当前位置:文档之家› 1981—2000年夏季青藏高原大气热源低频振荡特征及其影响

1981—2000年夏季青藏高原大气热源低频振荡特征及其影响

1981—2000年夏季青藏高原大气热源低频振荡特征及其影响
1981—2000年夏季青藏高原大气热源低频振荡特征及其影响

全球变暖背景下青藏高原气温和降水的气候变化特征

Advances in Geosciences地球科学前沿, 2019, 9(11), 1042-1049 Published Online November 2019 in Hans. https://www.doczj.com/doc/6f7671231.html,/journal/ag https://https://www.doczj.com/doc/6f7671231.html,/10.12677/ag.2019.911110 Characteristics of Temperature and Precipitation Change on the Tibet Plateau under the Background of Global Warming Xianru Li School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu Sichuan Received: Oct. 22nd, 2019; accepted: Nov. 1st, 2019; published: Nov. 8th, 2019 Abstract In this paper, the monthly reanalysis data of surface temperature and precipitation (resolution 0.125? × 0.125?) of ECMWF from 1979 to 2018 were used to study the spatial distribution charac- teristics of air temperature and precipitation on the Qinghai-Tibet plateau and the trend charac-teristics of the change sensitive areas by using the least square method, regression analysis, signi-ficance test and other statistical methods. The results show that: 1) the overall temperature of the Qinghai-Tibet plateau is significantly lower than that of the surrounding areas, and the tempera-ture on the plateau gradually increases from west to east, with a significant difference in the tem-perature of four seasons. There are two obvious low temperature centers on the plateau, namely the Kunlun mountain area and the Qilian mountain area, and the high temperature center is lo-cated in the Qaidam basin area. 2) There is a significant difference in annual precipitation be-tween the north and south of the Qinghai-Tibet plateau. Precipitation gradually increases from the northwest to the southeast of the plateau. The main precipitation center is located in the Yarlung Zangbo river region, and the secondary precipitation center is located in the western Sichuan pla-teau region. There are a dry season and a rainy season on the plateau. Precipitation in most areas is concentrated in summer, while winter is the dry season of the year. 3) The plateau as a whole shows a trend of increasing temperature, and there are five areas with relatively sensitive tem-perature changes, and the sensitive areas in the middle of the plateau show a significant increase in temperature. 4) Precipitation in most areas of the Qinghai-Tibet plateau did not show an ob-vious change trend. The regions with significant decrease in precipitation were the eastern Tanggla Mountain and the Yarlung Zangbo Grand Canyon, while the regions with significant in-crease in precipitation were the south Tibet valley in the southwest of the plateau and the Xining region in the east of the plateau. Keywords Qinghai-Tibet Plateau, Temperature, Precipitation, Spatial Distribution, Change Trend

次同步振荡、同步振荡、异步振荡、低频振荡及其区别上课讲义

次同步振荡、同步振荡、异步振荡、低频振荡及其区别一、次同步振荡(SSR,SubsynchronousResonance):发电机经补偿度较高的串补线路接入系统或者直流输电、静止无功补偿装置控制装置参数设置不当时,较易出现网络的电气谐振频率与大型汽轮发电机轴系的自然扭振频率接近的情况,造成发电机大轴扭振、破坏大轴,由于振荡频率低于同步频率,该现象称为次同步振荡。 二、同步振荡:当发电机输入或输出功率变化时,功角δ将随之变化,但由于机组转动部分的惯性,δ不能立即达到新的稳态值,需要经过若干次在新的δ值附近振荡之后,才能稳定在新的δ下运行。 同步振荡主要现象: (1)机组和线路电流、功率指示周期性变化,但波动较小,发电机有功出力不过零; (2)发电机机端和500kV母线电压表指示波动较小; (3)系统及发电机频率变化不大,全系统频率未出现—局部升高、另一局部降低现象; (4)发电机轰鸣声较小,导叶开度无明显变化。 有关机械量、电气量出现摆动,以平均值为中心振荡,不过零;振荡周期稳定清晰接近不变,摆动频率低,一般在0.2-2.0Hz;指针式仪

表摆动平缓无抖动,机组振动较小;用视角可以估算振荡周期;中枢点电压保持较高水平,一般不低于80%;同步振荡出现时各机组仍保持同步运行,频率基本相同。 处理方法: (1)已经振荡的发电厂可不待调度指令立即增加发电机励磁提高电压,但不得危及设备安全,必要时可适当降低发电机有功。 (2)处于送端的机组适当降低有功出力,处于受端的机组增加有功出力。 (3)若正在进行线路或主变停运等操作时,应立即暂停操作。(4)尽快查找并去除振荡源。着重了解本厂是否存在强迫振荡源(如发电机组非同期并网、发电机组调速器、励磁调节器有异常等)。若有,应立即消除调速器或励磁调节器的故障(故障励磁调节器可暂时倒备励)。如一时无法消除,则解列发电机组。 (5)在采取以上措施后,应报告调度值班人员,听侯调度指令。 三、异步振荡:发电机因某种原因受到较大的扰动,其功角δ在0-360°之间周期性地变化,发电机与电网失去同步运行的状态。

唐古拉山冬克玛底地区冰川变化遥感监测

唐古拉山冬克玛底地区冰川变化遥感监测 谯程骏 (中国科学院寒区旱区环境与工程研究所寒旱区流域水文及应用生态实验室,甘肃兰州730000) 摘要利用1973年MSS 、1992年TM 、2001年ETM +、2007年TM 数字遥感影像资料以及数字高程模型(DEM ),结合第一次冰川编目资 料, 通过地理信息系统和遥感图像处理技术提取了唐古拉山冬克玛底地区不同年份的冰川分布范围。结果表明:研究区内的冰川面积1976年比1969年减小了0.84%,1992年冰川面积比1976年的减小了1.77%,2001年冰川面积比1992年减小了4.24%,2007年冰川面积比2002年减小了3.31%。结合气象资料和有限的野外资料进行分析,该地区冰川退宿趋势同气温升高趋势基本一致。1969年到 2007年近40年时间里,冰川面积总共减小17.61km 2,占1969年面积的9.81%,冰储量减少5.75km 3,相当于水资源损失5.17km 3 。关键词唐古拉山;冰川变化;遥感;地理信息系统中图分类号P343.6文献标识码A 文章编号0517-6611(2010)14-07703-03Remote Sensing Monitoring of Glacier Changes in Dongkemadi Region of Tanggula Mountain QIAO Cheng-jun (Laboratory of Watershed Hydrology and Applied Ecology in Cold and Arid Regions , Cold and Arid Regions Environmental and Engineering Research Institute ,Chinese Academy of Sciences ,Lanzhou ,Gansu 730000)Abstract Based on the numeric remote sensing image data (MSS data in 1973,TM data in 1992,ETM +data in 2001,TM data in 2007)and nu-meric terrain model ,combined with the first glacier inventories data ,the glacier distribution range in Dongkemadi Region of Tanggula Mountain in different years were extracted by using GIS technology and remote sensing image processing technology.The results showed that the glaciers area in the study area had decreased by 0.84%,1.77%,4.24%,3.31%from 1969to 1976,1976to 1992,1992to 2001and 2001to https://www.doczj.com/doc/6f7671231.html,bined with the meteorological data and limited field data ,the analysis results showed that glacier shrinkage in the study area was mainly subjected to continuous temperature rise.From 1969to 2007,the glacier area had decreased 17.61km 2,being 9.81%of that area in 1969.The glacier volume had decreased 5.75km 3,which meant that water resources lost 5.17km 3 . Key words Tanggula Mountain ;Glacier change ;Remote sensing ;Geographic information system 基金项目 国家重点基础研究发展计划资助项目(2007CB411502);水 利部公益性行业科研专项经费项目(2007SHZ1-46)资助。作者简介谯程骏(1983-),男,四川什邡人,在读硕士,从事水文水资 源以及冰川变化的研究。E-mail :qiao _cheng _jun @https://www.doczj.com/doc/6f7671231.html,. 鸣谢感谢美国马里兰大学和美国地质调查局提供MSS /TM / ETM +遥感影像数据以及DEM 数据;感谢中国气象局提供了气象数据。收稿日期2010-03-02冰川是自然界重要而且极具潜力的淡水资源,它覆盖了地球10%的陆地面积, 而且世界上有80%的淡水储存于冰川。冰川是气候的产物,又是全球气候变化灵敏的指示器,对气候变暖高度敏感。在气候变暖的影响下,冰川处于持续的负物质平衡而不断退缩 [1] ,作为内陆盆地水源以及外流水系源头的冰川,其在不同时间空间尺度的变化势必引起以冰川融水补给为主的河流水量的丰枯变化以及长期水量的不断减少, 作为一种水资源,冰川还对区域生态环境的平衡与稳定起着至关重要的作用 [2] 。青藏高原是中低纬度现代冰 川较为发育的地区, 20世纪90年代以来青藏高原冰川呈现退缩状态,但各地冰川变化具有明显的空间特征 [1] 。由于大 部分山地冰川地处偏远,并且数量众多,因此,卫星遥感技术被广泛应用于大尺度的冰川变化研究中。陆地资源卫星(包括MSS ,TM 及ETM +)已经成为冰川学研究的主要数据源之一 [3] 。综合利用遥感丰富的数据资源和地理信息系统技术 高效的空间数据处理功能,可以有效地获取和分析冰川变化信息。 采用地理信息系统(GIS )与遥感(RS )技术,利用航空和卫星遥感资料,结合冰川编目资料和数字高程模型(DEM ),通过综合分析获得唐古拉山中段冬克玛底地区最近40年冰川变化情况。最后结合气象观测数据分析了其对气候变化的响应。该研究区冰川变化在指示青藏高原中部冰川变化与气候变化方面具有重要意义。 1研究区概况 研究区域位于青藏高原腹地唐古拉山中段山区冬克玛 底地区(图1),在青海省和西藏自治区的交界处,海拔均在 5000m 以上,冰川面积共计179.43km 2 (来源于1969年航 测资料), 冰川平均粒雪线海拔5530m ,发育的冰川主要为小型冰斗冰川和山谷冰川 [4] ,山谷冰川谷底为古冰川作用形 成的平坦开阔的稀疏草地。植被为单一的短草植物,生长最盛时高度约为3 5cm 。年平均气温为-6.0?,气温年较差为24.9?,全年只有6 9月平均气温在0?以上。年平 均相对湿度为65%, 降水集中于6 9月[5] 。研究区内的冬克玛底冰川是国内少数几条长期观测的冰川之一,已有的观测资料时间序列较长,有助于结合遥感资料共同分析该区域内冰川变化情况。2 数据源及处理方法 笔者使用的数据如下:①中国冰川目录Ⅷ-长江水系,研究区冰川分布图来自1969年拍摄的航空相片,可以反映1969年的冰川分布情况。②遥感数字影像资料为1976年MSS (Landsat Multispectral Scanner ,陆地资源卫星多光谱传感器,行列号为148,37),1992年和2007年TM (Landsat Themat-ic Mapper ,陆地资源卫星专题制图仪,行列号为137,37),2001年ETM +(Landsat Enhanced Thematic Mapper Plus ,陆地资源卫星增强型专题制图仪,行列号为137,37)。③研究区的数字高程模型(DEM ,Digital Elevation Mode ,分辨率为30m )。④距离研究区最近的,有长时间序列的国家气象台站安多站气象资料。 冰雪在可见光及近红外波段(TM1 TM4)反射率都高,在这些波段中冰川的光谱值范围较宽,不利于冰川与背景及其他地物区别,而冰川在TM5中光谱值范围很窄,使用该波段有利于提取冰川信息;另外,水体会吸收中远红外波段,使冰雪在TM5波段光谱值降低,且明显低于冰川中冰碛的光 安徽农业科学,Journal of Anhui Agri.Sci.2010,38(14):7703-7705责任编辑胡剑胜责任校对况玲玲

动力气象 中科院06考题

中国科学院大气物理研究所 2006年硕士研究生入学考试 《动力气象(天气学)》试题(满分150分) 一、 简要回答下列问题(每小题5分,共25分) (1) 什么是旋转参考系与惯性参考系? (2) 什么是正压大气?什么是斜压大气? (3) 以涡度方程代替水平运动方程有什么好处? (4) 什么是正压不稳定?什么是斜压不稳定? (5) 试述赤道地区大气中开尔文波与罗斯贝-重力混合波的主要性质? 二. 设在一直角坐标系中,大气的自由面高度为h ,平均厚度为H , 并满足下列方程组: ???????????=???? ????+??+????-=-??=???? ????+??++???? ? ???-????0000y v x u H t h x h g v f t u y v x u f v y u x v t β (1) 试求出此大气中波动的频率方程。(15分) (2) 说明上述两种波动是什么波,并比较其性质差异。(15分) 三. 试回答下列问题: (1) 什么是梯度风?并写出空气质元所受力的平衡。(10分) (2) 画图说明在高、低压天气系统中梯度风与地转风的差异。(10分)

(天气学) 四、名词解释(每题5分,共20分) (1)大气低频振荡。 (2)东风波。 (3)高空急流。 (4)寒潮天气过程。 五、叙述冬、夏500百帕上北半球大气环流的基本特征(15分)。 六、叙述东亚环流的季节变化与雨带活动的关系(10分)。 七、叙述低纬度大气运动的基本特征(10分)。 八、叙述强雷暴发生、发展的有利条件(10分)。 九、叙述欧亚地区阻高的建立与崩溃对我国天气的影响(10分)。

基于Prony算法的电力系统低频振荡模式识别解读

内蒙古科技大学 本科生毕业设计说明书(毕业论文) 题目:基于Prony算法的电力系统 低频振荡的模式识别 学生姓名:谢霞 学号:200867130301 专业:电气工程及其自动化 班级:电气2008-3班 指导教师:杨培宏讲师

基于Prony算法的电力系统低频振荡的模态识别 摘要 随着电网的日益扩大,大容量机组在电网中不断的投运以及高放大倍数的励磁系统的使用,使得系统中低频振荡现象时有发生。研究在线的模态的辨识是实现电力系统低频振荡在线监视以及抑制低频振荡的重要理论基础。为了研究电力系统低频振荡,人们提出了许多方法。而Prony算法可以通过给定输入信号下的响应直接估计系统的振荡频率、衰减因子、幅值和相位。在实际应用中,将现场测量的低频振荡数据进行Prony分析,从而得到低频振荡的模型组成,包括各个模型的频率、振幅、衰减因子和相角。因此,Prony算法在电力系统低频振荡分析中得以广泛应用。但Prony算法也有其局限性,如受噪声影响较大等。 关键词:电力系统;低频振荡;Prony分析

Power system low frequency oscillation mode identification based on Prony method Abstract With the growing of power grid, that large capacity units in power grid are continuous operated and the excitation system with high magnification is used makes the system often happen low frequency oscillations. Study of online model identification is the important theoretical basis of the realization of power system low frequency oscillation monitoring as well as damping. In order to study the low frequency oscillation in power system, the people proposed many methods. The Prony method can use the input signal response to directly estimate the oscillation frequency, damping, amplitude and phase. In practical application, Prony analysis analyse the low frequency oscillation data of situation measurement and obtain the low frequency oscillation models, including the frequency, amplitude, damping and phase angle of every model .Therefore, the Prony method is widely applied in low frequency oscillation of power system. But Prony algorithm has its limitations, such as the noise influence. Key words: Electric power system; Low frequency oscillation; Prony analysis

电力系统低频振荡

第36卷第22期电力系统保护与控制Vol.36 No.22 2008年11月16日Power System Protection and Control Nov. 16, 2008 电力系统低频振荡 郭权利 (沈阳工程学院电气工程系,辽宁 沈阳 110136) 摘要:由于系统缺乏阻尼或系统负阻尼引起的输电线路上的功率波动频率一般在 0.1~2.0 Hz之间,通常称之为低频振荡。随着电力系统规模的不断扩大和快速励磁系统的大量应用,电网的低频振荡问题越来越引起人们的关注。低频振荡影响电力系统稳定性和继电保护装置的可靠性。介绍了低频振荡的一些概念、各种机理、研究现状、常用的分析方法和控制方法,并对以后的工作重点做了进一步的阐述。 关键词: 低频振荡;频率波动;负阻尼;分析方法 Low Frequency Oscillation in Power System GUO Quan-li (Electrical Engineering Department,Shenyang Institute of Engineering,Shenyang 110136,China) Abstract: Because of the lack of damping system or negative damping system on the transmission line caused power fluctuations generally between 0.1-2.0 Hz, usually called as low-frequency oscillations. With the development of the size of the power system and large applicationl of the rapid excitation system, the low-frequency oscillation (LFO) of the power system are causing for more and more concern. And low-frequency oscillation affect the stability of the power system and the reliability of the relay device. This text introduces the concept of low-frequency oscillations, all kinds of mechanism and research status, analysis and control methods, and elaborate the focus of the work for a further step. Key words: low-frequency oscillation; frequency fluctuating; negative damping; analysis method 中图分类号: TM711 文献标识码: A 文章编号: 1674-3415(2008)22-0114-03 0 引言 低频振荡产生的原因是由于电力系统的负阻尼效应,常出现在弱联系、远距离、重负荷输电线路上,在采用快速、高放大倍数励磁系统的条件下更容易发生。系统缺乏阻尼甚至阻尼为负,对应发电机转子间的相对摇摆,表现在输电线路上就出现功率波动,由系统缺乏阻尼或系统负阻尼引起的输电线路上的功率波动频率一般在 0.1~2.0 Hz之间,通常称之为低频振荡(又称功率振荡,机电振荡)。一般来说,电力系统振荡模式可分为两种类型:地区振荡模式和区域振荡模式,若系统低频振荡频率很低(0.1~0.5 Hz),则一般认为属互联系统区域间振荡模式。而如果振荡较高,在1 Hz以上,则认为是本地或区域间机组间的振荡模式[1]。对于地区振荡模式,振荡频率较高,参与的机组较少,因而只要在少数强相关机组上增加阻尼,就能显著地增加振荡模式的阻尼。对于区域振荡模式,振荡频率较低,参与的机组较多,因而只有在多数参与机组上增加阻尼,才能显著地增加振荡模式的阻尼。显然,抑制区域振荡模式的低频振荡要比抑制地区振荡模式的低频振荡更加复杂和困难,所以,系统运行中更容易发生区域振荡模式的低频振荡。 由于低频振荡影响着系统的安全稳定运行,并对继电保护装置动作行为产生相当大的影响,因而本文从低频振荡的一些概念和当前研究状况分析,总结了当前分析低频振荡问题的方法和进一步的研究方向。 1 低频振荡的负阻尼机理 电力系统受到扰动时,会发生发电机转子间的相对摇摆,表现在输电线上就会出现功率波动。如果扰动是暂时的,在扰动消失后,可能出现两种情况:一是发电机转子间的摇摆很快平息,二是发电机转子间的摇摆平息的很慢甚至持续增长,若振荡幅值持续增长,以致破坏了互联系统之间的静态稳定,最终将使互联系统解列。产生后者情况的原因是系统缺乏阻尼或者系统阻尼为负,现象表现为受

高等天气学

2005春季 1.瞬变波的动量、热量输送特征以及瞬变波的主要作用是什么?P24-P31 2.说明高空急流形成的原因,画出高空急流同高空锋以及对流层顶三者之间关系的综合图,并图示高空急流入口区垂直环流(或称次级环流)状况。 P138-139,P147-148 在对流层中,中纬地区上空经常出现温度梯度较大的狭长区域,水平温度梯度的方向由南指向北,根据热成风原理,西风风速随高度迅速增加,因而中纬度上空地区就会经常出现西风急流。 3.试述大气环流突变现象,什么叫六月突变? 在全球范围内,大气环流一年中只存在两种主要的环流形势,即冬季型和夏季型。这两种环流形势在每年的6月和10月发生明显的季节转换,这种转换在非常短促的时间内完成,所以称为大气环流突变。从典型的冬季型环流到典型的夏季型环流的转换发生在六月,称为“六月突变”,从典型夏季型到典型冬季型的演变发生在十月,称为“十月突变”。这种突变是半球范围乃至全球范围的现象,但以亚洲最明显。中东地区和我国青藏高原附近变化最早,向东逐渐波及太平洋中部,美洲最迟也最不明显。 环流突变以高空东西风带为标志。冬季东亚存在着两支强西风带,到了6月,南支强西风带突然不见了,而北美的强风带也明显北移。到10月东亚又出现两支强西风带,北美的强西风带也南移回到冬季的位置。 对流层中部环流:冬季的主要特点是以极地低压(又称为极涡,分裂为两个中心)为中心、环绕纬圈的西风环流,西风带中有尺度很大的平均槽脊,其中三个明显大槽分别位于亚洲东岸、北美东部和欧洲东部。与之并列的三个平均脊分别位于阿拉斯加、西欧沿岸和青藏高原北部。副高强度小,中心都位于海上。夏季和冬季相比极涡中心合并为一个,中心位于极点,环绕极涡的西风带明显北移,而且等高线变稀,中高纬度出现四个槽。冬季从青藏高原北部伸向贝加尔湖地区的脊,在夏季变为槽,北美东部的大槽由冬到夏略为东移,东亚大槽移到堪察加半岛附近。冬季在欧洲西海岸的平均脊,夏季变为槽。副高大大加强并北移,在北太平洋、北大西洋和非洲大陆西部各有一个闭合中心。 4.描述夏季西太平洋副热带高压的移动规律,并解释2003、2004年夏季江南酷暑的主要原因。 出现在对流层中下层位于大洋上的暖性高压——副热带高压,其强度和范围冬夏季有很大不同,夏季强盛,位置最北,冬季减弱,位置最南。西太平洋副高脊线随着季节北进、南撤现象是东亚大气环流季节转换的最显著特征。夏季副高的移动有缓慢移动和突然跳跃两种方式,从初夏到盛夏西太平洋副高有两次明显的季节性北跳,平均而言,6月中旬前后,副高开始第一次北跳,东亚夏季风推进到长江流域,江淮流域入梅;7月中旬前后,副高第二次北跳,东亚夏季风推进到华北,江淮流域梅雨结束,华北雨季开始。初夏至盛夏西太平洋副高脊线北跳的位置对我国东部雨带的变化有直接影响。 西太平洋副高在随季节作南北移动的同时,还有较短时期的活动,即北进中可能有短暂的南退,南退中可能出现短暂的北进,且北移常与西进结合,南退常与东缩结合。西太平洋副高的这种进退,持续日数长短不一。如果将一个进退算作一个周期,长的可达10天以上,短的只有1-2天。 2003年南海夏季风爆发偏晚,强度偏弱,夏季西太平洋副高位置较往年偏南。6月20日前,主要降水带维持在华南、江南地区,对应于华南地区汛期;6月21日主要降水带北移到淮河流域,并维持到7月22日,降雨量多,但雨期集中,雨带位置偏北,局部地区降雨量大,而南方地区出现持续高温。副高强度偏强,位置偏西,有利于西南暖湿气流向北输

激光打靶游戏机讲解

激光打靶游戏机 激光打靶游戏机 类别:电子综合 本例介绍用常用的元器件来制作激光武器,并且用它来进行射击游戏。工作原理射击游戏机由激光玩具手枪和光电靶机组成。图 (a)是装在玩具手枪中的激光发射电路。用手扣动扳机SB时,其动断触点断开,动合触点闭合。电流通过电阻R和激光二极管VD对电容C进行瞬时充电,激光二极管VD 发出红色的激光束。当射击完成后,动合触点断开,动断触点闭合,电容C通过动断触点放电,为下次射击做准备。图(b)是光电靶机电路图。IC 1是4 一2输入端与非门数字集成电路CD4011,其中D1和D2构成一个低频多谐振荡器,D3和D4构成另一个低频振荡器。合上开关S,当激光玩具枪击中靶机时,光敏电阻R2的电阻变小,三极管VT导通,D1的一个输人端由低电平变为高电平。同时,电源电流通过三极管VT对电容C1充电。电路开始振荡,由D2输出方波信号加到IC2数字集成电路CD4017的CP端,使输出端YO一Y3依次输出高电平。当输出端Y4为高电平时,高电平通过二极管VD1加到R端使之清零,又使YO为高电平。如此循环,就使得装在靶机面板上的4只发光管VD2一VD5依次发光,形成缓慢变化的光环。同时,当D2输出高电平时,D3和D4组成的振荡器振荡使压电片B发出“嘟、嘟……”的声音。直到电容C1的电放完,使D1的一个输人端为低电平,Dl和D2构成的振荡器停止振荡为止。元器件选择IC1用4一2输入与非门CD4011。IC2用十进制计数分频器CD4017. 三极管VT 选用9015型硅PNP小功率三极管,要求电流放大系数β>150。发光管VD2一VD5用Φ3mm红色发光二极管。光敏电阻R2用MG41一22型等,要求亮阻<3 kΩ.暗阻>1MΩ. 激光笔选用市售塑料外壳玩具激光笔。按钮开关SB用带有动合触点和动断触点的。压电片B用协27 mm压电陶瓷蜂鸣器,如FI'一2 卞、HTD27A一1型等。开关S.用钮子开关。电池用4节5号电池。制作与调试在激光笔中引出两条导线,可用小圆形敷铜板叠放在纽扣电池上进行改制。将激光笔装在玩具枪的内部前端。按钮开关装在扳机连杆的下方并用AB胶固定,内部再焊上电容。要求扣动扳机时,能发出激光,随即熄灭即可。靶机的制作方法:按图7一18(b)制成线路板后,一般无需调试即能工作。找一个四方形的塑料外壳,在面板上中间挖一小孔将光敏电阻装上并胶牢。再把4只发光管等距离排列并固定在面板上。把压电陶瓷片装上共鸣腔也装在面板上,并在面板上开一些小孔便于传声。把电池盒和线路板固定在塑料外壳内,外形如图(c)所示。使用时,用激光玩具枪瞄准并扣动扳机射击,击中时发出响声并显现光环。一段时间射击熟练之后,可逐步增加射击距离。

青藏高原海拔

篇一:青藏高原的气候特征 青藏高原的气候特征及对我国的影响 张庆奎 200621059 气象学2班 一、大气干洁、太阳辐射强 众所周知,太阳辐射对气候以及作物生长和产量都有重要影响。太阳辐射主要包括紫外辐射、可见光和红外辐射三个波段。概括起来说,达到植物表面的红外辐射的能量约占太阳辐射总量的一半,其中仅有约0.5-1.0%用于光合作用。紫外辐射在总辐射中所占比例很小,但对植物的形状、颜色与品质的优劣起着重要作用。 二、气温低、日较差大、年变化小 青藏高原年平均气温低,构成了青藏高原气候主要特征。位于藏北高原和青南高原的可 可西里年平均气温在一4℃以下一等温线与等高线相重叠,自成一闭合的低温中心,为青藏高原温度最低的地区,也是北半球同纬度气温最低的地区,青藏高原有一半地区年平均气温低于o℃,其它地区如雅鲁藏布江、河汉谷地和柴达木盆地相对比较温暖,年平均气温在3一5℃。 青藏高原气温变化小,由于受多种因素的影响,使得各地年较差也不一样,一般来说,年较差是北部大南部小,西部大东部小 青藏高原年较差比同纬度东部地区要小4-6℃以上。形成高原年较差小的原因是,夏季温度比较低,而冬季的温度不太低,尤其是在西藏南部地区,冬季干燥,太阳辐射强,局部地区增温比较明显,所以,冬季相对而言不太冷,导致气温年变化较小。 三、降水少、地域差异大 青藏高原年降水量自藏东南4000毫米以上向柴达木盆地西北部的冷湖逐渐减少,冷湖的降水量仅有17.6毫米,最多降水量约是最少降水量的200倍。以雅鲁藏布江河谷的巴昔卡为例,降水量极为丰沛,平均年降水达4500毫米,是我国最多降水中心之一。由于高耸的喜马拉雅山东西走向,以及缅甸西部的那加山南北走向,构成朝西南开口的马蹄形的地形,每当夏季从孟加拉湾吹来的温暖偏南气流冲入马蹄形的地形后,迫使气流转变成气旋性弯曲,这可以从马蹄形内台站地面风向频率看出,东北风和西南风频率几乎相等,形成季风辐合区,而巴昔卡正好地处西南气流转为东北气流的位置上,易造成丰沛的降水。溯雅鲁藏布江北上,深入高原腹地,降水急剧减少,而且沿雅鲁藏布江地区的降水可达400毫米,比流域两侧山麓一带降水多,雅鲁藏布江河谷地是西藏主要农区。 在喜马拉雅山北麓与雅鲁藏布江之间,有一狭长的少雨区,年降水量少于300毫米。由于喜马拉雅山的屏障作用,阻挡南来的暖湿气流北上,气流翻过高大山体,下沉增温,相对湿度变小,不易形成降水,为雨影区,是西藏较为干旱的地区。东念青唐古拉山以北地区,降水较多,为400-600毫米。藏北地区受切变线、低涡天气系统影响,加上有利的地形条件,成为藏北多雨中心,气候比较湿润。雅鲁藏布江下游与怒江下游以西地区,是青藏高原年平降水量较多的地区,一般都在600-800毫米以上。黄河流域的松潘地区,年平均降水量在700毫米。祁连山脉的东南部也是一个年降水量较多的地区,平均500毫米左右。其它大部分地区约在200-500毫米,高原东部的三江流域横断山地区降水偏少,在400毫米以下,其中尤以怒江河谷降水更少,是著名的于热河谷,出现具有亚热带干暖河谷特征的灌丛。被河流切割的地区,象吉隆、聂拉木、亚东等地,受印度洋暖湿气流的影响,年降水量也可高达1000毫米以上,随着高原抬升降水迅速减少。 四、高原气候带的特征 里仅对高原气候带和藏东南山地亚热带、热带北缘气候的基本特征分述如下: 五、青藏高原对我国气候的影响 雄姿,不仅使它本身形成了非地带性的高原气候,而且由于它的存在,对北半球西风气流的

小冰期以来羌塘高原中西部冰川变化图谱分析

文章编号:100020240(2009)0120040208 小冰期以来羌塘高原中西部冰川变化图谱分析 收稿日期:2008206205;修订日期:2008208201 基金项目:中国科学院知识创新工程重要方向项目(ZCX22YW 2301);湖南省自然地理学重点学科建设项目;国家自然科学基金项目 (40871043);科技部科技基础性工作专项(2006F Y110200)资助 作者简介:李德平(1964— ),男,湖南常德人,副教授,2003年在南京大学获博士学位,主要从事GIS 与自然资源评价教学与研究工作.E 2mail :Lideping106@https://www.doczj.com/doc/6f7671231.html, 李德平1, 王利平1, 刘时银2, 谢自楚1, 丁良福2, 吴立宗2 (1.湖南师范大学资源与环境科学学院,湖南长沙410081;2.中国科学院寒区旱区环境与工程研究所,甘肃兰州730000) 摘 要:运用地理信息图谱理论与方法,以地形图、航空相片、Landsat TM 和ETM +遥感数据为基础数据源,分析了羌塘高原中西部小冰期至2000年代的冰川变化.结果表明:这里虽仍有部分冰川存在前进,但冰川整体呈萎缩状态,而且近几十年来,冰川退缩加剧.与同一区域的普若岗日相比,研究区冰川更为稳定.与其它山区冰川相比,这里由于是极大陆型冰川区,所以冰川较其它山区冰川相对稳定.气温升高和降水减少是该区冰川退缩的主要原因.关键词:羌塘高原中西部;RS 和GIS ;图谱;冰川变化;气候中图分类号:P343.6 文献标识码:A 0 引言 全球变化和可持续发展研究是当今科学研究的两大主题,尽管对全球气候变暖的程度和速度,科学家们还存有争议,但全球气候变暖已经是不争的事实[1].冰川变化对气候变化反映极为敏感.20世纪以来随着气候变暖,全球大部分冰川退缩,最近20a 退缩速度加剧[2-3].所以,冰川变化是高山气 候变化的极好代用指标[4].此外,冰川变化对局地气候、生态环境、水资源变化及其海平面升降均产生影响[5].因此,监测和研究冰川变化规律,尤其是代表性冰川或典型区域冰川变化,不仅具有重要的科学意义,而且也对人们的生产生活具有实际意义[5-7]. 由于极地冰盖体积庞大,使得它们对气候变化的反映显得较为迟钝[8-9].而山岳冰川广泛发育的“世界第三极”———青藏高原,与两极冰盖相比,冰川规模相对较小,但其特殊的地形和气候条件使得青藏高原山地冰川对气候变化更为敏感[10].青藏高原的冰川面积占中国冰川总面积的80%以上[11].自小冰期以来,特别是20世纪以来,青藏高原的冰川发生全面退缩[12-14].所以,开展青藏高原的冰川 变化研究对研究全球气候变化和可持续发展具有重要的意义.然而青藏高原,尤其是羌塘高原地区受恶劣的自然条件和不便的交通条件的制约,至今考察较少,缺乏系统的观测资料,且该区冰川数量众多,采用常规的测量技术对冰川的变化进行全面的测量和对比不太现实.20世纪中期以来,随着青藏高原资源与环境研究的不断深入和遥感技术的发展,特别是高分辨率遥感卫星的发展,使得青藏高原冰川动态变化监测取得了一些进展[7,15-20].本文以羌塘高原中西部的典型冰川区为研究区,采用地理信息图谱分析方法,利用航空相片、Landsat TM 和ETM +影像数据以及地形图,结合遥感与GIS 技术,分析了小冰期以来的冰川变化. 1 研究区概况与现代冰川分布 羌塘高原以高海拔而广阔平坦的高原面构成青藏高原的主体,又被称为藏北高原,是高原面保存最完整的区域.其范围为昆仑山以南,冈底斯山以北,喀喇昆仑山以东,唐古拉山以西广袤的高原内陆流域地区.冰川发育主要是气候、地势、地形诸因素综合影响的结果[21].羌塘高原处于青藏高原腹部,周围高山阻隔,降水稀少,形成于晚第三纪 第31卷 第1期2009年2月 冰 川 冻 土 J OU RNAL OF G L ACIOLO GY AND GEOCR YOLO GY Vol.31 No.1 Feb.2009

低频振荡问题综述

电力系统低频振荡分析综述 1. 低频振荡概念 电力系统在某一正常状态下运行时,系统的状态变量具有一个稳态值,但是电力系统几乎时刻都受到小的干扰影响,如负荷的随机变化或风吹架空线摆动等。当系统经受扰动后,其运行状态会偏离原来的平衡点,这时希望系统在阻尼的影响下经历一个振荡过程,回到稳定的平衡运行点。在这一过程中,如果系统的阻尼不足则会出现或观测到电力系统的低频振荡现象。 所谓的低频振荡,一般有如下的定义描述。电力系统中的发电机经输电线路并列运行时,在某种扰动作用下,发生发电机转子之间的相对摇摆,当系统缺乏正阻尼时会引起持续的振荡,输电线路上的功率也发生相应的振荡。这种振荡的频率很低,范围一般是,称其为低频振荡[1]。 在互联电力系统中,低频振荡是广泛存在的现象。根据当今电力系统中出现过的低频振荡现象来看,功率振荡的频率越低时,涉及到的机组相对地就越多。研究中,按低频振荡的频率大小和所涉及的范围将其分为两类[2]或者说两种形式。 一种为区域内的振荡模式,涉及同一电厂内的发电机或者电气距离很近的几个发电厂的发电机,它们与系统内的其余发电机之间的振荡,振荡的频率约为。

另一种为互联系统区域间的振荡模式,是系统的一部分机群相对于另一部分机群的振荡,由于各区域的等值发电机具有很大的惯性常数,因此这种模式的振荡频率要比局部模式低,其频率范围约为。 关于这两种分类,可以在应用发电机经典二阶模型,并利用小干扰分析法说明低频振荡的过程中,通过讨论机组间的电气距离定性地分析出来,在本文后面的简单数学模型分析中将有说明。 由扰动引发的低频振荡受许多因素的影响,研究认为,当今电力系统发生低频振荡问题大多是由系统的阻尼不足引起。而一般来说,发电机转子在转动过程中受到机械阻尼作用,转子闭合回路、转子的阻尼绕组会产生电气阻尼作用。从互联系统自身来看,系统本身具有的自然正阻尼微弱性是发生低频振荡的内在因素。当然,在电力系统发生低频振荡时,往往是在系统中产生了负阻尼,这种负阻尼效应,使得总体的正阻尼作用减小甚至使系统的阻尼变为负。 研究认为,关于系统产生负阻尼的原因,较为确定的结论[3]有:发电机的励磁系统,尤其是高顶值倍数快速励磁系统会引起系统负阻尼;电网负荷过重时也会使系统阻尼下降;电网互联也可能导致系统的阻尼降低。 2. 简单的数学分析 由上所述,一般负担电压控制、无功功率分配等任务的发电机的励磁系统,在系统中可以提高同步发电机并联运行的稳定性,但它在

相关主题
文本预览
相关文档 最新文档