH是水中存在的反应活性最强的氧化剂, 对作用物无选择性, 其对细胞的DNA复制和细胞膜代谢带来有害的影响。

TiO2 微粒膜本身对微生物细胞无毒性和杀灭作用, 只有在太阳光尤其是紫外光照射下,才具有杀灭细菌的作用。TiO2 微粒光催化杀菌有直接和间接反应两种不同的机理。光激发TiO2 和细胞间的直接反应是光生电子和光生空穴直接和细胞壁、细胞膜或细胞的组成成分反应,导致功能单元失活而令细胞死亡。例如在大肠杆菌被光激发的TiO2 微粒完全杀死时, 细胞内辅酶A的含量下降而二聚体辅酶A的含量上升。这是因为光激发TiO2 产生电子空穴对, 导带中的光生电子转移给O2 等电子受体,价带中的光生空穴则接受辅酶A的电子,从而使辅酶A通过双硫键键合形成二聚体而导致辅酶A失活。

另一机理则是光激发TiO2与细胞的间接反应,即光生电子或光生空穴与水或水中的溶解氧反应,形成氢氧自由基(·OH)和过氧化氢自由基(HO2·)等活性氧类,这些活性自由基的反应活性和氧化能力最强。它们可与细胞壁、细胞膜或细胞内的组成成分发生生化反应,这已被许多实验研究所证实。

因此,TiO2微粒膜光催化杀菌机理是光生电子和光生空穴及形成于水中的·OH,·O+2,HO2·和H2O2与细胞壁、细胞膜或细胞内的组成成分反应而杀死细菌。其机理总结如图1所示。

[2]

2、掺杂型纳米二氧化钛

纳米TiO2的杀菌功能在紫外线照射下才具有光催化作用,亦即表现出抗菌、杀菌作用,

且在空气中极易氧化、吸湿、团聚、性能不稳定。通过掺杂贵金属可以防止电子-空穴对的复合,促进电子-空穴对的有效分离,从而使二氧化钛抗菌性能更加稳定,这些金属中以银的抗菌能力最强。Leo M.Sudnik等应用表面增强Raman光谱检测了沉积于TiO2表面的多晶型银,发现了银离子的光学诱导还原作用,Ag可作为TiO2光化学活性剂。其特征是该材料不仅在光照下能产生良好功效,在微弱光甚至无光照条件下同样能产生抗菌效果。[3]因此,若将纳米二氧化钛与Ag+复合,所得的载银纳米二氧化钛由于Ag掺杂效应,其光吸收带隙变窄,吸收光移向长波方向,以至具有可见光催化活性。在无光条件下,可利用Ag+的杀菌效果,由此大大拓宽了材料的应用范围。

过渡金属掺杂的机理主要是通过引入过渡金属离子在本征半导体中形成间隙、空位、占据本征离子亚晶格等方式形成杂质缺陷,扩展光吸收范围。同时这些缺陷可能成为光生电子或空穴的捕获中心使电子与空穴有效分离。

卢安贤等用溶胶一凝胶法制备了Fe—TiO2光催化薄膜,认为[Fe]/[TiO2](摩尔比)为0.005时薄膜对敌敌畏的降解率最大。肖美群等应用电化学阳极氧化法制备不同Fe掺杂量的TiO2薄膜,发现掺Fe后TiO2薄膜吸收带边明显向长波方向移动,Fe的浓度为1.08%的TiO2薄膜红移现象明显,归因于Fe的3d轨道电子激发到导带上。不同掺铁方式对TiO2薄膜光催化活性影响不同,梁园园等以化学纯的钛酸正四丁酯为主要原料采用溶胶凝胶工艺在普通玻璃表面制备表面掺铁与体相掺铁的TiO2薄膜,光催化降解甲基橙溶液时,体相掺铁的最佳剂量为n(Fe)/n(Ti)=O.12%,表面掺铁的最佳剂量为n(Fe)/n(Ti)=1.5%,而表面掺铁薄膜的最佳光催化表观速率常数比体相掺铁的最佳值要高1.5倍,根据AES的谱图分析其原因是表面掺铁薄膜的铁集中于薄膜外层,与体相掺杂的薄膜相比增加了TiO2的表面缺陷,使电子与空穴有效分离,有效地转移了电荷,光催化活性得到增强,因而表面掺杂优于体相掺杂。[1]另外,利用阴离子掺杂,多离子掺杂的实验均有报道,其结果表明多种掺杂元素均对纳米二氧化钛光催化性能有所提高,其更深入的研究及理论仍有待发展。

结语

二氧化钛光催化活性在经过不同离子掺杂后得到很大改善,一般认为掺杂其他元素后使二氧化钛表面产生更多缺陷能,缩小了光吸收能隙并且有效地阻止光生电子与空穴的复合,从而提高了光催化活性。同时由于纳米二氧化钛具有巨大比表面积,利用其纳米效应,在抗菌防腐应用方面具有很大优势。在科学家的努力下,纳米二氧化钛的各种优越性能不断被发掘出来。可以推测,在今后一段时间里,纳米二氧化钛材料将在光催化以至更广的领域内发挥重要的作用。

参考文献

[1] 沈毅, 任富建, 刘红娟. 掺杂TiO2的光催化性能研究(稀有金属材料与工程), 2006, 35(11)

[2] 李娟红, 雷闫盈, 王小刚. 半导体TiO2纳米微粒膜光催化杀菌机理与性能的研究,材料工程,2006

[3] 郑露, 许欣, 陈昭斌,杨慧萍, 张梦妍. 载银纳米二氧化钛水溶液对噬菌体和细菌杀灭效果的比较研究,现代预防医学2010,37(5)

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用 自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH)和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

二氧化钛光催化分解甲醛原理

二氧化钛光催化分解甲 醛原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全, 2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为 eV,当纳米TiO2接受波长为 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:

国内纳米二氧化钛制备的进展

2012年第14期广东化工 第39卷总第238期https://www.doczj.com/doc/6f7765458.html, · 93 · 国内纳米二氧化钛制备的研究进展 陈杰山 (湖南化工职业技术学院,湖南株洲 412004) [摘要]纳米二氧化钛由于其许多优异的性质而显示出日益广阔的应用前景,纳米二氧化钛的制备因此成为研究的热点之一。主要对我国在纳米TiO2粉体、纳米TiO2薄膜、一维纳米TiO2及其阵列的制备研究工作进行了综述,指出了当前在制备研究方面存在的不足,展望了今后的主要研究方向。 [关键词]纳米TiO2;制备方法;工艺条件;光催化活性 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2012)14-0093-03 Home Advances in Study on Preparing Nanosized Titanium Dioxide Chen Jieshan (Hunan Professional College of Chemical Technology, Zhuzhou 412004, China) Abstract:Nano-TiO2 is showing wider and wider future for its application because of many fine qualities, so the preparation of nano-TiO2 has become one of the popularities in research. The home preparation research mainly including nano-TiO2 powder, nano-TiO2 film, one-dimensioned nano-TiO2 and their arrays is summarized, thus the present shorts in research of the preparation are pointed out, and the main orientations of future research are forecast. Keywords:nano-TiO2;preparation method;technological condition;photocatalytic activity 纳米二氧化钛因为具有一系列优良的性能(如颜色效应、光催化活性、对紫外线的屏蔽、化学稳定性等)、可以广泛应用于诸多领域(如水处理、化工、太阳能电池、颜料和涂料、化妆品、纺织、食品、环保等)而备受青睐,从一开始就成为纳米材料领域的研究热点之一。我国对纳米二氧化钛的研究虽比世界上主要科技强国晚了十来年,但发展很快。1992年,中国真空学会召开了第一届全国纳米科学与技术学术会议,标志着我国大规模研究纳米材料尤其是纳米二氧化钛的开始。从那时至今,通过无数科学工作者的努力,我国不但在实验制备与表征各种纳米二氧化钛材料、研究材料功能与特异性以及探讨有关过程的机理等方面作了大量的工作,还在其应用、产业化制备、产品标准化等方面取得了令人瞩目的成就,使我国在纳米二氧化钛的研究领域接近了世界先进水平。文章仅对我国在纳米二氧化钛制备方面的研究进展进行综述。 1 纳米二氧化钛粉体的制备 到目前为止,已经被研究过的纳米二氧化钛粉体的制备方法不下二十来种[1,2],按照反应物的相态可以将它们分为气相反应法、液相反应法和固相反应法三大类,而按照制备过程是否发生化学变化又可以将它们分为物理法和化学法两大类,也可以按照钛源的不同而对制备方法进行分类。我国在纳米TiO2粉体的制备方面所做的研究可以概括为以下三个方面。 1.1 探索与改善已有方法的工艺条件 从李晓娥[3]等采用溶胶-凝胶法成功制得锐钛矿型纳米TiO2开始,国内对纳米TiO2粉体的制备研究一直没有停止过[4-9]。由于我国对纳米TiO2的研究起步较晚,当我们开始相应的制备研究时,国外已有多种制备方法趋于成型,所以我们在制备方面所做的研究主要是认识各种制备方法、对方法的工艺条件进行改善与优化等。主要研究了各种制备方法中的反应条件、制备过程的反应机理、影响纳米TiO2质量(晶型、粒子平均直径、颗粒均匀度、团聚度、杂质含量等)的主要因素,掌握了以不同方法制备纳米TiO2粉体或浆料、制备不同晶型与形貌的纳米TiO2的技术,实现了非晶纳米TiO2向锐钛型纳米TiO2、锐钛型纳米TiO2向金红石型纳米TiO2的转化,改善与优化了制备的工艺条件。在纳米TiO2粉体制备的产业化方面,通过进行各种制备方法在小试基础上的放大和半产业化生产的试验[10],逐步确立了我国工业化生产纳米TiO2粉体的技术路线、不同生产规模下的工艺方案、主要设备的选型以及最佳工艺条件,使我国纳米TiO2粉体生产能力迅速提高,产品已经可以向国外出口。 1.2 采用不同钛源制备纳米二氧化钛 在最初的制备中,为了保证纳米TiO2的质量,多采用试剂级Ti(OR)4或TiCl4为前驱体,这就使得我国早期纳米TiO2的生产成本很高,产品在国际市场毫无竞争力可言。而我国是一个钛资源丰富的国家,有众多的钛企业,钛生产、加工过程的中间产物、副产物量非常大,如果能够将它们应用到纳米TiO2的工业生产中,不但可以降低生产成本,还可以开发上述中间产物、副产物的附加价值,更加充分合理地利用我国钛资源。因此从本世纪初开始,我国就开始研究利用除Ti(OR)4、TiCl4以外其它钛源制备纳米二氧化钛,主要的探索有[11-15]:以正钛酸为原料制备纳米TiO2,以硫酸法生产钛白的中间产物TiOSO4(或H2TiO3)为原料生产纳米TiO2,以工业钛液(含一定量TiOSO4)为原料在低温、常压下制备纳米TiO2,用硝酸处理非晶氧化钛或一些其它的钛(Ⅳ)化合物制备纳米TiO2。这些研究成果拓宽了制备纳米TiO2的钛源,降低了原料价格,还为大量钛工业中间产品、副产品的处理与利用找到了良好的出路。有的研究还降低了反应的温度和压力,降低了对生产设备的材质要求,使操作更加简便安全。还有的研究可以让原来生产钛白的小厂家在对生产设备进行简单改造后转而生产纳米TiO2,拓展了小厂家的生存空间,提高了小厂家的生存能力。 1.3 应用各种新技术制备纳米二氧化钛 进入21世纪,我国科学工作者及时跟踪国际上纳米二氧化钛制备的新技术,先后进行了在超重力场下水解反应制备纳米TiO2、通过反萃沉淀法制备纳米TiO2、将超声处理引入纳米TiO2制备、将微波加热方法引入纳米TiO2制备、采用离子液体微乳液体系制备纳米TiO2等试验研究[16-20]。这些研究,有的简化了传统的工艺流程,有的大大缩短了反应时间或降低了反应温度,有的则显著改善了产品性能,有的制得了具有特殊性能、能满足特定要求的产品。 2 纳米二氧化钛薄膜的制备 由于太阳能电池和传感器等领域的需要,以及为了解决纳米TiO2粉体作为光催化剂使用时难于均匀分散、使用后难于分离回收等问题,上世纪末,国际上开始了对纳米TiO2薄膜的研究,到目前为止已经开发出了多种制备方法[21],一些发达国家已经实现了纳米TiO2薄膜的工业化生产。我国在这一领域起步稍晚,但已有许多研究成果。 2.1 纯纳米二氧化钛薄膜的制备 从罗瑾等[22]在国内首先进行纳米TiO2薄膜制备研究开始,研究者们先后采用钛酸乙酯热分解法、反应离子溅射法、电沉积法、直流磁控溅射技术、TiCl4水解法等方法进行了制备纳米TiO2薄膜的试验[23-26]。通过研究,基本解决了薄膜制备的主要技术问题,包括通过控制反应条件来控制薄膜的晶型与形貌、选择薄膜的最佳基质(载体)、增强薄膜在基质上的附着力、通过多种方法(如多孔化及表面处理)提高薄膜的吸附能力和光催化活性、使薄膜的吸收带边红移等。不过到目前为止,未见国内有纳米TiO2薄膜的产业化生产的报道。 2.2 掺杂及复合纳米二氧化钛薄膜的制备 在向纳米TiO2薄膜中掺杂方面,国内进行了掺入锡、铯等金属的研究[26-28],结果表明:掺杂适当金属后膜的光催化活性有不同程度的提高;掺入某些金属可以导致膜的吸收带边红移,意味 [收稿日期] 2012-08-29 [作者简介] 陈杰山(1962-),男,湖南人,硕士,副教授,主要从事废水处理研究。

偶联剂改性对纳米二氧化钛光催化活性的影响杨平霍瑞亭

卿胜兰等:高三阶光学非线性CdS–SiO2复合薄膜的电化学溶胶–凝胶制备及表征? 409 ?第41卷第3期 DOI:10.7521/j.issn.0454–5648.2013.03.23 偶联剂改性对纳米二氧化钛光催化活性的影响 杨平,霍瑞亭 (天津工业大学纺织学院,天津 300387) 摘要:为了提高纳米TiO2颗粒分散性和光催化活性,用醇解法在纳米TiO2颗粒表面接枝硅烷偶联剂和钛酸酯偶联剂。通过Fourier变换红外光谱表征样品表面的官能团,同时测定接枝改性样品表面的羟基数、亲油化度和在有机介质中的分散性能及光催化活性。结果表明:部分偶联剂分子以化学键的形式接枝在纳米TiO2颗粒表面。改性后的纳米TiO2颗粒呈亲油性,表面羟基数急剧减少,亲油化度显著提高。改性纳米TiO2颗粒在有机介质中团聚现象减小,分散稳定性提高,分散后的平均粒径最小可达50nm。改性纳米TiO2颗粒在有机介质中的光催化活性得到显著提高。 关键词:纳米二氧化钛;偶联剂;光催化活性 中图分类号:O643;X7 文献标志码:A 文章编号:0454–5648(2013)03–0409–07 Influence of Coupling Agents Modification on Photocatalysis Activity of Nano-TiO2 YANG Ping,HUO Ruiting (School of Textile, Tianjin Polyester University, Tianjin 300387, China) Abstract: In order to improve the dispersion stability and photocatalysis activity of TiO2 nano-particles, silane coupling agent and titanium coupling agent groups were grafted on the surface of TiO2 nano-particles by an alcolholysis method. The surface bonding property of the TiO2 nano-particles was characterized by Fourier transform infrared spectroscopy. The hydrophobic, content of surface hydroxyl, dispersion stability in the organic solvent and photocatalysis activity of the nano-particles were determined. The results indicate that the molecular of coupling agent are bonded on the surface of TiO2 nano-particles by chemical bonds. The TiO2 nano-particles were lipophilic, the content of surface hydroxyl decreased and the lipophilic degree improved. Also, the aggregation of the modified TiO2 nano-particles with the average size of 50nm was reduced and the dispersion stability was improved, leading to the enhancement of the photocatalysis activity. Key words: nano-titanium dioxide; coupling agent; photocatalysis activity 自Fujishima等[1]发现了锐钛矿型TiO2在光照条件下,可诱导水分子电离出氢氧自由基(?OH)以来,TiO2在光催化方面的研究与应用受到广泛的关注。纳米TiO2因其具有良好的抗紫外、抗菌除臭、催化降解等性能,并且TiO2无毒,具有较好的化学稳定性且廉价易得,因此广泛应用于建筑涂料、功能纺织品、防晒化妆品、污水处理等领域[2–5]。然而,纳米TiO2颗粒比表面积大、表面能高,在液相介质中受粒子间van der Waals力的作用而发生团聚;此外,纳米TiO2具有超亲水性,其在有机相溶液中不易分散,并且分散稳定性差,这成为纳米TiO2使用过程中亟待解决的问题。 提高纳米粉体在有机相介质中的分散性的常用方法是有机表面改性法,主要有聚合物包覆法[6–7]、表面活性剂法[8–9]和偶联剂法[10–11]等,其中,使用偶联剂对粉体进行改性的方法较为普遍。偶联剂是一种由亲水的极性基团和亲油的非极性基团两部分组成的双亲化合物,其分子中的亲水基团与纳米粉体表面的羟基反应,使纳米颗粒表面亲水性转变成亲油性,从而达到改善纳米粉体与有机相液体的相容 收稿日期:2012–10–21。修订日期:2012–11–22。第一作者:杨平(1986—),男,硕士研究生。 通信作者:霍瑞亭(1964—),男,博士,教授。Received date:2012–10–21. Revised date: 2012–11–22. First author: YANG Ping (1986–), male, Master candidate. E-mail: yahoo-xp@https://www.doczj.com/doc/6f7765458.html, Correspondent author: HUO Ruiting (1964–), male, Ph.D., Professor. E-mail: huort@https://www.doczj.com/doc/6f7765458.html, 第41卷第3期2013年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 3 March,2013

Tio2的光催化性能研究

TiO2的光催化性能研究 摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。 关键字:二氧化钛光催化光催化剂 二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。 1 TiO2的基本性质 1.1结晶特征及物理常数 物性:金红石型锐钛型 结晶系:四方晶系四方晶系 相对密度:3.9~4.2 3.8~4.1 折射率: 2.76 2.55 莫氏硬度:6-7 5.5-6 电容率:114 31 熔点:1858 高温时转变为金红石型 晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949 线膨胀系数:25℃/℃ a轴:7.19X10-6 2.88?10-6 c轴:9.94X10-6 6.44?10-6 热导率: 1.809?10-3 吸油度:16~48 18~30 着色强度:1650~1900 1200~1300 颗粒大小:0.2~0.3 0.3 功函数:5.58eV

2TiO2的光催化作用 2.1光催化作用原理 二氧化钛是一种N型半导体材料,锐钛矿相TiO2的禁带宽度Eg =3.2eV,由半导体的光吸收阈值λg与禁带宽度E g的关系式: λg (nm)=1240/Eg(eV) 可知:当波长为387nm的入射光照射到TiO2上时,价带中的电子就会发生跃迁,形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。除了上述变化途径外,光激发产生的电子、空穴也可能在半导体内部或表面复合,如果没有适当的电子、空穴俘获剂,储备的能量在几个毫秒内就会通过复合而消耗掉,而如果选用适当的俘获剂或表面空位来俘获电子或空穴,复合就会受到抑制,随后的氧化还原反应就会发生。在水溶液中,光生电子的俘获剂主要是吸附在半导体表面上的氧,氧俘获电子形成O2-;OH-、水分子及有机物本身均可充当光生空穴俘获剂,空穴则将吸附在TiO2表面的OH-和H2O氧化成具有高度活性的?OH自由基,活泼的?OH 自由基可以将许多难以降解的有机物氧化为CO2和H2O。其反应机理如下: TiO2 + hv → h+ + e- h+ + e- →热量 H2O → H+ + OH- h+ + OH- → HO? h+ + H2O + O2- → HO?+ H+ + O2- h+ + H2O → HO?+ H+ e- + O2→ O2- O2- + H+ → HO2? 2HO2?→ O2 + H2O2 H2O2 + O2- → HO?+ OH- + O2 H2O2 + hv → 2HO? 从上述光催化作用原理分析可知道,光催化过程实际上同时包含氧化反应和还原反应两个过程,分别反映出光生空穴和光生电子的反应性能,同时二者又相互影响,相互制约。

纳米二氧化钛的研究进展

纳米二氧化钛的研究进展 摘要】纳米科技是20世纪末逐步发展起来的新兴学科,为21世纪最具有科研 前途的领域。纳米技术的应用,有可能使各国在世界经济中的地位发生重新排列,成为世界大国争夺的战略制高点。首先研究和发展纳米技术的国家将成为未来科 技引领者。 【关键词】纳米技术纳米二氧化钛 【中图分类号】R2 【文献标号】A 【文章编号】2095-7165(2015)10-0196-01 纳米二氧化钛又叫超微细二氧化钛,它是一种新型无机化工材料具有:很大 的比表面积、表面原子数、表面能和表面张力等特点,随着其粒径的下降而急剧 增加;其表面效应、小尺寸效应、宏观量子隧道效应及量子尺寸效应等导致了纳 米微粒的磁、热、光、敏感特性以及表面稳定性等较常规粒子有很大的区别[1.2。3]。 1 纳米二氧化钛的抗菌性研究 二氧化钛的光催化杀菌机理和光催化降解有机物污染物很类似。二氧化钛在 受到大于它带隙能的光照射时,电子就能价带激发到导带,产生电子-空穴对,这 些电子-空穴对与它表面上吸附的H2O或者OH-反应后,生成具有强氧化性的羟 基自由基(·OH)和超氧负离子(O2-)。而这些基团能够穿透细菌的细胞壁,破坏细 菌的细胞膜结构,阻止细菌体内成膜物质的传输,阻断细菌内呼吸系统和电子传 输系统,从而能够有效地杀灭细菌。而且羟基自由基还可以降解细菌所产生的毒素,防止内毒素所引起二次感染。Kikuchi等[4]经过实验发现在紫外灯照射下TiO2 纳米管阵列光催化剂具有非常好的杀灭病毒、大肠杆菌以和癌细胞等,对人的身 体及生活有害物体。Kang等[5]使用CdS和Pt来修饰TiO2纳米管结构,从中得到 纳米材料的三元复合体系,其在光照下对大肠杆菌具有高效的杀菌作用。 2 二氧化钛光在骨科的研究进展 人工关节置换术以后的假体周围感染的治疗很棘手,由于感染组织周围缺乏 血管和关节屏障等等因素,为了骨关节处达到一定的药物浓度,往往需要使用较 高剂量和较长时间的全身性抗生素。随之而来的将会出现抗生素对全身各个器官 的毒副作用。处于这种考虑,抗生素的局部应用作为全身使用的补充和辅助已被 广为接受。而传统的骨水泥混合抗生素的使用就是最常用的手段[6.7.8]。 虽然选择抗生素骨水泥是目前公认针对人工关节假体周围感染预防和治疗的 标准方法[9],但是抗生素骨水泥的使用有着如不稳定的动力学表现、导致局部的 毒性反应、导致细菌耐药性的出现及加重细菌感染等许多缺陷[10.11.12]。某些学 者甚至认为在解决人工关节术后感染这个难题中,术前使用抗生素、加强手术室 抗菌能级、手术技术的提高、假体形态的更好的设计等等不能起到太大的作用[13.14]。随着内植物的抗菌素修饰实验的不断完善和优化,目前认为解决内植物 感染的最终解决方案是从植入物材料的源头来预防治疗感染[15]。 3 二氧化钛光在肿瘤治疗中的研究进展 人类从20 世纪90 年代就开始了纳米二氧化钛应用于抗肿瘤治疗研究。光照 条件下,纳米二氧化钛粒子具有较高的氧化还原能力,具有分解组成微生物的蛋 白质能力,从而能够杀死微生物。利用二氧化钛的这一特性,将其用于癌细胞治 疗的试验便开始了[16],结果表明在紫外光照射10min后,纳米二氧化钛颗粒能 够杀死全部的癌细胞。

纳米二氧化钛的制备及其光催化活性的测试

第 页(共 页) 课 程 ___________ 实验日期:年 月曰 专业班号 _____ 别 ______________ 交报告日期: 年 月 日 姓 名_ _学号 报告退发: (订正、重做) 同组者 _____________ 次仁塔吉 __________ 教师审批签字: 实验名称 _________________ 纳米二氧化钛粉的制备及其光催化活性的测试 、实验目的 1. 了解制备纳米材料的常用方法,测定晶体结构的方法。 2. 了解XRD 方法,了解X-射线衍射仪的使用,高温电炉的使用 3. 了解光催化剂的(一种)评价方法 、实验原理 1.纳米TiO 2的制备 ① 纳米材料的定义:纳米材料指的是组成相或者晶相在任意一维度上尺寸小于 100nm 的材 料。 纳米材料由于其组成粒子尺寸小, 有效表面积大,从而呈现出小尺寸效应, 表面与界面效应 等。 ② 纳米TiO 2的制备方法:溶胶凝胶法,水热法,火焰淬火掺杂法,阳极氧化法,电泳沉积 再阳极氧化法,高温雾化法,溅射法,光沉积法,共沉淀法。 本实验采取最基本的,利用金属醇盐水解的方法制备纳米 TiO 2,主要利用金属有机醇盐能 溶于有机溶剂,且可以水解产生氢氧化物或氧化物沉淀。 该方法的优点:①粉体的纯度高,②可制备化学计量的复合金属氧化物粉末。 西安交通大学化学实验报告

③制备原理:利用钛酸四丁酯的水解,反应方程如下 Ti OC4H9 4 4出0 =Ti OH 4 4C4H9OH Ti OH 4 Ti OC4H9 4=TiO2 4C4H9OH Ti OH 4 Ti OH 4=TiO2 4H2O 2. TiO 2的结构及表征 我们通过实验得到的TiO 2是无定形的,二氧化钛通常有如下图上所示的三种晶状结构: 无定形的TiO2在经过一定温度的热处理后,会向锐钛矿型转变,温度更高会变成金红石型。 我们可以通过X-射线衍射仪测定其晶体结构。 纳米TiO 2的景行对其催化活性影响较大,由于锐钛矿型TiO 2晶格中含有较多的缺陷和缺位,能产生较多的氧空位来捕获电子,所以具有较高的活性;而具有最稳定晶型结构的金红石型TiO2,晶化态较好,所以几乎没有光催化活性。 多晶相样品根据XRD测试获得XRD图谱。根据图谱的衍射角度对应的峰,我们可以测定 各晶相的含量。【用晶相含量百分比表示】(其中20-25为金红石型的特征衍射峰,25-27 为锐钛矿型的特征衍射峰) C A A A 100% A A A R 同时,根据XRD图谱可以估计样品的直径

第二节 二氧化钛光催化影响因素

第二节TiO2光催化影响因素 目前主要针对TiO 2 进行增加表面缺陷结构、减小颗粒大小增大比表面、贵金 属表面沉积、过渡金属离子掺杂、半导体复合、表面光敏化、以及改变TiO 2 形貌和晶型等方法来提高其量子效率以及扩展其光谱响应范围。研制具有高量子产率,能被太阳光谱中的可见光激发的高效半导体光催化剂,探索适合的光催化剂负载技术,是当前解决光催化技术中难题的重点和热点。 表面缺陷结构 通过俘获载流子可以明显压制光生电子与空穴的再结合。在制备胶体和多晶光催化是和制备化学催化剂一样,一般很难制得理想的半导体晶格。在制备过程中,无论是半导体表面还是体内都会出现一些不规则结构,这种不规结构和表面电子态密切相关,可是后者在能量上不同于半导体主体能带上的。这样的电子态就会起到俘获载流子的阱的作用,从而有助于压制电子和空穴的再结合[7]。 颗粒大小与比表面积 研究表明,溶液中催化剂粒子颗粒越小,单位质量的粒子数就越多,体系的比表面积大,越有利于光催化反应在表面进行,因而反应速率和效率也越高。催化剂粒径的尺寸和比表面积的一一对应直接影响着二氧化钛光催化活性的高低。粒径越小,单位质量的粒子数目越多,比表面积也就越大。比表面积的大小是决定反应物的吸附量和活性点多少的重要因素。比表面积越大,吸附反应物的能力就越强,单位面积上的活性点也就越多,发生反应的几率也随之增大,从而提高其光催化活性。当粒子大小与第一激子的德布罗意半径大小相当,即在1-10 nm 时,量子尺寸效应就会变得明显,成为量子化粒子,导带和价带变成分立的能级,能隙变宽,生成光生电子和空穴能量更高,具有更高的氧化、还原能力,而粒径减小,可以减小电子和空穴的复合几率,提到光产率。再者,粒径尺寸的量子化使得光生电子和空穴获得更大的迁移速率,并伴随着比表面积的加大,也有利于提高光催化反应效率。 贵金属沉积的影响 电中性的并相互分开的贵金属的Fermi能级小于TiO 2 的费米(Fermi)能级, 即贵金属内部与TiO 2相应的能级上,电子密度小于TiO 2 导带的电子密度,因此 当两种材料连接在一起时,载流子重新分布,电子就会不断地从TiO 2 向贵金属

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学 徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH )和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

纳米二氧化钛(TiO2)光触媒杀菌净化技术介绍

納米二氧化钛光催化技术介绍 纳米光催化采用二氧化钛(TiO2)半导体の效应,激活材料表面吸附氧和水分,产生活性氢氧自由基(OH.)和超氧阴离子自由基(O2-),从而转化为一种具有安全化学能の活性物质,起到矿化降解环境污染物和抑菌杀菌の作用。 纳米二氧化钛(TiO2)光催化利用自然光即可催化分解细菌和污染物,具有高催化活性、良好の化学稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景の绿色环保催化剂之一。 无毒害の纳米TiO2催化材料,充分发挥抗菌、降解有机污染物、除臭、自净化の功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间の多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用の环保材料。 光催化原理 - 什么是光催化 光催化[Photocatalyst]是光 [Photo=Light] +催化剂 [catalyst]の合成词。主要成分是二氧化钛(TiO2),二氧 化钛本身无毒无害,已广泛用于食品,医药,化妆品等各种 领域。光催化在光の照射下会产生类似光合作用の光催化反应(氧化-还原反应,产生出氧化能力极强の自由氢氧基和活性氧,这些产物可杀灭细菌和分解有机污染物。并且把有机污染物分解成无污染の水(H2O)和二氧化碳(CO2),同时它具有杀菌、除臭、防污、亲水、防紫外线等功能。光催化在微弱の光线下也能做反应,若在紫外线の照射下,光催化の活性会加强。近来, 光催化被誉为未来产业之一の纳米技术产品。 - 光催化反应原理

TiO2当吸收光能量之后,价带中の电子就会被激发到导带,形成带负电の高活性电子e-,同时在价带上产生带正电の空穴h+。在电场の作用下,电子与空穴发生分离,迁移到粒子表面の不同位置。热力学理论表明,分布在表面のh+可以将吸附在TiO2表面OH-和H2O分子氧化成(OH.)自由基,而OH.自由基の氧化能力是水体中存在の氧化剂中最强の,能氧化并分解各种有机污染物(甲醛、苯、TVOC等)和细菌及部分无机污染物(氨、NOX等),并将最终降解为CO2、H2O等无害物质。由于OH.自由基对反应物几乎无选择性,因而在光催化中起着决定性の作用。此外,许多有机物の氧化电位较TiO2の价带电位更负一些,能直接为h+所氧化。而TiO2表面高活性のe-侧具有很强の还原能力,可以还原去除水体中金属离子。应用以上原理光催化广泛应用于杀菌、除臭、空气净化、污水处理等领域。 光催化优势 光催化の空气净化技术优点 1、光催化の优点 -高效杀菌(杀菌率达到99.99%) -除臭功能 -防污/自洁、防霉功能 2、彻底の净化 -是分解而不是吸附污染物; -发生の是质变而不是量变; -对污染物具有不可逆の彻底分解; 3、广泛の净化 -能对室内几乎所有の细菌、病毒和有机污染物起到强效分解作用; -特别是对人们不易感知の细菌和病毒进行彻底分解; 4、实用の净化

二氧化钛光催化原理

TiO2光催化氧化机理 TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+),如图1-1所示。 如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染 物,将其矿化为无机小分子、CO 2和H 2 O等无害物质。 反应过程如下: 反应过程如下: TiO2+ hv → h+ +e- (3) h+ +e-→热能(4) h+ + OH- →·OH (5) h+ + H2O →·OH + H+(6) e- +O2→ O2- (7)O2 + H+ → HO2·(8) 2 H2O·→ O2 + H2O2(9) H2O2+ O2 →·OH + H+ + O2(10) ·OH + dye →···→ CO2 + H2O (11) H+ + dye→···→ CO2 + H2O (12) 由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。 Ti02光催化氧化的影响因素 1、试剂的制备方法 常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。同时在制备过程中有无复合,有无掺杂等对光降解也有影响。Ti02的制备方法在许多文献上都有详细的报道,这里就不再赘述。

纳米二氧化钛结构与光催化性能关系

纳米二氧化钛结构与光催化性能关系 XXX XXX 摘要纳米级二氧化钛由于具有无毒、化学稳定性好、比表面积大、成本低等优异性能深受科研工作者的关注。其所具有的光催化性能使其在降解大气及水体中污染物领域具有广阔前景。本文从纳米二氧化钛结构出发,阐述纳米二氧化钛光催化机理,并简要说明不同元素掺杂纳米二氧化钛后对其光催化性能的影响。 关键词纳米二氧化钛; 光催化; 结构; 掺杂 自1972年FuJiShima和HonclaIIJ发现TiO2单晶电极在紫外光照射下可分解水及Bard将光电化学理论扩展到半导体微粒光催化后,TiO2作为一种半导体光催化剂吸引诸多学者的研究。由于TiO2具有良好的化学稳定性、抗磨损性、较大的比表面积、无毒、成本低以及可以直接利用自然光等优点,利用TiO2光催化氧化法处理水中有机污染物等方面有广阔的应用前景。然而TiO2半导体光催化剂在实际应用中存在一些缺陷如:带隙较宽(E =3.2eV),只有在λ小于387.5 nm的紫外光激发下价带电子才能跃迁到导带上形成光生电子和空穴分离,而紫外光在自然光中仅占3%~5%,因此对自然光的利用率不高。另外半导体载流子的复合率很高,导致光量子效率很低,提高TiO2纳米粒子的光催化效率是利用TiO2光催化剂的关键。为了改善TiO2的光催化性能,研究工作者关于TiO2的制备方法、掺杂、催化剂载体、热处理等方面做了许多研究,其中掺杂因其容易实现、效果明显、应用范围广泛,而成为研究热点。[1] 1、纳米二氧化钛结构及其光催化机理 1.1 二氧化钛晶型 纳米二氧化钛具有锐钛矿,板钛矿及金红石型结构,其中以锐钛矿型光催化性能最好。其晶胞结构如下(其中红色为O,白色为Ti): 锐钛矿型: 板钛矿型:

纳米二氧化钛的现状与发展概要

纳米二氧化钛的现状与发展 作者:未知时间:2007-11-24 15:17:00 国外纳米TiO2的生产现状 20世纪80年代以前,纳米TiO2的研究开发目的主要是作为精细陶瓷原料、催化剂、传感器等,需求量不大,没有形成大的生产规模。80年代以后,开发的纳米TiO2用作透明效应和紫外线屏蔽剂,为纳米TiO2打开了市场,使纳米TiO2的生产和需求大大增加,成为钛白工业和涂料工业的一个新的增长点。 由于纳米TiO2在催化及环境保护等方面具有广阔的应用前景,并可用于日用产品、涂料、电子、电力等工业部门,因此,纳米TiO2展现出巨大的市场前景。日本、美国、英国、德国和意大利等国对纳米TiO2进行了深入的研究,并已实现纳米TiO2的工业化生产。目前全世界已经有十几家公司生产纳米TiO2,总生产能力估计在(6000~10000)t/a,单线生产能力一般为(400~500)t/a。 根据莎哈里本公司统计,2003年全球纳米TiO2销售量仅为1800t左右,其消费量与产品应用见表1。 表1 2003年全球纳米TiO2消费量与产品应用 近几年,有关纳米TiO2的新建装置已很少报道,主要是已建成装置的生产能力已远远超出市场的实际消费量,多数厂家处于开工不足或停产的状态。主要原因是目前国际上公认的纳米TiO2制备和应用技术还有待于提高,技术要点和难点主要表现在以下几个方面:①国际上纳米TiO2的价格为(30~40)万元/t,其成本大致是销售价格的2/5,原料和工艺路线的选择是降低生产成本的关键因素;②纳米TiO2的晶型和粒度控制技术;③金红石型纳米TiO2的表面处理技术;④纳米TiO2应用分散技术;⑤纳米TiO2应用功能的提升技

纳米二氧化钛的制备及光催化分析

苏州科技大学 材料科技进展 化学生物与材料工程学院 材料化学专业 题目:纳米二氧化钛的制备及光催化 姓名:吕岩 学号:1020213103 指导老师:刘成宝 起止时间:5月20日——6月8日

纳米二氧化钛的制备及光催化 吕岩 (苏州科技学院,化学与生物工程材料学院,江苏,苏州,215009) 摘要:纳米二氧化钛是种重要的纳米材料,其在众多领域有着广泛的应用。本文主要介绍纳米二氧化钛的多种制备方法,包括化学气相法(化学气相沉积法、化学气相水解法等)、液相法( 溶胶凝胶法、沉淀法、水热合成法等)两大类,并分析了各种工艺的优劣。并介绍纳米二氧化钛光催化反应原理,基本方法,影响因素,及其广泛的应用。通过介绍纳米二氧化钛的制备及光催化的研究,更深刻理解其在生产生活中应用。 关键词:纳米TiO2,制备方法,光催化. The study on preparation of nanometer TiO and photocatalytic 2 Lv Yan (University of Science and Technology of Suzhou,School of Chemical and Biological Engineering Materials,Jiangsu,Suzhou,215009) Abstract: A s an important nanomaterial nanometer TiO2 has wide app lications in many fields, such as environmental production. Preparation methods of nanomaterial TiO2w ere briefly summarized, including chemical gas phase method( CVD and chem ical gas phase hydro lysis method etc. ) and liquid phase method( sol- gelmethod, precipitation method, hydrothermal synthesismethod etc. ). The advan tages and disadvanges o f everym ethod w ere analyzed. Introduce nano TiO2reaction principle, basic method, influence factors, and its wide application. Through the introduction of the preparation of nano TiO2 research, a deeper understanding of its application in the production and living. Key words: nanometer T iO2; preparation method, photocatalysis 引言: 纳米二氧化钛是一种新型的光催化无机功能材料,由于其粒径在1~ 100 nm 之间, 具有粒径小、比表面积大表面活性高、分散性好等特点, 表现出独特的物理化学性质。它具有良好的透明性,紫外线吸收性及熔点低、磁性强、热导性强、高效、无毒、成本低和不造成二次污染等优点等奇异特性;还具有良好的抗菌作用,使用过程中不会发生自身损耗,而且资源丰富,价格低廉,因此在光催化降解废水中的有机物、涂料、精细陶瓷、塑料、催化剂、及化妆品等方面应用广泛,成为新型功能材料研究的热点之一。本文将对纳米二氧化钛的制备及光催化在做一些简单介绍。 1.纳米TiO2的制备 纳米TiO2的制备方法有很多, 归纳起来主要有固相法、气相法和液相法等,

相关主题
文本预览
相关文档 最新文档