当前位置:文档之家› 反射型超声衍射CT迭代重建算法

反射型超声衍射CT迭代重建算法

反射型超声衍射CT迭代重建算法
反射型超声衍射CT迭代重建算法

迭代重建技术

一.迭代算法原理及进展 迭代重建算法的基本原理是:首先对X线光子分布进行原始估计,在此基础上估算每个投影方向上探测器获得的可能计数(即正投影),再将正投影数据与探测器实际采集的投影数据进行比较,用于更新原始估计数据;不断重复此过程,直至下一次迭代结果无限接近由于IR重建时间长,计算复杂,早期IR 法仅在SPECT 和PET等核医学领域得到应用。近年来,得益于计算机技术和图像重建算法的不断发展以及低剂量成像的需求,IR 技术又逐步在CT领域受到广泛关注 目前多家公司推出了多种IR算法,按照迭代计算所利用的数据空间不同,可大致分为3类 (1)仅在图像数据空间进行IR,如IRIS,对原始数据按照传统的 FBP法重建后,再根据噪声模型对获得的图像数据进行多次迭代计算,以降低噪声和伪影。这种方法运算较快,计算时间仅稍长于FBP法,但由于基于FBP图像进行迭代计算,不可避免地具有FBP 法“理想系统”假设的局限性。 (2)在投影数据空间和图像数据空间中均进行IR,如ASIR、SAFIRE、iDose和 AIDR。首先对投影数据以FBP法进行重建,将获得的图像数据与基于统计的、考虑到光子和电子噪声的理想噪声模型进行比较,去除噪声,得到校正图像,对此图像再通过正投影更新原始投影数据,用于下次迭代计算,如此进行多次IR。这种方法重建速度也较快,但同样具有 FBP法的局限性。 (3)仅在投影数据空间进行IR,如 IMR ,MBIR(即Veo技术),对 X线束从焦点到探测器的整个过程建立多个模型,焦点、X线束、体素和探测器的几何形状均被考虑进去,最为复杂,计算量最大,整个重建过程需 10~90min。使用这些技术的意义在于可在大幅降低CT辐射剂量的同时获得与常规FBP法相同、甚至更好的图像质

核医学图像重建快速迭代算法OSEM

一、引言核医学影像设备如单光子断层扫描仪(SinglePositronEmissionComputeTomography,SPECT)、正电子发射断层扫描仪(PositronEmissionTomo-graphy,PET)融合了当今最高层次的核医学技术,是目前医学界公认的极为先进的大型医疗诊断成像设备,在肿瘤学、心血管疾病学和神经系统疾病学研究中,以及新医药学开发研究等领域中已经显示出它卓越的性能。随着核医学断层影像设备的广泛应用和计算机技术的迅速发展,图像重建方法作为该类设备中的一个关键技术,其研究工作越来越受到人们的重视。本文概述了传统的图像重建方法,并详细介绍了一种具有较高图像质量和较短计算时间的重建算法—有序子集最大期望值方法(Ord-eredSubsetsExpectationMaximization,OSEM)在核医学影像设备中的应用。二、传统的图像重建方法在核医学影像设备中,需要根据物体某一层面在不同探测器上检测到的投影值来重建该断层图像层面,即二维图像重建。传统的图像重建方法主要分为解析法和迭代法。解析法是以中心切片定理(CentralSliceTheorem)为理论基础的求逆过程。常用的一种解析法称为滤波反投影法(FilteredBack-Projection,FBP)。FBP法首先在频率空间对投影数据进行滤波,再将滤波后的投影数据反投影得到重建断层图像。滤波器选为斜坡函数和某一窗函数的乘积,窗函数用于控制噪声,其形状权衡着统计噪声和空间分辨。常用的窗函数有Hanning窗,Hamming窗,Butterworth窗以及Shepp-Logan窗。解析法的优点是速度快,可用于临床实时断层重建。但当测量噪声较大或采样不充分时,这类算法的成像效果不甚理想,尤其是在核医学断层图像重建中对小尺寸源的成像效果差(即所谓偏体积效应)。在滤波中如果对高频信号不做抑制,截止频率高,此时空间分辨最好,但所重建的图像不平滑,易产生振荡和高频伪影;反之,采用较低截止频率,过多压抑高频成分的低通窗函数会造成重建图像的模糊,故在变换法中低噪声和高分辨对滤波器的要求是矛盾的,需折衷选择。且难以在重建中引入各种校正和约束,如衰减校正等。迭代法是从一个假设的初始图像出发,采用迭代的方法,将理论投影值同实测投影值进行比较,在某种最优化准则指导下寻找最优解。迭代求解方法的基本过程是: (1)假定一初始图像f(0); (2)计算该图像投影d; (3)同测量投影值d对比; (4)计算校正系数并更新f值; (5)满足停步规则时,迭代中止; (6)由新的f 作为f(0)从(2)重新开始。该方法最大优点之一是可以根据具体成像条件引入与空间几何有关的或与测量值大小有关的约束和条件因子,如可进行对空间分辨不均匀性的校正、散射衰减校正、物体几何形状约束、平滑性约束等控制迭代的操作。其中实现对比的方法有多种,施加校正系数的方法也有多种。在某些场合下,比如在相对欠采样、低计数的核医学成像中可发挥其高分辨的优势。但是迭代法收敛速度慢,运算时间长,运算量大,而且重建图像会随着迭代次数的增加而趋于“老化”甚至发散,出现高频伪影,这些缺点极大地限制了它在临床中的应用。 [!--empirenews.page--]三、OSEM迭代算法为了加快收敛速度,减少运算时间,提高图像质量,人们提出了很多快速算法,其中有序子集最大期望值法是很有应用前景的一种快速迭代重建算法,它是在最大似然期望法(MaximumLike-lihoodExpectationmaximization,MLEM)的基础上发展起来的。 MLEM方法旨在寻找与测量的投影数据具有最大似然性(ML)的估计解,其迭代过程是由最大期望值算法(EM)来实现的。由于是以统计规律为基础,MLEM重建法具有很好的抗噪声能力,是目前公认为最优秀的迭代重建算法之一,尤其是在处理统计性差的数据时,更能显示出它相对于解析法的优越性,但是这种方法仍然存在迭代法的运算量大、运算时间长等缺点。MLEM方法在每一次迭代过程中,使用所有的投影数据对重建图像每一个象素点的值进行校正,重建图像只被替换一次。 OSEM方法在每一次迭代过程中将投影数据分成N个子集,每一个子集对重建图像各象素点值校正以后,重建图像便被更新一次,所有的子集运算一遍,称为一次迭代过程,它所需要的运算时间与FBP重建的时间基本相等。在ML-EM方法一次迭代过程中,重建图像被更新一次,而在OSEM方法中重建图像被更新N次,所以OSEM方法具有加快收敛的作用。

自适应统计迭代重建与基于模型迭代重建算法在超低剂量儿童胸部CT中的比较

2019年1月第26卷第2期 自适应统计迭代重建与基于模型迭代重建算法 在超低剂量儿童胸部CT中的比较 赵凯宇宣伟玲陆洪江 尽管单次CT扫描有效剂量(1~12mSv)的长期风险很小且不确定,但CT仍是诊断性放射线暴露增加的最大因素,与成人相比,儿童对辐射更加敏感[1]。因此,如何在不影响诊断质量的前提下,最大限度减少被检者接受的辐射剂量很有必要。由于胸部CT扫描在儿童CT检查中占重较大,本文将比较超低剂量胸部CT中自适应统计迭代重建(ASIR)与基于模型的迭代重建(MBIR)的表现并评估辐射剂量减少程度的意义。 1 对象与方法 1.1 对象2016年11月至2017年6月杭州市儿童医院接受超低剂量胸部CT扫描的患者63例,平均年龄(13±3.7)岁,男35例,女28例,其中肺部转移随访28例(44.4%),肺部感染随访17例(27.0%),骨性胸廓评估16例(25.4%),先天性畸形评估2例(3.2%)。根据记录的所有患者的体重和身高计算体质量指数。 1.2 C T扫描协议采用64层螺旋C T扫描,参数:层厚5mm,视野32cm,螺距1.375,旋转时间0.5秒,管电压 作者单位:310014 杭州市儿童医院放射科(赵凯宇);杭州市西溪医院放射科(宣伟玲);解放军第117医院放射科(陆洪江) 通信作者:赵凯宇,Email:49340705@https://www.doczj.com/doc/6f10916412.html, (80或100 kVp)和管电流(10mA或20mA)根据患者的体形大小使用。使用MBIR和ASIR重建技术将原始数据重建为轴位2.5mm层厚。尽管用两种技术重建了轴位和冠状图像,但只用轴位图像进行分析。 1.3客观图像分析由两名对本观察不知情的放射科医师在影像归档和通信系统(P AC S)工作站,按随机顺序对每次重建的图像用感兴趣区域(ROI)内的标准差进行图像噪声测量。将圆形或椭圆形ROI(直径约10mm)置于气管分叉处的降主动脉、椎旁肌、气管和肺实质。为了避免部分容积效应,R O I不能与相邻组织重叠。 1.4 主观图像分析影像学质量的主观分析包括病变可检测性由3名对本研究不知情的放射科医师完成。对经MB IR和ASIR重建的轴位图像,按照个人习惯对纵隔窗和肺窗的窗宽、窗位进行调整。根据计算机断层扫描质量标准指南评估图像质量,包括正常微小结构的可见性(肺外侧2cm的血管,次级支气管壁和裂隙)。如果有病变,根据肺部局灶性病变的可见性和类型(肺不张、实变、结节、毛玻璃样影)评估病变可检测性。当整体图像质量(包括病变可检测性)较好地满足诊断要求,并与预期标准剂量CT图像相当则评为优秀;如果整体图像质量满足诊断要求但低于标准剂量CT则评为可以接受;如果图像质量不能满足诊断要求,则评为不可接受。 【摘要】目的比较自适应统计迭代重建(ASIR)与基于模型的迭代重建(MBIR)两种算法在超低剂量儿童胸部CT扫描中的图像质量和辐射剂量。方法2016年11月至2017年6月杭州市儿童医院接受超低剂量胸部CT扫描的患者63例,分别用MBIR和ASIR算法重建。由两名放射科医师评估两种重建算法的主观和客观图像质量,并对患者超低剂量胸部CT扫描得到的辐射剂量与先前胸部CT扫描(标准剂量或低剂量扫描方案)的辐射剂量进行评估。结果MBIR算法的主观和客观图像质量均优于ASIR。MBIR显示为100%的诊断可接受性,但ASIR在平均0.33mSv (0.14~0.59mSv)超低剂量CT中显示为93%。在接受先前CT检查的患者中,超低剂量CT的特定剂量估计(SSDE)和剂量长度乘积(DLP)平均下降87%(35%~97%)和85%(41%~98%)。结论与ASIR相比,MBIR明显改善图像质量。此外,在诊断可接受的超低剂量胸部CT中,采用MBIR算法辐射剂量减少近90%。 【关键字】自适应统计迭代重建;基于模型的迭代重建;超低剂量;儿童胸部CT 45

迭代算法

在过去的三十多年里, 随着X射线球管、探测器技术、CT系统设计、图像重建算法以及计算机技术的不断发展, CT图像质量明显提高。尤其是在最近十多年里, 多层CT技术的迅猛发展使CT的诊断能力和扫描速度显著提高, 大大扩展了CT在临床上的应用范围。CT已经越来越多的替代常规X射线检查, 如各种血管成像(CTA)。这使得接受CT检查的人群数量逐年大幅增加。据2007年有关文献[1]报道, 1990年美国约有130万人次接受CT检查, 2000年为460万人次, 而当时预计2007年将高达687万人次。相对于普通X射线检查而言, CT 检查是辐射剂量非常高的检查(胸部普通X射线检查的有效剂量为0.02~0.2mSv, CT为5~7mSv)。统计显示[2]美国CT检查的数量只占整个放射学检查数量的11%~13%, 但CT检查的辐射剂量竟占整个放射学检查的2/3。随着CT检查数量的不断增加, 人们在感谢CT为人类健康做出巨大贡献的同时, 越来越多的人开始担忧CT辐射带来的潜在危害。 CT技术诞生以来, 人们已经发展了众多的图像重建算法, 但各种算法均存在着各自的优缺点。解析重建(Analytic Reconstruction, AR)和迭代重建(Iterative Reconstruction, IR)是CT 图像重建的两种基本方法。滤过反投影(Filtered Back Projection, FBP)是解析重建的主要算法, 代数重建算法(Algebraic Reconstruction Technique, ART)是迭代重建中常用的算法。虽然世界上第一台医用CT就采用ART, 但FBP很快就代替ART成为CT图像重建的“金标准[3]”, 这是由于ART计算速度慢、所需存储空间大, 在计算机技术水平不是很高的年代, 它的应用和发展受到了限制。 基于对CT辐射危害的考虑, 多年来众多CT科学家、制造商和临床操作人员为控制和降低CT辐射剂量做出了不懈的努力, 在硬件和软件上做出了诸多改进, 研究出了很多的方法[4], 如自动曝光控制技术(Automatic Exposure Control, AEC), 但该方法对于辐射剂量的降低程度依然有限, 这主要是由于FBP的内在特征决定的。FBP是基于解析重建方式, 图像重建具有闭合形式的解, 其过程是反求公式, 每组投影数据都要经过校准、滤波、反投影、加权, 当最后一组采集的投影数据处理完成, 整个重建过程结束并产生最终重建的图像。FBP 重建速度较快, 但它要求每次投影测量数据是精确定量的和完全的, X射线光子统计波动对它有很大影响, 它对噪声和伪影都很敏感。当辐射剂量降低或投影数据采集不足时, 重建出的图像质量就会很差, 因此使用FBP就不能大幅度降低辐射剂量。 统计迭代重建在发射断层成像(SPECT、PET)的成功应用表明, 即使在低信噪比(Signal Noise Ratio, SNR)的发射数据集利用FBP重建得到的图像质量极差时, 迭代重建仍然可以重建出高质量的图像。迭代重建的基本重建原理如下:对于某个重建视角, 首先在估计的物体图像上通过“前后投影”计算一个综合投影, 这是对沿着该视角的衰减的第一次估计, 但存在较大误差; 这种估计尽可能地模拟真实CT系统中X射线光子穿过物体并到达探测器的过程, 通过将X射线光子的初始位置设置在一个小区域而非单独的点来模拟有限的焦点大小;在X射线光子和物体相互作用的建模过程中, 通过计算光子在轻微不同方向和位置进入体素的路径长度来考虑重建像素的大小和尺寸(而不是一个假想的点);采用相同的方式, 探测器单元的大小和形状通过探测器响应函数来建模。将综合投影与实际测量的投影相比较, 两者间的差异代表了当前估计需要校正的量, 图像校正的目的是使误差最小化。在校正过程中, 由有限光子统计导致的投影测量波动也被考虑了, 同时也评估每个独立测量中的光子统计并将这个信息用于图像校正过程。如果某个体素值与周围体素的值显著不同, 这种差异不能反映病人真实的解剖结构, 更可能是由于统计波动或图像噪声引起的, 即使是一个小血管也应该和血管树相连而非一个孤立的象素。当所有这些信息被考虑的时候, 当前的重建图像就被校正了, 这个图像再通过以上的综合和校正过程来获得一个更新的图像, 当重建图像和原

核医学图像重建快速迭代算法OSEM(一)

核医学图像重建快速迭代算法OSEM(一) 一、引言 核医学影像设备如单光子断层扫描仪(SinglePositronEmissionComputeTomography,SPECT)、正电子发射断层扫描仪(PositronEmissionTomo-graphy,PET)融合了当今最高层次的核医学技术,是目前医学界公认的极为先进的大型医疗诊断成像设备,在肿瘤学、心血管疾病学和神经系统疾病学研究中,以及新医药学开发研究等领域中已经显示出它卓越的性能。随着核医学断层影像设备的广泛应用和计算机技术的迅速发展,图像重建方法作为该类设备中的一个关键技术,其研究工作越来越受到人们的重视。本文概述了传统的图像重建方法,并详细介绍了一种具有较高图像质量和较短计算时间的重建算法—有序子集最大期望值方法(Ord-eredSubsetsExpectationMaximization,OSEM)在核医学影像设备中的应用。二、传统的图像重建方法 在核医学影像设备中,需要根据物体某一层面在不同探测器上检测到的投影值来重建该断层图像层面,即二维图像重建。传统的图像重建方法主要分为解析法和迭代法。解析法是以中心切片定理(CentralSliceTheorem)为理论基础的求逆过程。常用的一种解析法称为滤波反投影法(FilteredBack-Projection,FBP)。FBP法首先在频率空间对投影数据进行滤波,再将滤波后的投影数据反投影得到重建断层图像。滤波器选为斜坡函数和某一窗函数的乘积,窗函数用于控制噪声,其形状权衡着统计噪声和空间分辨。常用的窗函数有Hanning窗,Hamming 窗,Butterworth窗以及Shepp-Logan窗。解析法的优点是速度快,可用于临床实时断层重建。但当测量噪声较大或采样不充分时,这类算法的成像效果不甚理想,尤其是在核医学断层图像重建中对小尺寸源的成像效果差(即所谓偏体积效应)。在滤波中如果对高频信号不做抑制,截止频率高,此时空间分辨最好,但所重建的图像不平滑,易产生振荡和高频伪影;反之,采用较低截止频率,过多压抑高频成分的低通窗函数会造成重建图像的模糊,故在变换法中低噪声和高分辨对滤波器的要求是矛盾的,需折衷选择。且难以在重建中引入各种校正和约束,如衰减校正等。迭代法是从一个假设的初始图像出发,采用迭代的方法,将理论投影值同实测投影值进行比较,在某种最优化准则指导下寻找最优解。迭代求解方法的基本过程是:(1)假定一初始图像f(0);(2)计算该图像投影d;(3)同测量投影值d对比;(4)计算校正系数并更新f值;(5)满足停步规则时,迭代中止;(6)由新的f作为f(0)从(2)重新开始。该方法最大优点之一是可以根据具体成像条件引入与空间几何有关的或与测量值大小有关的约束和条件因子,如可进行对空间分辨不均匀性的校正、散射衰减校正、物体几何形状约束、平滑性约束等控制迭代的操作。其中实现对比的方法有多种,施加校正系数的方法也有多种。在某些场合下,比如在相对欠采样、低计数的核医学成像中可发挥其高分辨的优势。但是迭代法收敛速度慢,运算时间长,运算量大,而且重建图像会随着迭代次数的增加而趋于“老化”甚至发散,出现高频伪影,这些缺点极大地限制了它在临床中的应用。三、OSEM迭代算法 为了加快收敛速度,减少运算时间,提高图像质量,人们提出了很多快速算法,其中有序子集最大期望值法是很有应用前景的一种快速迭代重建算法,它是在最大似然期望法(MaximumLike-lihoodExpectationmaximization,MLEM)的基础上发展起来的。MLEM方法旨在寻找与测量的投影数据具有最大似然性(ML)的估计解,其迭代过程是由最大期望值算法(EM)来实现的。由于是以统计规律为基础,MLEM重建法具有很好的抗噪声能力,是目前公认为最优秀的迭代重建算法之一,尤其是在处理统计性差的数据时,更能显示出它相对于解析法的优越性,但是这种方法仍然存在迭代法的运算量大、运算时间长等缺点。MLEM方法在每一次迭代过程中,使用所有的投影数据对重建图像每一个象素点的值进行校正,重建图像只被替换一次。

相关主题
文本预览
相关文档 最新文档