当前位置:文档之家› 迭代算法

迭代算法

迭代算法
迭代算法

在过去的三十多年里, 随着X射线球管、探测器技术、CT系统设计、图像重建算法以及计算机技术的不断发展, CT图像质量明显提高。尤其是在最近十多年里, 多层CT技术的迅猛发展使CT的诊断能力和扫描速度显著提高, 大大扩展了CT在临床上的应用范围。CT已经越来越多的替代常规X射线检查, 如各种血管成像(CTA)。这使得接受CT检查的人群数量逐年大幅增加。据2007年有关文献[1]报道, 1990年美国约有130万人次接受CT检查, 2000年为460万人次, 而当时预计2007年将高达687万人次。相对于普通X射线检查而言, CT 检查是辐射剂量非常高的检查(胸部普通X射线检查的有效剂量为0.02~0.2mSv, CT为5~7mSv)。统计显示[2]美国CT检查的数量只占整个放射学检查数量的11%~13%, 但CT检查的辐射剂量竟占整个放射学检查的2/3。随着CT检查数量的不断增加, 人们在感谢CT为人类健康做出巨大贡献的同时, 越来越多的人开始担忧CT辐射带来的潜在危害。

CT技术诞生以来, 人们已经发展了众多的图像重建算法, 但各种算法均存在着各自的优缺点。解析重建(Analytic Reconstruction, AR)和迭代重建(Iterative Reconstruction, IR)是CT 图像重建的两种基本方法。滤过反投影(Filtered Back Projection, FBP)是解析重建的主要算法, 代数重建算法(Algebraic Reconstruction Technique, ART)是迭代重建中常用的算法。虽然世界上第一台医用CT就采用ART, 但FBP很快就代替ART成为CT图像重建的“金标准[3]”, 这是由于ART计算速度慢、所需存储空间大, 在计算机技术水平不是很高的年代, 它的应用和发展受到了限制。

基于对CT辐射危害的考虑, 多年来众多CT科学家、制造商和临床操作人员为控制和降低CT辐射剂量做出了不懈的努力, 在硬件和软件上做出了诸多改进, 研究出了很多的方法[4], 如自动曝光控制技术(Automatic Exposure Control, AEC), 但该方法对于辐射剂量的降低程度依然有限, 这主要是由于FBP的内在特征决定的。FBP是基于解析重建方式, 图像重建具有闭合形式的解, 其过程是反求公式, 每组投影数据都要经过校准、滤波、反投影、加权, 当最后一组采集的投影数据处理完成, 整个重建过程结束并产生最终重建的图像。FBP 重建速度较快, 但它要求每次投影测量数据是精确定量的和完全的, X射线光子统计波动对它有很大影响, 它对噪声和伪影都很敏感。当辐射剂量降低或投影数据采集不足时, 重建出的图像质量就会很差, 因此使用FBP就不能大幅度降低辐射剂量。

统计迭代重建在发射断层成像(SPECT、PET)的成功应用表明, 即使在低信噪比(Signal Noise Ratio, SNR)的发射数据集利用FBP重建得到的图像质量极差时, 迭代重建仍然可以重建出高质量的图像。迭代重建的基本重建原理如下:对于某个重建视角, 首先在估计的物体图像上通过“前后投影”计算一个综合投影, 这是对沿着该视角的衰减的第一次估计, 但存在较大误差; 这种估计尽可能地模拟真实CT系统中X射线光子穿过物体并到达探测器的过程, 通过将X射线光子的初始位置设置在一个小区域而非单独的点来模拟有限的焦点大小;在X射线光子和物体相互作用的建模过程中, 通过计算光子在轻微不同方向和位置进入体素的路径长度来考虑重建像素的大小和尺寸(而不是一个假想的点);采用相同的方式, 探测器单元的大小和形状通过探测器响应函数来建模。将综合投影与实际测量的投影相比较, 两者间的差异代表了当前估计需要校正的量, 图像校正的目的是使误差最小化。在校正过程中, 由有限光子统计导致的投影测量波动也被考虑了, 同时也评估每个独立测量中的光子统计并将这个信息用于图像校正过程。如果某个体素值与周围体素的值显著不同, 这种差异不能反映病人真实的解剖结构, 更可能是由于统计波动或图像噪声引起的, 即使是一个小血管也应该和血管树相连而非一个孤立的象素。当所有这些信息被考虑的时候, 当前的重建图像就被校正了, 这个图像再通过以上的综合和校正过程来获得一个更新的图像, 当重建图像和原

始投影数据一致时, 迭代就会中止, 经过多次迭代和校正更新就会重建出高质量和低噪声的图像。由于迭代重建算法所需的投影数少、具有可在数据不完全和低信噪比(低剂量)条件下成像等优点[5], 迭代重建算法已经越来越引起人们的重视。近年来随着计算机技术快速发展和迭代重建算法的不断完善, 迭代重建的缺点已经降为次要矛盾, 迭代重建已成为CT研究的热点。

在Hara AK[6]的临床研究中, ASIR的辐射剂量比FBP降低32%~65%时图像质量不会下降;Prakash P等在腹部[7]应用ASIR的辐射剂量比FBP降低25.1%, 同时图像噪声明显下降[(9.5±2.0)HU和(6.9±2.2)HU], 在胸部[8]ASIR的辐射剂量比FBP降低27.6%, 同时图像噪声下降[(16.6±2.9)HU和(12.6±6.2)HU], 不过在ASIR重建的图像中有39%出现了轻微斑点状伪影, 但对诊断并没造成明显影响;Heilbron BG[9]等在冠状动脉CTA检查中使用ASIR使辐射剂量降低到1mSv以下;Marin D[10]等在低管电压的情况下发现应用ASIR可以在降低辐射剂量的同时保证图像质量。以上的研究证明, 在与FBP辐射剂量相同的情况下迭代重建可以提高图像质量(空间分辨力和密度分辨力), 在与FBP图像噪声一致时迭代重建可明显降低辐射剂量但不会牺牲图像质量。

目前, 多层CT制造商均在加紧迭代重建算法的研究, 西门子公司(Iterative Reconstruction in Image Space, IRIS)、飞利浦公司(iDose技术)和东芝公司(Adaptive Iterative Dose Reduction, AIDR)均称它们最迟将在2010年底前把迭代重建算法应用于临床, 并预计迭代重建算法在保证图像质量恒定的前提下辐射剂量将会比目前FBP的低60%~80%。GE 公司已经把自适应统计迭代重建技术(Adaptive Statistical Iterative Reconstruction, ASIR)装配到其最先进的宝石CT(Discovery CT750 HD)上并用于临床[6~11], 重点是研究噪声消除、伪影抑制以及双能与能(量)敏(感)成像, 现已取得了比较满意的结果。

但目前有几个因素制约着迭代重建算法在CT领域的应用[1,12]。首先, 迭代算法庞大的计算量, 大约是FBP的100~1000倍。尽管基于现场可编程门阵列(FPGA)、多核处理器(IBM 的Playstation 3芯宽带引擎)和图形处理器(GPU)等高性能图像重建技术近来屡有突破, 但图像重建的速度依然很慢(每层约需几十秒)。不过迭代重建过程中最耗时的部分是系统光学模型的建立, 其价值主要体现在提高重建图像的空间分辨力, 而系统统计模型的建立主要体现在改善最终的图像噪声上。建立系统统计模型的计算量没有系统光学模型大, 因此迭代重建通过首先建立噪声模型, 就会对噪声进行较强的抑制, 可以使辐射剂量明显降低同时减少计算量来提高重建速度。ASIR采用这种方法重建图像所需的时间只比FBP的大约长30%[11]。第二, 迭代算法对不同协议与应用的多变性。目前, 要让迭代算法用于某个特定场合必需对若干重要参数进行调整, 其最佳成像质量往往对参数的选择十分敏感。这就要求对迭代重建算法进行更深的研究, 临床操作者也需要更多的时间来掌握该技术, 熟练对重要参数进行优化和调整以保证图像质量的恒定。第三, 统计迭代重建得到的图像可能出现新“面孔”, 这是因为图像是按统计学的最优准则重建的, 其噪声特性和伪影特性与FBP场合迥然不同。放射科医生习惯于看FBP图像, 也习惯于对各种图像质量参数进行折衷, 在某些情况下统计迭代重建会给人一种降低诊断质量的印象。事实上其空间分辨力特性确实与FBP算法不同, 且与许多因素有关。迭代重建会首先对重建区域的线性吸收系数范围进行预估, 在迭代过程中, 如果发现结果中的某个数据超出了这个范围, 则强制使该数据映射到已知的范围内, 这样会使密度过高或过低物体的图像出现明显偏差。在图像重建仿真实验过程中, 发现迭代得到的图像结果中高频噪声十分严重, 因此在每次迭代结束后, 对图像进行邻点算术加权平均的方法进行平滑处理, 然后再作为初始值进行下一次迭代。为了保持图像中物体的边界锐利, 不

致因平滑函数影响而使图像边界变得模糊, 在迭代终了前两次不再进行平滑处理, 以保持物体边界锐利度, 重建出比较满意的图像。

对图像噪声和空间分辨力与一些参数(位置、对比度以及测量统计法)之间的详细定量分析表明, 统计迭代重建有潜力提高重建图像的信息量。因此放射科医生还需要足够的时间对迭代重建的图像进行适应。

总的来说, 当数据不完全、不一致或噪声较重时, 迭代重建相对于FBP有明显的优势。迭代重建为进一步降低CT辐射剂量提供了一个很好的方法, 尽管它用于临床还受到诸多因素的限制, 但随着人们对CT辐射剂量关注程度的进一步增加, 将会加快迭代重建算法的研究和临床应用。我们相信, 迭代重建的广泛临床应用将会使CT乃至整个人类受益。

参考文献:

[1] Brenner DJ, Hall EJ. Computed

Tomography—An increasing Source of Radiation Exposure[J]. N Engl J Med, 2007, 357(22): 22772284.

[2] Kalra MK, Maher MM, Toth TL, et al.

Strategies for CT Radiation Dose Optimization[J]. Radiology, 2004, 230(3): 619628.

[3] Wang G, Y u H, De Man B. An Outlook on

X-ray CT Research and Development[J]. Med Phys, 2008, 35(3):1051-1064.

[4] McCollough CH, Primak AN, Braun N, et al.

Strategies for Reducing Radiation Dose in CT[J]. Radiol Clin North Am, 2009, 47(1):27-40.

[5] Thibault JB, Sauer KD, Bouman CA, et al.

A Three-dimensional Statistical Approach to Improved Image Quality for Multislice Helical CT[J]. Med Phys, 2007. 34(11):45264544.

[6] Hara AK, Paden RG, Silva AC, et al.

Iterative Reconstruction Technique for Reducing Body Radiation Dose at CT: Feasibility Study[J]. AJR, 2009, 193(4):764771.

[7] Prakash P, Kalra MK, Kambadakone AK,

et al. Reducing Abdominal CT Radiation Dose With Adaptive Statistical Iterative Reconstruction Technique[J]. Invest Radiol, 2010, 45(4):202-210.

[8] Prakash P, Kalra MK, Digumarthy SR, et al.

Radiation Dose Reduction with Chest Computed Tomography Using Adaptive Statistical Iterative Reconstruction Technique: Initial Experience[J]. J Comput Assist Tomogr, 2010, 34(1):40-45. [9] Heilbron BG, Leipsic J. Submillisievert

Coronary Computed Tomography Angiography Using Adaptive Statistical Iterative Reconstruction-a new Reality[J]. Can J Cardiol, 2010, 26(1):35-36.

[10] Marin D, Nelson RC, Schindera ST, et al.

Low-Tube-V oltage, High-Tube-Current Multidetector Abdominal CT: Improved Image Quality and Decreased Radiation Dose with Adaptive Statistical Iterative Reconstruction Algorithm—Initial Clinical Experience[J]. Radiology, 2010, 254(1):145-153.

[11] Silva AC, Lawder HJ, Hara A, et al.

Innovations in CT Dose Reduction Strategy: Application of the Adaptive Statistical Iterative Reconstruction Algorithm[J]. AJR, 2010,194(1):191-199.

[12] Xu J, Mahesh M, Tsui BM. Is Iterative

Reconstruction Ready for MDCT? [J] J Am Coll Radiol, 2009, 6(4): 274-276.

迭代阈值法

数字图像处理的目的之一是图像识别, 而图像分割是图像识别工作的基础。图像分割是指把图像分解成具有特性的区域并提取出感兴趣目标的技术和过程,是计算机视觉领域的一个重要而且基本的问题,分割结果的好坏将直接影响到视觉系统的性能。因此从原理,应用和应用效果的评估上深入研究图像分割技术具有十分重要的意义。 本课题主要介绍了图像分割的基本知识。图像分割的算法有阈值分割法,边缘检测法,区域分割等,本设计重点介绍了基于最小点阈值方法,基于最优阈值分割方法,基于迭代图像分割方法,最大类间方差法(OTSU)的图像分割法的原理和他们的MATLAB的实现代码与运行结果。 关键词:图像分割;MATLAB;阈值分割;

1 课程设计目的 (3) 2 课程设计要求 (3) 3 相关知识 (3) 3.1 图像分割的概述 (3) 3.2 阈值分割的基本原理 (4) 3.3 阈值分割方法的分类 (5) 3.3.1 基于点的全局阈值方法 (6) 3.3.2 基于区域的全局阈值方法 (6) 3.3.3 局部阈值法和多阈值法 (6) 4 程设计分析 (6) 4.1 基于迭代的方法实现图像切割 (6) 4.2 最大类间方差的方法实现图像切割 (7) 5 程序设计 (8) 5.1 程序简单介绍 (8) 5.2 程序代码 (8) 6 结果与分析 (11) 结束语 (13) 参考文献 (14)

迭代阈值法 1 课程设计目的 本设计的课题任务是掌握图像阈值分割算法研究,实现对图像的分割。了解图像分割的应用及基本方法,理解阈值化图像分割原理,理解三类典型的阈值化分割算法,并利用之进行图像分割,给出实验结果并做出分析。 2 课程设计要求 ⑴查阅相关资料; ⑵理解基于各像素值的阈值分割算法,基于区域性质的阈值分割算法, 基于坐 标位置的阈值分割算;软件编程实现利用基于各像素值的阈值分割算法进行图像分割,要求完成如下内容:包括极小值点阈值、最优阈值、迭代阈值,基于最大方差的阈值,基于最大熵的阈值等方法,利用之实现图像分割,这里的图像可以针对核磁共振图像 ⑶用MATLAB实现,并观察各算法之间的区别。 3 相关知识 3.1 图像分割的概述 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,

基于优化设计的迭代学习算法研究

基于优化设计的迭代学习算法研究 摘要 迭代学习控制是上世纪80年代提出的一门新兴学科,它在非线性、模型未知等控制问题方面有着独到优势。迭代学习控制针对具有重复运行性质的被控对象,利用对象以前运行的信息,通过迭代的方式修正控制信号,实现在有限时间区间上的完全跟踪任务。它在工业机器人、数控机床等具有重复运行特性的领域有着非常好的应用前景。 目前,作为一门年轻的学科,迭代学习控制的研究分支也较多,而且,在很多方面还有待进一步研究与完善。本文主要在迭代学习控制算法设计与优化方面做了一些工作,主要研究工作体现在如下几个方面: 第一,对迭代学习控制的基本概念、研究现状及应用等内容作一概述,简单介绍了基于优化设计的迭代学习控制算法。最后,对论文的安排及研究内容作了简要说明。 传统迭代学习控制律中的学习系数对迭代学习控制的收敛性和收敛速度的影响非常重要,在PID型迭代学习控制律的实际应用中,算法分析给出的收敛性条件并不能用于指导学习增益的选取,学习增益的设置需要凭借经验选取,因此具有一定的盲目性。为了克服猜测设置学习增益的盲目性,直接的方法是利用系统模型知识。由此引伸出来的一个可行方法就是利用优化指标来设计迭代学习控制律,即所谓的优化迭代学习律。 第二,研究了二次型最优迭代学习算法。在模型确定与不确定两种情况下,针对线性离散系统,分别设计了基于二次型性能指标优化的迭代学习控制算法及参数辨识与估计方法,并得到了系统稳定性、收敛性条件。仿真结果证明了所设计二次型优化迭代学习算法的有效性。 实现二次型性能指标的最优化属最优控制研究的范畴,但该领域

中最优控制器(LQG)的设计必须基于系统精确模型的建立,对于模型未知系统显然无法给出最优控制策略,对于带有不确定项的系统,也只能采用保成本控制等方法得到次优的结果。那么,利用迭代学习控制方法的优点,针对模型未知系统(连续或离散系统),基于二次型性能指标: dt t Ru t u t Qe t e J T )]()()()([T 0T +=? 或 {}∑=+=N i i Ru i u i Qe i e J 0 T T )()()()( 给出一种最优迭代学习控制(Optimal Iterative learning Control ,OILC)策略,无论从理论上或者实际应用上都是十分有价值、有意义的探讨。然而,对于这一课题的研究,目前仅有少量文献发表。 Phan 和Juang 在假定系统模型已知的情况下得到了最优迭代学习控制方法,其实这已失去了迭代学习控制方法的优越性;M. Norrlof 等人利用可获得的模型标称值替代真实模型给出了一类二次型最优迭代学习控制方法,很显然结果只能是次优的,且性能的好坏很大程度上受到建模精度的影响。引入基函数概念,运用辨识方法,Frueh 和Phan 针对线性离散系统,给出了基于二次性能指标的最优迭代学习控制方法,这一方法要求事先假定一组测试输入量作为激励函数,然后不断产生新的与原基函数正交的新基函数以及基函数的系数,最后以基函数的张集作为系统控制输入量。在这一方法中,控制输入量的求取与系统的实际控制是分开进行的,是一种先激励后控制的方式。而对于非线性系统,目前还没有任何研究结果出现。 第三,提出了一种改进的基于最优化指标的迭代学习算法。对于线性时变系统,将每一次的迭代学习控制信号的增量看成常规反馈控制的信号,都通过求解一个基于一种合理改进的性能指标的最优化问题得到,从而设计最优迭代学习算法。该算法的收敛速度较快,其输出误差序列和控制信号序列的收敛性能够得到保证。对于任意给定的系统期望轨迹,该方法保证迭代控制信号能够收敛于系统的一个线性二次型最优控制解。 Amann 针对线性系统,提出了一个基于最优化指标的迭代学习控制设计方法。该方法首先给出了每次迭代运行的最优化性能指标,然

随机直接搜索优化算法NLJ辨识算法

随机直接搜索优化算法NLJ 辨识算法 NLJ 优化算法是随机直接搜索优化算法的一种,它是由随机数直接搜索算法算法发展而来,可以有效地解决各种复杂的问题。因其结构简单以及收敛迅速使其在随机搜索算法中始终占有一席之地。这种算法的核心思想是利用收缩变量来缩小搜索域,找到次优解,然后再基于次优解重复上述过程直到最终获得最优解。 假设待辨识的系统模型为: 1110 1 ()(0,1,...,)n n n H s i n a s a s a s a -= =++ ++ (3.1) 其中,01,,...,n a a a 表示待辨识模型的系数值。 该算法主要有以下步骤: Step 1、初始化参数。根据辨识数据,通过手工调整模型参数大致拟合出一个初始模型,确定模型初始参数(0)k i a ,其次,确定参数搜索范围c 。()k i a j 表示参数i a 在第k 次迭代的搜索结果,0,1,...,k p =,j 表示迭代组数,0,1,...,j m =。参数的搜索范围可由设定参数初始值的倍数决定,具体规则如下: 0l i i r ca = ,当 时,1k k k i i i r ca v -=?。 (3.2) 其中,根据经验知识,c 取值为2。 Step 2、计算性能指标。选择如式(3.3)所示的输出误差指标,作为辨识性能指标式,将待辨识的参数带入系统模型,求解估计值()y t 。 0[()()]N t J y t y t ==-∑ (3.3) 其中,()y t 为t 时刻的实际数据。 Step 3、计算参数估计值。在第k 代计算参数估计参数k l a ,其中rand 是在 [0.5,0.5]-之间分布的随机数,k i a 由下式给出: 1()()k k k l i i a j a j rand r -=+? (3.4) 在第k 次迭代计算后,计算m 组性能指标,选择使得性能指标最小的参数值作为下一次迭代的初始值: 11min[(())](0)|k i k k i i J a j a a --= (3.5) Step 4、修改搜索范围。在第k 次搜索前需要根据下式(3.6)对搜索范围进行修正防止局限的搜索范围导致搜索陷入局部极值。 (3.6) 在此处引入变化率η,首先,计算判断每组参数幅值的变化率,并选择变化 3k >1k k k i i i r cr v -=

SOR迭代(算法分析和数值算例)

SOR 迭代 基本思想 Gauss-Seidel 迭代(1) 1() (1) ()() k k x D L U x D L +--=-+-的结果作为中间值,记为 (1) k x + 。SOR 方法是将(1) k x + 与上次计算的结果() k x 做加权平均作为最后结果。迭 代格式为: 1(1) (1) ()() 1 1 1[](1),1,2i n k k k k i i ij j ij j i j j i ii x b a x a x x i n a ω ω-++==+=- - +-=∑ ∑ 或者 1(1) () (1) () 1 1[],1,2i n k k k k i i i ij j ij j j j i ii x x b a x a x i n a ω -++===+- - =∑ ∑ 算法: 1. 0,,,A b x t e ω输入迭代初值松弛参数,为迭代次数初始值为0,为记录误差 2. 当1,2i n = 时,1 1:[]n i i i i j j j ii x x b a x a ω == +- ∑ ,结果仍然存储在i x 中。迭 代次数:1t t =+ 3. 计算误差* e x x =-(真解已知) 4. 如果6 510 e -

RLS算法辨识系统

自适应滤波器(分别采用LMS 和RLS 算法)对IIR 系统辨识 1. LMS 和RLS 算法简介 LMS 自适应滤波算法是以均方误差最小为准则的,其意义是是滤波器的输出信号和需要信号的误差平方的统计平均值最小,这个准则是依据输入数据的长期统计特性寻求最佳滤波的。而最小二乘(RLS )算法是只依据一组数据来寻求最佳滤波的方法。因此,LMS 滤波是统计意义上的最佳滤波器,而RLS 滤波是针对不同的数据组生成不同的最佳滤波器。RLS 算法实际上是FIR 维纳滤波器的一种时间递归算法,它是严格以最小二乘方准则为依据的算法。它的主要优点是收敛速度快,因此,首先在快速信道均衡,实时系统辨识和时间序列分析中得到广泛应用。其主要缺点是每次迭代计算量很大(对于L 阶横向滤波器,计算量数量级为2L ),因此,在信号处理中它的应用曾一度收到限制。但是近年来人们重新对它产生了兴趣,主要是因为它具有收敛速度快的优点。 RLS 算法的关键是用二乘方的时间平均的最小化准则取代最小均方准则,并按时间迭代计算。具体来说,是要对初始时刻到当前时刻所有误差的平方进行平均并使其最小化,在按照这一准则确定FIR 滤波器的权系数矢量w ,即所依据的准则是 20 ()()min n k n e k ε===∑ (1) 其中()()()e k d k y k =-式中,()d k 是期望响应,()y k 是L 阶FIR 滤波器的输出相应,即 ()()()T T y k k k ==w x x w (2) 2. 自适应滤波器系统辨识原理 如下图所示为自适应滤波器辨识未知系统的基本结构图,其中未知系统可以使FIR 结构,也可以是IIR 结构。在结构图中,x(n)为辨识系统而产生的输入信号,通常可以选择为白噪声,同时输入未知系统和自适应滤波器。d(n)为未知系统的输出信号,即自适应滤波器的参考信号。调整自适应滤波器的系数,使误差信号e(n)的均方误差达到最小,则自适应滤波器的输出y(n)近似等于未知系统的输出d(n)。可以证明,加性噪声v(n)的存在并不影响自适应滤波器最终收敛到最优维纳解。可以认为,具有相同输入和相似输出的两个系统,应该具有相似的特性。因此,可以采用自适应滤波器的特性或其单位脉冲响应来近似替代未知系统的特性或单位脉冲响应。

ICP迭代最近点算法综述

迭代最近点算法综述 摘要:三维点集配准问题是计算机技术中的一个极其重要的问题,作为解决三维点集配准问题的一个应用较为广泛的算法,ICP算法得到了研究者的关注,本文以一种全新的思路从配准元素的选择、配准策略的确定和误差函数的求解等3个方面对三维点集配准的ICP算法的各种改进和优化进行了分类和总结。 关键词:三维点集;迭代最近点;配准 1引言 在计算机应用领域,三维点集配准是一个非常重要的中间步骤,它在表面重建、三维物体识别、相机定位等问题中有着极其重要的应用[1]。对于三维点集配准问题,研究者提出了很多解决方案,如点标记法、自旋图像、主曲率方法、遗传算法、随机采样一致性算法等等,这些算法各有特色,在许多特定的情况下能够解决配准的问题。但是应用最广泛的,影响最大的还是由Besl和Mckay在1992年提出的迭代最近点算法[2](Iterative Closest Point,ICP),它是基于纯粹几何模型的三维物体对准算法,由于它的强大功能以及高的精确度,很快就成为了曲面配准中的主流算法。 随着ICP算法的广泛应用,许多研究者对ICP算法做了详细的研究,分析了该算法的缺陷和特点,提出了许多有价值的改进,推动了这一重要算法的发展。本文着眼于ICP算法的发展历程,详细介绍了ICP算法的基本原理,总结其发展和改进的过程,对于该算法的各个阶段的发展和变化做了简单的论述。 2ICP算法原理 2.1ICP算法原理 ICP算法主要用于三维物体的配准问题,可以理解为:给定两个来至不同坐标系的三维数据点集,找出两个点集的空间变换,以便它们能进行空间匹配。假定用{}表示空间第一个点集,第二个点集的对齐匹配变换为使下式的目标函数最小[3]。 ICP算法的实质是基于最小二乘法的最优匹配算法,它重复进行“确定对应关系点集—计算最优刚体变换”的过程,直到某个表示正确匹配的收敛准则得到满足。ICP 算法的母的是找到目标点集与参考点之间的旋转R和平移T变换,使得两匹配数据中间满足某种程度 度量准则下的最优匹配。假设目标点集P的坐标为{}及参考点集Q的坐标为

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MA TLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w W ,[]T 211,,,,n x x x =X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: (4) (3)分析分类结果:只要有一个错误分类,回到(2),直至对所有样本正确分类。 感知器算法是一种赏罚过程: 分类正确时,对权向量“赏”——这里用“不罚”,即权向量不变; 分类错误时,对权向量“罚”——对其修改,向正确的方向转换[3]。 3.3 感知器算法的流程及框图 1、确1定样本:输入向量P 、目标向量T 。 2、网络大小:根据向量的维数来选择网络规模。 3、初始化:W 、b 取随机值,范围[-1, +1]。 ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

相关主题
文本预览
相关文档 最新文档