中考数学全真模拟试题(十二)
- 格式:doc
- 大小:673.00 KB
- 文档页数:14
江苏省镇江市丹阳市2024年中考数学全真模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( )A .6B .2C .-2D .-62.如图,在平面直角坐标系中,半径为2的圆P 的圆心P 的坐标为(﹣3,0),将圆P 沿x 轴的正方向平移,使得圆P 与y 轴相切,则平移的距离为( )A .1B .3C .5D .1或53.已知函数y =ax 2+bx +c 的图象如图所示,则关于x 的方程ax 2+bx +c ﹣4=0的根的情况是A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根4.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:35.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年6.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-7.如图,在△ABC 中,AB=AC=3,BC=4,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是( )A .3B .4C .5D .68.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B ..5C .6D .89.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+B .()2213y x =-+ C .()2313y x =-++ D .()2313y x =--+ 10.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯二、填空题(共7小题,每小题3分,满分21分)11.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.12.如图,已知//9060 BC 24AD BC B C AD ∠=︒∠=︒==,,,,点M 为边BC 中点,点E F 、在线段AB CD 、上运动,点P 在线段MC 上运动,连接EF EP PF 、、,则EPF ∆周长的最小值为______.13.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .14.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.15.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k y x x=>的图象经过点D ,交BC 边于点E.若△BDE 的面积为1,则k =________16.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.17.欣欣超市为促销,决定对A ,B 两种商品统一进行打8折销售,打折前,买6件A 商品和3件B 商品需要54元,买3件A 商品和4件B 商品需要32元,打折后,小敏买50件A 商品和40件B 商品仅需________元.三、解答题(共7小题,满分69分)18.(10分)如图,数轴上的点A 、B 、C 、D 、E 表示连续的五个整数,对应数分别为a 、b 、c 、d 、e .(1)若a+e=0,则代数式b+c+d= ;(2)若a 是最小的正整数,先化简,再求值:;(3)若a+b+c+d=2,数轴上的点M 表示的实数为m (m 与a 、b 、c 、d 、e 不同),且满足MA+MD=3,则m 的范围是 .19.(5分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85 70 80 85张华90 75 75 80结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.20.(8分)先化简,再求值:(12a+-1)÷212aa-+,其中a=31+21.(10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)22.(10分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?23.(12分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?24.(14分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D 作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【题目详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【题目点拨】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2、D【解题分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【题目详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【题目点拨】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.3、A【解题分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【题目详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【题目点拨】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.4、A【解题分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【题目详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【题目点拨】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.5、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B.【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.6、B【解题分析】连接OA、OB,利用正方形的性质得出OA=ABcos45°,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.【题目详解】解:连接OA、OB,∵四边形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×222,所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故选B.【题目点拨】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.7、C【解题分析】根据等腰三角形的性质可得BE=12BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.【题目详解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=12BC=2,又∵D是AB中点,∴BD=12AB=32,∴DE是△ABC的中位线,∴DE=12AC=32,∴△BDE的周长为BD+DE+BE=32+32+2=5,故选C.【题目点拨】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.8、C【解题分析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DE BC EF=, 即123EF=, 解得EF =6,故选C.9、D【解题分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【题目详解】解:根据图象,设函数解析式为()2y a x h k =-+由图象可知,顶点为(1,3)∴()213y a x =-+,将点(0,0)代入得()20013a =-+解得3a =-∴()2313y x =--+故答案为:D .【题目点拨】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.10、B【解题分析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】210万=2100000,2100000=2.1×106,故选B .【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题(共7小题,每小题3分,满分21分)11、x <﹣2或0<x <2【解题分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【题目详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【题目点拨】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x的取值范围.12、213【解题分析】作梯形ABCD关于AB的轴对称图形,将BC'绕点C'逆时针旋转120°,则有GE'=FE',P与Q是关于AB的对称点,当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,F'M为所求长度;过点F'作F'H⊥BC',M是BC中点,则Q是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以3HC'=1,在Rt△MF'H中,即可求得F'M.【题目详解】作梯形ABCD关于AB的轴对称图形,作F关于AB的对称点G,P关于AB的对称点Q,∴PF=GQ,将BC'绕点C'逆时针旋转120°,Q点关于C'G的对应点为F',∴GF'=GQ,设F'M交AB于点E',∵F关于AB的对称点为G,∴GE'=FE',∴当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,∴F'M 为所求长度;过点F'作F'H ⊥BC',∵M 是BC 中点,∴Q 是BC'中点,∵∠B=90°,∠C=60°,BC=2AD=4,∴C'Q=F'C'=2,∠F'C'H=60°,∴3HC'=1,∴MH=7,在Rt △MF'H 中,F'M ()2222F H MH 37213=+=+=';∴△FEP 的周长最小值为213故答案为:13【题目点拨】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键.13、6或2或12【解题分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【题目详解】由方程2680x x -+=,得x =2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.14、7【解题分析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 15、1【解题分析】 分析:设D (a ,k a ),利用点D 为矩形OABC 的AB 边的中点得到B (2a ,k a ),则E (2a ,2k a),然后利用三角形面积公式得到12•a•(k a -2k a)=1,最后解方程即可. 详解:设D (a ,k a ), ∵点D 为矩形OABC 的AB 边的中点,∴B (2a ,k a), ∴E (2a ,2k a ), ∵△BDE 的面积为1, ∴12•a•(k a -2k a)=1,解得k=1. 故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k 的取值.16、3或1【解题分析】由四边形ABCD 是平行四边形得出:AD ∥BC ,AD=BC ,∠ADB=∠CBD ,又由∠FBM=∠CBM ,即可证得FB=FD ,求出AD 的长,得出CE 的长,设当点P 运动t 秒时,点P 、Q 、E 、F 为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【题目详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADB=∠CBD ,∵∠FBM=∠CBM ,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【题目点拨】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.17、1【解题分析】设A、B两种商品的售价分别是1件x元和1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y 的值,进而求解即可.【题目详解】解:设A、B两种商品的售价分别是1件x元和1件y元,根据题意得63=54 {34=32x yx y++,解得x=8 {y=2.所以0.8×(8×50+2×40)=1(元).即打折后,小敏买50件A商品和40件B商品仅需1元.故答案为1.【题目点拨】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.三、解答题(共7小题,满分69分)18、(1)0;(1),;(3) ﹣1<x<1.【解题分析】(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【题目详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x <1.【题目点拨】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.19、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解题分析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.【题目详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5; (3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5, 张华得分为:90×10%+75×20%+75×30%+80×40%=78.5, ∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【题目点拨】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.20、【解题分析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a 的值代入化简后的式子得出答案.详解:原式=()()22111112211.11a a a a a a a a a a-----+÷===++--+-将1a =代入得:原式=()11333131=-=--+ 点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.21、29033cm 【解题分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF .【题目详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒, ∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()32903tan 3029033EF EH cm =︒=⨯=. 答:支角钢CD 的长为45cm ,EF 的长为29033cm .考点:三角函数的应用22、1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.【解题分析】此题可设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷,根据题中的等量关系列出二元一次方程组解答即可【题目详解】设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{ 5328x y +=+=解得0.4{ 0.2x y == 答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【题目点拨】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系23、(1)A 、B 两种品牌得化妆品每套进价分别为100元,75元;(2)A 种品牌得化妆品购进10套,B 种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解题分析】(1)求A 、B 两种品牌的化妆品每套进价分别为多少元,可设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m 的范围,再用代数式表示出利润,即可得出答案.【题目详解】(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +⎧⎨+⎩== 解得:10075x y ⎧⎨⎩==, 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(50﹣m )套.根据题意得:100m +75(50﹣m )≤4000,且50﹣m ≥0,解得,5≤m ≤10,利润是30m +20(50﹣m )=1000+10m ,当m 取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【题目点拨】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.24、(1)详见解析;(2)1.【解题分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=22=6,于是得到结论.BE BD【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.。
黑龙江省重点中学2024届中考数学全真模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( ) A .8米B .米C .米D .米2.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人) 5 8 14 19 4 时间(小时) 6 78 910 A .14,9B .9,9C .9,8D .8,93.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年5.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <B .0k ≠C .1k <且0k ≠D .0k >6.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是()A.甲B.乙C.甲乙同样稳定D.无法确定7.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+8.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.410.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种二、填空题(共7小题,每小题3分,满分21分)11.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.12.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____. 13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.15.如图,矩形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,点B′和B 分别对应).若AB =2,反比例函数y =kx(k≠0)的图象恰好经过A′,B ,则k 的值为_____.16.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .17.已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为__________.三、解答题(共7小题,满分69分)18.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.19.(5分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A 与D为对应点.20.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.22.(10分)如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .试判断PD 与⊙O 的位置关系,并说明理由;若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.23.(12分)如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC ⊥OA 于点C ,过点B 作⊙O 的切线交CE 的延长线于点D . (1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.24.(14分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,213,22P ⎛⎫ ⎪ ⎪⎝⎭,()30,2P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围; (3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解题分析】此题考查的是解直角三角形 如图:AC=4,AC ⊥BC ,∵梯子的倾斜角(梯子与地面的夹角)不能>60°. ∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,故选C.2、C【解题分析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【题目点拨】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.3、D【解题分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【题目点拨】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年, 故选B . 【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键. 5、C 【解题分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论. 【题目详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴ 20(6)490k k ≠⎧⎨=--⨯>⎩, 解得:k<1且k≠1. 故选:C . 【题目点拨】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键. 6、A 【解题分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【题目详解】∵S 甲2=1.4,S 乙2=2.5, ∴S 甲2<S 乙2,∴甲、乙两名同学成绩更稳定的是甲; 故选A . 【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 7、C 【解题分析】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,1010123x x=+.故选C.考点:由实际问题抽象出分式方程.8、D【解题分析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4,CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,由折叠可得,DF=AF,∴△BDF的周长+(4﹣),∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9、C【解题分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确. 【题目详解】∵CE ⊥AB ,∠ACE=45°, ∴△ACE 是等腰直角三角形, ∵AF=CF , ∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形, ∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC , ∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°, ∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确, ∵AB=AC ,AD ⊥BC , ∴BD=DC , ∴S △ABC =2S △ADC , ∵AF=FC , ∴S △ADC =2S △ADF , ∴S △ABC =4S △ADF . 故选C . 【题目点拨】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题. 10、B 【解题分析】首先设毽子能买x 个,跳绳能买y 根,根据题意列方程即可,再根据二元一次方程求解. 【题目详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.二、填空题(共7小题,每小题3分,满分21分)11、a1+1ab+b1=(a+b)1【解题分析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.12、4 3【解题分析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.13、(﹣2,4)【解题分析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【题目详解】解:∵点A (2,-4)与点B关于原点中心对称,∴点B的坐标为:(-2,4).故答案为:(-2,4).【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.14、30°【解题分析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.15 【解题分析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E=2m ,∴A′(12m ), ∵反比例函数k y x=(k≠0)的图象恰好经过点A′,B ,∴12 ,∴,∴故答案为316、10.5【解题分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【题目详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.17、m=8或【解题分析】求出抛物线的对称轴分三种情况进行讨论即可.【题目详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【题目点拨】考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题(共7小题,满分69分)18、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.19、(1)见解析(2)见解析【解题分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【题目详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF 即为所求.【题目点拨】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20、 (1)π, 2π;(2)(n ﹣2)π.【解题分析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.【题目详解】(1)利用弧长公式可得312111180180180n n n πππ⨯⨯⨯++=π, 因为n 1+n 2+n 3=180°. 同理,四边形的=31241111180180180180n n n n ππππ⨯⨯⨯⨯+++=2π, 因为四边形的内角和为360度;(2)n 条弧=31241111(2)1801 (180180180180180)n n n n n πππππ⨯⨯⨯⨯-⨯⨯++++==(n ﹣2)π. 【题目点拨】本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.21、(1)证明见解析;(1)2【解题分析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF =∠AFD ,然后根据对顶角相等可得∠BFE =∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC =90°,∴∠1+∠BEF =∠1+∠AFD =90°,∴∠BEF =∠AFD .∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC-=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.22、(1)PD是⊙O的切线.证明见解析.(2)1.【解题分析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.23、(1)证明见解析;(2)15 2【解题分析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC ⊥OA , ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD , ∴∠2+∠5=90°,∵OA=OB , ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.(2)作DF ⊥AB 于F ,连接OE ,∵DB=DE , ∴EF=12BE=3,在 RT △DEF 中,EF=3,DE=BD=5,EF=3 , ∴DF=22534-=∴sin ∠DEF=DF DE = 45 , ∵∠AOE=∠DEF , ∴在RT △AOE 中,sin ∠AOE=45AE AO = , ∵AE=6, ∴AO=152. 【题目点拨】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.24、(1)正方形ABCD 的“关联点”为P 2,P 3;(2)1222m ≤≤或2122m -≤≤-;(3)33233n ≤≤-. 【解题分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断; (2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线3y x =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【题目详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF ’⊥x 轴,GG ’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴1222m ≤≤. 根据对称性,可以得出2122m -≤≤-. ∴122m ≤≤212m ≤≤-. (3)∵33M ⎛⎫- ⎪ ⎪⎝⎭、N (0,1), ∴33OM =,ON =1. ∴∠OMN =60°.∵线段MN 上的每一个点都是正方形ABCD的“关联点”,①MN 与小⊙Q 相切于点F ,如图3中,∵QF =1,∠OMN =60°, ∴233QM =. ∵33OM =, ∴33OQ =. ∴13,03Q ⎛⎫ ⎪ ⎪⎝⎭. ②M 落在大⊙Q 上,如图4中,∵2QM =33OM =, ∴32OQ =∴232Q ⎫⎪⎪⎭. 332n ≤≤【题目点拨】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.。
湖南省长沙市师大附中教育集团第十市级名校2024届中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD 为等腰三角形,则线段DG长为()A.2513B.2413C.95D.852.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查3.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.B.C.D.4.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥35.已知电流I (安培)、电压U (伏特)、电阻R (欧姆)之间的关系为U I R =,当电压为定值时,I 关于R 的函数图象是( ) A . B . C . D .6.一元二次方程x 2﹣5x ﹣6=0的根是( )A .x 1=1,x 2=6B .x 1=2,x 2=3C .x 1=1,x 2=﹣6D .x 1=﹣1,x 2=67.已知反比例函数y=﹣6x ,当1<x <3时,y 的取值范围是( ) A .0<y <1 B .1<y <2C .﹣2<y <﹣1D .﹣6<y <﹣2 8.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据132x -,232x -,332x -,432x -,532x -,的平均数和方差分别是( ).A .12,3 B .2,1 C .24,3 D .4,39.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1 B .5.6×10﹣2 C .5.6×10﹣3 D .0.56×10﹣110.下列成语描述的事件为随机事件的是( )A .水涨船高B .守株待兔C .水中捞月D .缘木求鱼二、填空题(共7小题,每小题3分,满分21分)11.可燃冰是一种新型能源,它的密度很小,31cm 可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是__________.12.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________.13.已知:如图,矩形ABCD 中,AB =5,BC =3,E 为AD 上一点,把矩形ABCD 沿BE 折叠,若点A 恰好落在CD 上点F 处,则AE 的长为_____.14.从-5,-103,6,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为______.15.已知,直接y=kx+b (k >0,b >0)与x 轴、y 轴交A 、B 两点,与双曲线y=16 x(x >0)交于第一象限点C ,若BC=2AB ,则S △AOB =________.16.如图,在△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B= ______17.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD 上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在边AD 上的点E 处,且EP//AB ,则AB 的长等于________.三、解答题(共7小题,满分69分)18.(10分)某水果批发市场香蕉的价格如下表 购买香蕉数(千克)不超过20千克 20千克以上但不超过40千克 40千克以上 每千克的价格 6元 5元 4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?19.(5分)先化简,再求值:(1x ﹣21x -)÷2212x x x x +-+,其中x 的值从不等式组11022(1)x x x⎧+⎪⎨⎪-≤⎩>的整数解中选取. 20.(8分)如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).求k 、m 的值;已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x=>的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.21.(10分)当x取哪些整数值时,不等式21222xx-≤-+与4﹣7x<﹣3都成立?22.(10分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?23.(12分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).24.(14分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A 作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=258,则AF=4-258=78.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,由GH∥FB,得出FDGD=BDHD,即可求解.【题目详解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=25 8,∴AF=4-258=78.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=12∠DBC=12∠ADB=12∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,∵GH∥FB,∴FDGD=BDHD,即258x=55-x,解得x=25 13.故选A.【题目点拨】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.2、D【解题分析】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.3、A【解题分析】利用平行线的性质以及相似三角形的性质一一判断即可.【题目详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴,故选项B正确,∵EF∥AB,∴,∴,故选项C,D正确,故选:A.【题目点拨】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、C【解题分析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.5、C【解题分析】根据反比例函数的图像性质进行判断.【题目详解】解:∵UIR,电压为定值,∴I关于R的函数是反比例函数,且图象在第一象限,故选C.【题目点拨】本题考查反比例函数的图像,掌握图像性质是解题关键.6、D【解题分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【题目详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【题目点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.7、D【解题分析】根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.【题目详解】解:∵反比例函数y=﹣6x,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.故选D.【题目点拨】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.8、D【解题分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【题目详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为13,∴数据3x1,3x2,3x3,3x4,3x5的方差是13×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【题目点拨】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.9、B【解题分析】0.056用科学记数法表示为:0.056=-25.610,故选B.10、B【解题分析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C 不正确缘木求鱼是不可能事件,D 不正确;故选B .考点:随机事件.二、填空题(共7小题,每小题3分,满分21分)11、9.2×10﹣1. 【解题分析】 根据科学记数法的正确表示为()10110n a a ⨯≤<,由题意可得0.00092用科学记数法表示是9.2×10﹣1. 【题目详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为: 9.2×10﹣1. 【题目点拨】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.12、3.86×108 【解题分析】根据科学记数法的表示(a×10n ,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数)形式可得:3.86亿=386000000=3.86×108.故答案是:3.86×108.13、53【解题分析】根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF =AB =5,EF =EA ,根据勾股定理求出CF ,由此得到DF 的长,再根据勾股定理即可求出AE.【题目详解】∵矩形ABCD 中,AB =5,BC =3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折叠的性质可知,BF =AB =5,EF =EA ,在Rt △BCF 中,CF 4,∴DF=DC﹣CF=1,设AE=x,则EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=53,故答案为:53.【题目点拨】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.14、2 7【解题分析】七个数中有两个负整数,故随机抽取一个数,恰好为负整数的概率是:2 7【题目详解】105,,6,1,0,2, 3π----这七个数中有两个负整数:-5,-1所以,随机抽取一个数,恰好为负整数的概率是:2 7故答案为2 7【题目点拨】本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键.15、4 3【解题分析】根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可. 【题目详解】∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=16x交于第一象限点C,若BC=2AB,设点C的坐标为(c,16c)∴OA=0.5c,OB=1163c⨯=163c,∴S△AOB=1·2OA OB=1160.523cc⨯⨯=43【题目点拨】此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.16、【解题分析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.17、51 2【解题分析】设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到PE PDAB BD=,即11PE PEa-=,可得2211a aa-=,即可得到AB的长等于512-. 【题目详解】如图,设CD=AB=a ,则BC 2=BD 2-CD 2=1-a 2,由折叠可得,CE=BC ,BP=EP ,∴CE 2=1-a 2,∴Rt △CDE 中,DE 2=CE 2-CD 2=1-2a 2,∵PE ∥AB ,∠A=90°,∴∠PED=90°,∴Rt △DEP 中,DE 2=PD 2-PE 2=(1-PE )2-PE 2=1-2PE ,∴PE=a 2, ∵PE ∥AB ,∴△DEP ∽△DAB , ∴PE PD AB BD =,即11PE PE a -=, ∴2211a a a -=, 即a 2+a-1=0,解得125151a a ---==(舍去), ∴AB 的长等于AB=512. 51-.三、解答题(共7小题,满分69分)18、第一次买14千克香蕉,第二次买36千克香蕉【解题分析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y >40③当20<x <3时,则3<y <2.【题目详解】设张强第一次购买香蕉xkg ,第二次购买香蕉ykg ,由题意可得0<x <3.则①当0<x≤20,y≤40,则题意可得5065264x y x y +⎧⎨+⎩==. 解得1436x y ⎧⎨⎩==. ②当0<x≤20,y >40时,由题意可得5064264x y x y +⎧⎨+⎩==. 解得3218x y ⎧⎨⎩==.(不合题意,舍去) ③当20<x <3时,则3<y <2,此时张强用去的款项为5x+5y=5(x+y )=5×50=30<1(不合题意,舍去);④当20<x≤40 y >40时,总质量将大于60kg ,不符合题意,答:张强第一次购买香蕉14kg ,第二次购买香蕉36kg .【题目点拨】本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答. 19、-14【解题分析】先化简,再解不等式组确定x 的值,最后代入求值即可.【题目详解】 (1x ﹣21x -)÷2212x x x x+-+, =(1)(1)x x x -+-÷2212x x x x +-+, =21x x -,解不等式组()110221x x x ⎧+>⎪⎨⎪-≤⎩,可得:﹣2<x ≤2,∴x =﹣1,0,1,2,∵x =﹣1,0,1时,分式无意义,∴x =2,∴原式=2122-=﹣14.20、 (1) k 的值为3,m 的值为1;(2)0<n≤1或n≥3.【解题分析】分析:(1)将A 点代入y=x-2中即可求出m 的值,然后将A 的坐标代入反比例函数中即可求出k 的值. (2)①当n=1时,分别求出M 、N 两点的坐标即可求出PM 与PN 的关系;②由题意可知:P 的坐标为(n ,n ),由于PN≥PM ,从而可知PN≥2,根据图象可求出n 的范围.详解:(1)将A (3,m )代入y=x-2,∴m=3-2=1,∴A (3,1),将A (3,1)代入y=k x , ∴k=3×1=3,m 的值为1.(2)①当n=1时,P (1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M (3,1),∴PM=2,令x=1代入y=3x, ∴y=3,∴N (1,3),∴PN=2∴PM=PN ,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.21、2,1【解题分析】根据题意得出不等式组,解不等式组求得其解集即可.【题目详解】根据题意得21222473xxx-⎧≤-+⎪⎨⎪-<-⎩①②,解不等式①,得:x≤1,解不等式②,得:x>1,则不等式组的解集为1<x≤1,∴x可取的整数值是2,1.【题目点拨】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.22、120【解题分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【题目详解】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【题目点拨】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.23、5作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小【解题分析】(1)利用勾股定理计算即可;(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.【题目详解】解:(1)AC=221+2=5.故答案为5.(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.故答案为作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.【题目点拨】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.24、(1)证明见解析(2)25 3【解题分析】(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【题目详解】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【题目点拨】本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.。
辽宁省抚顺市中考数学模拟试卷(六)一、选择题(本题共10道题,每道题3分,满分30分)1.若|x|=,则x等于()A.﹣B.C.D.±2.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a43.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如图是由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.5.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是()A.B.C.D.6.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.7.下列调查中,最合适采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解抚顺市民对春节晚会节目的满意程度C.调查九年一班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查8.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53° B.55° C.57° D.60°9.如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为()A.B.C.D.10.如图,P是⊙O外一动点,PA、PB、CD是⊙O的三条切线,C、D分别在PA、PB上,连接OC、OD.设∠P为x°,∠COD为y°,则y随x的函数关系图象为()A.B.C.D.二、填空题(本题共8个小题,每题3分,满分24分)11.分解因式:a3﹣4a=.12.为认真贯彻落实党的十八大和中央政治局关于八项规定的精神,某市严格控制“三公”经费支出,共节约“三公”经费505000000元,用科学记数法可把505000000表示为.13.底角为30°,腰长为a的等腰三角形的面积是.14.某地体育测试用抽签的方式决定考试分组和考试项目,具体操作流程是:①每位考生从写有A、B、C的三张纸片中随机抽取一张确定考试分组;②再从写有“引体向上”、“立定跳远”、“800米”的三张纸片中随机抽取一张确定考试项目,则考生小明抽到A组“引体向上”的概率等于.15.某校随机抽查了八年级的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界、不含后一个边界),则次数不低于42个的有人.16.某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x元/立方米,则所列方程为.17.如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B 重合,则重叠部分(△BEF)的面积为.18.如图,点P1(x1,y1),点P2(x2,y2),…,点P n(x n,y n)在函数y=A n都是等(x>0)的图象上,△P1OA,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n都在x轴上(n是大于腰直角三角形,斜边OA1,A1A2,A2A3,…,A n﹣1或等于2的正整数).若△P1OA1的内接正方形B1C1D1E1的周长记为l1,△P2A1A2的内接正方形的周长记为l2,…,△P n A nA n的内接正方形B nC nD nE n﹣1的周长记为l n,则l1+l2+l3+…+l n=(用含n的式子表示).三、解答题(本题共2个小题,第19题10分,第20题12分,满分22分)19.先化简,再求代数式的值,其中a=6ta n30°﹣2.20.开始辽宁足球队把盘锦辽滨锦绣体育场作为了自己的主场,小球迷“球球”对自己学校部分学生对去赛场为辽宁队加油助威进行了抽样调查,根据收集到的数据绘制了如下不完整的统计图表.调查情况(说明:A:特别愿意去;B:愿意去;C:去不去都行;D:不愿意去)(1)求出不愿意去的学生的人数占被调查总人数的百分比;(2)求出扇形统计图中C所在的扇形圆心角的度数;(3)若该校学生共有人,请你估计特别愿意去加油助威的学生共有多少人?(4)大赛组委会为了鼓励大众到体育场为球队加油助威的热情,进行了“玩游戏,赠门票”的活动,一个被等分成4个扇形的圆形转盘,分别标有数字2,3,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).若转两次的数字之和大于等于10则赠送一张门票,请用“列表法”或“画树形图”的方法求出获赠门票的概率.四、(本题共2个小题,每题12分,满分24)21.小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45°,大厦底部的仰角为30°,如图所示,量得两幢楼之间的距离为20米.(1)求出大厦的高度BD;(2)求出小敏家的高度AE.22.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A 作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.五、(满分12分)23.已知:如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB 于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.(1)求证:BF与⊙O相切;(2)若BF=10,cos∠ABC=,求⊙O的半径.六、(满分12分)24.某商场销售一种成本为每件20元的商品,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设商场销售该种商品每月获得利润为w(元),写出w与x之间的函数关系式;(2)如果商场想要销售该种商品每月获得元的利润,那么每月成本至少多少元?(3)为了保护环境,政府部门要求用更加环保的新产品替代该种商品,商场若销售新产品,每月销售量与销售价格之间的关系与原产品的销售情况相同,新产品为每件22元,同时对商场的销售量每月不小于150件的商场,政府部门给予每件3元的补贴,试求定价多少时,新产品每月可获得销售利润最大?并求最大利润.七、解答题(满分12分)25.菱形ABCD中,两条对角线AC、BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,连接EF.(1)如图2,当∠ABC=60°时,猜想三条线段CE、CF、AB之间的数量关系;(2)如图1,当∠ABC=90°时,若AC=4,BE=,求线段EF的长;(3)如图3,当∠ABC=90°,将∠EOF的顶点移到AO上任意一点O′处,∠EO′F 绕点O′旋转,仍满足∠EO′F+∠BCD=180°,O′E交BC的延长线一点E,射线O′F交CD的延长线上一点F,连接EF探究在整个运动变化过程中,线段CE、CF,O′C之间满足的数量关系,请直接写出你的结论.八、解答题(满分12分)26.如图,已知直线y=kx+6与抛物线y=ax2+bx+c相交于A,B两点,且点A (1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB与△POC 全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.辽宁省抚顺市中考数学模拟试卷(六)参考答案与试题解析一、选择题(本题共10道题,每道题3分,满分30分)1.若|x|=,则x等于()A.﹣B.C.D.±【考点】绝对值.【分析】根据绝对值的性质可得结果.【解答】解:∵|x|=,∴x=±,故选D.2.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的除法运算法则分别化简求出答案.【解答】解:A、a•a=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a﹣1=a4,正确,不合题意;故选:C.3.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解::A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、圆是轴对称图形,不是中心对称图形.故错误.故选C.4.如图是由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.5.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图得出所有等可能的情况数,找出落地后出现两个正面一个反面朝上的情况数,即可求出所求的概率.【解答】解:画树状图得:所有等可能的情况有8种,其中两个正面一个反面的情况有3种,则P=.故选B.6.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.7.下列调查中,最合适采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解抚顺市民对春节晚会节目的满意程度C.调查九年一班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、乘坐高铁对旅客的行李的检查,是事关重大的调查,适合普查,故A错误;B、了解抚顺市民对春节晚会节目的满意程度,调查范围广,适合抽样调查,故B正确;C、调查九年一班全体同学的身高情况,调查范围小,适合普查,故C错误;D、对新研发的新型战斗机的零部件进行检查,是事关重大的调查,适合普查,故D错误;故选:B.8.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53° B.55° C.57° D.60°【考点】平行线的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:由三角形的外角性质,∠3=30°+∠1=30°+27°=57°,∵矩形的对边平行,∴∠2=∠3=57°.故选:C.9.如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为()A.B.C.D.【考点】扇形面积的计算;等边三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质以及等边三角形的判定得出3个等边三角形全等,进而得出阴影部分面积等于△BCE面积,求出即可.【解答】解:连接DO,EO,BE,过点D作DF⊥AB于点F,∵AD=OA=1,∴AD=AO=DO,∴△AOD是等边三角形,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDO=∠DOA=60°,∴△ODE是等边三角形,同理可得出△OBE是等边三角形且3个等边三角形全等,∴阴影部分面积等于△BCE面积,∵DF=ADsin60°=,DE=EC=1,∴图中阴影部分的面积为:××1=.故选:A.10.如图,P是⊙O外一动点,PA、PB、CD是⊙O的三条切线,C、D分别在PA、PB上,连接OC、OD.设∠P为x°,∠COD为y°,则y随x的函数关系图象为()A.B.C.D.【考点】动点问题的函数图象.【分析】设CD与⊙O相切于点E,连结OA、OB、OE,如图,根据切线长定理得CA=CE,DE=DB,根据切线的性质得OA⊥PA,OB⊥PB,OE⊥CD,则利用角平分线定理的逆定理可判断OC平分∠AOE,OD平分∠BOE,则∠1=∠2,∠3=∠4,所以∠COD=∠AOB,接着利用四边形内角和得到∠AOB=180°﹣∠P=180°﹣x°,所以y=90°﹣x(0<x<180°),然后利用此解析式对各选项进行判断即可.【解答】解:设CD与⊙O相切于点E,连结OA、OB、OE,如图,∵PA、PB、CD是⊙O的三条切线,∵CA=CE,DE=DB,OA⊥PA,OB⊥PB,OE⊥CD,∴OC平分∠AOE,OD平分∠BOE,∴∠1=∠2,∠3=∠4,∴∠COD=∠2+∠3=∠AOB,∵∠AOB=180°﹣∠P=180°﹣x°,∴y=90°﹣x(0<x<180°).故选B.二、填空题(本题共8个小题,每题3分,满分24分)11.分解因式:a3﹣4a=a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)12.为认真贯彻落实党的十八大和中央政治局关于八项规定的精神,某市严格控制“三公”经费支出,共节约“三公”经费505000000元,用科学记数法可把505000000表示为 5.05×108.【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法,可得答案.【解答】解:用科学记数法可把505000000表示为5.05×108,故答案为:5.05×108.13.底角为30°,腰长为a的等腰三角形的面积是a2.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】作出图形,过点A作AD⊥BC于D,根据等腰三角形三线合一的性质可得BC=2BD,根据直角三角形30°角所对的直角边等于斜边的一半可得AD=AB,再利用勾股定理列式求出BD,然后根据三角形的面积公式列式计算即可得解.【解答】解:如图,过点A作AD⊥BC于D,∵△ABC是等腰三角形,∴BC=2BD,∵底角∠B=30°,∴AD=AB=a,由勾股定理得,BD==a,∴BC=2BD=a,∴三角形的面积=×a×a=a2.故答案为a2.14.某地体育测试用抽签的方式决定考试分组和考试项目,具体操作流程是:①每位考生从写有A、B、C的三张纸片中随机抽取一张确定考试分组;②再从写有“引体向上”、“立定跳远”、“800米”的三张纸片中随机抽取一张确定考试项目,则考生小明抽到A组“引体向上”的概率等于.【考点】概率公式.【分析】分别用D,E,F表示“引体向上””立定跳远”“800米”,据题意画出树状图,然后由树状图即可求得所有等可能的结果;再利用概率公式求解即可求得答案.【解答】解:分别用D,E,F表示“引体向上””立定跳远”“800米”,画树状图得:∵共有9种等可能的结果,∴小明抽到A组“引体向上”的概率=,故答案为:.15.某校随机抽查了八年级的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界、不含后一个边界),则次数不低于42个的有14人.【考点】频数(率)分布直方图.【分析】由频数分布直方图可知仰卧起坐的次数x在42≤x<46的有8人,46≤x <50的有6人,可得答案.【解答】解:由频数分布直方图可知,次数不低于42个的有8+6=14人,故答案为:14.16.某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x元/立方米,则所列方程为.【考点】由实际问题抽象出分式方程.【分析】本题需先根据已知条件,设出未知数,再根据题目中的等量关系列出方程,即可求出答案.【解答】解:设去年居民用水价格为x元/立方米,根据题意得:=8,故答案为:.17.如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B 重合,则重叠部分(△BEF)的面积为7.5cm2.【考点】矩形的性质;翻折变换(折叠问题).【分析】设DE=xcm,由翻折的性质可知DE=EB=,在Rt△ABE中,由勾股定理求得ED的长;由翻折的性质可知∠DEF=∠BEF,由矩形的性质可知BC∥AD,从而得到∠BFE=∠DEF,故此可知∠BFE=∠FEB,得出FB=BE,最后根据三角形的面积公式求解即可.【解答】解:设DE=xcm.由翻折的性质可知DE=EB=.在Rt△ABE中,由勾股定理得;BE2=EA2+AB2,即x2=(9﹣x)2+32.解得:.∵四边形ABCD为矩形,∴BC∥AD.∴∠BFE=∠DEF.∴∠BFE=∠FEB.∴FB=BE=5cm.∴△BEF的面积=BF•AB=×3×5=7.5(cm2);故答案为:7.5cm2.18.如图,点P1(x1,y1),点P2(x2,y2),…,点P n(x n,y n)在函数y=A n都是等(x>0)的图象上,△P1OA,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n都在x轴上(n是大于腰直角三角形,斜边OA1,A1A2,A2A3,…,A n﹣1或等于2的正整数).若△P1OA1的内接正方形B1C1D1E1的周长记为l1,△P2A1A2的内接正方形的周长记为l2,…,△P n A nA n的内接正方形B nC nD nE n﹣1的周长记为l n,则l1+l2+l3+…+l n=(用含n的式子表示).【考点】反比例函数图象上点的坐标特征;等腰直角三角形;正方形的性质.【分析】由于△P1OA1是等腰直角三角形,可知直线OP1的解析式为y=x,将它与y=(x>0)联立,求出方程组的解,得到点P1的坐标,则A1的横坐标是P1的横坐标的两倍,从而确定点A1的坐标;由于△P1OA1,△P2A1A2都是等腰直角三角形,则A1P2∥OP1,直线A1P2可看作是直线OP1向右平移OA1个单位长度得到的,因而得到直线A1P2的解析式,同样,将它与y=(x >0)联立,求出方程组的解,得到点P2的坐标,则P2的横坐标是线段A1A2的中点,从而确定点A2的坐标;依此类推,从而确定点A n的坐标,得出OA n 的长,然后根据l1=OA1,l2=A1A2,l3=A2A3…l n=A n﹣1A n,即可求得l1+l2+l3+…+l n=OA n=×2=.【解答】解:过P1作P1M1⊥1(1,0)是OA1的中点,∴A1(2,0).可得P1的坐标为(1,1),∴P1O的解析式为:y=x,∵P1O∥A1P2,∴A1P2的表达式一次项系数相等,将A1(2,0)代入y=x+b,∴b=﹣2,∴A1P2的表达式是y=x﹣2,与y=(x>0)联立,解得P2(1+,﹣1+).仿上,A2(2,0).P3(+,﹣+),A3(2,0).依此类推,点A n的坐标为(2,0),∵l1=OA1,l2=A1A2,l3=A2A3…l n=A nA n,﹣1∴l1+l2+l3+…+l n=OA n=×2=.故答案为:.三、解答题(本题共2个小题,第19题10分,第20题12分,满分22分)19.先化简,再求代数式的值,其中a=6ta n30°﹣2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,利用特殊角的三角函数值求出a的值,代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=6×﹣2=2﹣2时,原式===.20.开始辽宁足球队把盘锦辽滨锦绣体育场作为了自己的主场,小球迷“球球”对自己学校部分学生对去赛场为辽宁队加油助威进行了抽样调查,根据收集到的数据绘制了如下不完整的统计图表.调查情况(说明:A:特别愿意去;B:愿意去;C:去不去都行;D:不愿意去)(1)求出不愿意去的学生的人数占被调查总人数的百分比;(2)求出扇形统计图中C所在的扇形圆心角的度数;(3)若该校学生共有人,请你估计特别愿意去加油助威的学生共有多少人?(4)大赛组委会为了鼓励大众到体育场为球队加油助威的热情,进行了“玩游戏,赠门票”的活动,一个被等分成4个扇形的圆形转盘,分别标有数字2,3,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).若转两次的数字之和大于等于10则赠送一张门票,请用“列表法”或“画树形图”的方法求出获赠门票的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)首先求出总人数为50人,再计算不愿意去的学生的人数的百分比即可;(2)由C的总人数和总人数作比值再乘以360°,即可得到C所在的扇形圆心角的度数;(3)用乘以特别愿意去加油助威的学生所占的百分比即可;(4)列出所有情况,然后求出两次的数字之和大于等于10的情况计算即可.【解答】解:(1)25÷50%=50(人),2÷50=4%,不愿意去的学生的人数占被调查总人数的百分比为4%;(2)(10÷50)×360=72°,扇形统计图中C所在的扇形圆心角的度数为72°;(3)×50%=1000(人),∴估计特别愿意去加油助威的学生共有1000人;(4)列表如下:第1次2 3 5 6第2次2 (2,2)(3,2)(5,2)(6,2)3 (2,3)(3,3)(5,3)(6,3)5 (2,5)(3,5)(5,5)(6,5)6 (2,6)(3,6)(5,6)(6,6)由表可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次的和大于等于10(记为事件A)的结果有4个,即(5,5),(5,6),(6,5),(6,6),∴P(A)==.四、(本题共2个小题,每题12分,满分24)21.小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45°,大厦底部的仰角为30°,如图所示,量得两幢楼之间的距离为20米.(1)求出大厦的高度BD;(2)求出小敏家的高度AE.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)易得四边形AEDC是矩形,即可求得AC的长,然后分别在Rt△ABC与Rt△ACD中,利用三角函数的知识求得BC与CD的长,继而求得答案;(2)结合(1),由四边形AEDC是矩形,即可求得小敏家的高度AE.【解答】解:(1)如图,∵AC⊥BD,∴BD⊥DE,AE⊥DE,∴四边形AEDC是矩形,∴AC=DE=20米,∵在Rt△ABC中,∠BAC=45°,∴BC=AC=20米,在Rt△ACD中,tan30°=,∴CD=AC•tan30°=20×=20(米),∴BD=BC+CD=20+20(米);∴大厦的高度BD为:(20+20)米;(2)∵四边形AEDC是矩形,∴AE=CD=20米.∴小敏家的高度AE为20米.22.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A 作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【考点】正方形的判定;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AD=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF 是正方形.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.五、(满分12分)23.已知:如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB 于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.(1)求证:BF与⊙O相切;(2)若BF=10,cos∠ABC=,求⊙O的半径.【考点】切线的判定;三角形的外接圆与外心.【分析】(1)先证明△BEF是等腰三角形,再证明∠FBA+∠DBA=90°即可.(2)在Rt△BDF中,cosD=,设BD=12x,DF=13x,利用勾股定理列出方程即可解决问题.【解答】证明:(1)连接BD,∵AD⊥AB,∴∠BAD=90°,∴BD是直径,BD过圆心,∵AB=AC,∴∠ABC=∠C,∵∠D=∠C,∴∠ABC=∠D又∵AD⊥AB,且AF=AE∴△BEF是等腰三角形,∴∠ABC=∠ABF,∴∠D=∠ABF,又∵∠BAD=90°,∴∠ABD+∠D=180°﹣∠BAD=180°﹣90°=90°,∴∠ABD+∠ABF=90°,∴∠DBF=90°,∴OB⊥BF,又∵OB是⊙O的半径,∴BF是⊙OA切线;(2)∵∠ABC=∠D,∴cosD=cos∠ABC=,在Rt△BDF中,cosD=,设BD=12x,DF=13x,又∵BD2+DF2=DF2,∴(12x)2+102=(13x)2∵x>0,∴x=2,∴BD=12×2=24,∴OB=BD=12∴⊙O半径为12.六、(满分12分)24.某商场销售一种成本为每件20元的商品,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设商场销售该种商品每月获得利润为w(元),写出w与x之间的函数关系式;(2)如果商场想要销售该种商品每月获得元的利润,那么每月成本至少多少元?(3)为了保护环境,政府部门要求用更加环保的新产品替代该种商品,商场若销售新产品,每月销售量与销售价格之间的关系与原产品的销售情况相同,新产品为每件22元,同时对商场的销售量每月不小于150件的商场,政府部门给予每件3元的补贴,试求定价多少时,新产品每月可获得销售利润最大?并求最大利润.【考点】二次函数的应用.【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数y=﹣10x+500,利润=(定价﹣成本价)×销售量,从而列出关系式;(2)令w=,然后解一元二次方程,从而求出销售单价;(3)根据销售量每月不小于150件的商场,政府部门给予每件3元的补贴,则利润=(定价﹣成本价+补贴)×销售量,从而列出关系式;运二次函数性质求出结果.【解答】解:(1)由题意,得:w=(x﹣20)•y,=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,(2)由题意,得:﹣10x2+700x﹣10000=,解这个方程得:x1=30,x2=40,当x=30时,成本为20×(﹣10×30+500)=4000元当x=40时,成本为20×(﹣10×40+500)=元答:想要每月获得元的利润,每月成本至少元.(3)当销售量每月不小于150件时,即﹣10x+500≥150,解得:x≤35,由题意,得:w=(x﹣22+3)•y=(x﹣19)•(﹣10x+500)=﹣10x2+690x﹣9500=﹣10(x﹣34.5)2+2402.5∴当定价34.5元时,新产品每月可获得销售利润最大值是2402.5元.七、解答题(满分12分)25.菱形ABCD中,两条对角线AC、BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,连接EF.(1)如图2,当∠ABC=60°时,猜想三条线段CE、CF、AB之间的数量关系CE+CF=AB.;(2)如图1,当∠ABC=90°时,若AC=4,BE=,求线段EF的长;(3)如图3,当∠ABC=90°,将∠EOF的顶点移到AO上任意一点O′处,∠EO′F 绕点O′旋转,仍满足∠EO′F+∠BCD=180°,O′E交BC的延长线一点E,射线O′F交CD的延长线上一点F,连接EF探究在整个运动变化过程中,线段CE、CF,O′C之间满足的数量关系,请直接写出你的结论.【考点】四边形综合题;四点共圆.(1)如图1中,连接EF,在CO上截取CN=CF,只要证明△OFN≌△EFC,【分析】即可推出CE+CF=OC,再证明OC=AB即可.(2)在Rt△CEF中,根据CE2+CF2=EF2即可解决问题.(3)结论:CF﹣CE=OC,过点O作OH⊥AC交CF于H,只要证明△FOH≌△EOC,推出FH=CE,再根据等腰直角三角形性质即可解决问题.【解答】解(1)结论CE+CF=AB.理由:如图1中,连接EF,在CO上截取CN=CF.∵∠EOF+∠ECF=180°,∴O、E、C、F四点共圆,∵∠ABC=60°,四边形ABCD是菱形,∴∠BCD=180°﹣∠ABC=120°,∴∠ACB=∠ACD=60°,∴∠OEF=∠OCF,∠OFE=∠OCE,∴∠OEF=∠OFE=60°,∴△OEF是等边三角形,∴OF=FE,∵CN=CF,∠FCN=60°,∴△CFN是等边三角形,∴FN=FC,∠OFE=∠CFN,∴∠OFN=∠EFC,在△OFN和△EFC中,,∴△OFN≌△EFC,∴ON=EC,∴CE+CF=CN+ON=OC,∵四边形ABCD是菱形,∠ABC=60°,∴∠CBO=30°,AC⊥BD,在RT△BOC中,∵∠BOC=90°,∠OBC=30°,∴OC=BC=AB,∴CE+CF=AB.(2)连接EF∵在菱形ABCD中,∠ABC=90°,∴菱形ABCD是正方形,∴∠BOC=90°,OB=OC,AB=AC,∠OBE=∠OCF=45°,∠BCD=90°∵∠EOF+∠BCD=180°,∴∠EOF=90°,∴∠BOE=∠COF∴△OBE≌△OCF,∴BE=CF,∵BE=,∴CF=,在Rt△ABC中,AB2+BC2=AC2,AC=4∴BC=4,∴CE=,在Rt△CEF中,CE2+CF2=EF2,∴EF=答:线段EF的长为,(3)结论:CF﹣CE=OC.理由:过点O作OH⊥AC交CF于H,∵∠OCH=∠OHC=45°,∴OH=OC,∵∠FOE=∠HOC,∴∠FOH=∠COE,∵∠EOF=∠ECF=90°,∴O、C、F、E四点共圆,∴∠OEF=∠OCF=45°,∴∠OFE=∠OEF=45°,∴OE=OF,在△FOH和△EOC中,,∴△FOH≌△EOC,∴FH=CE,∴CF﹣CE=CF﹣FH=CH=OC.八、解答题(满分12分)26.如图,已知直线y=kx+6与抛物线y=ax2+bx+c相交于A,B两点,且点A (1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB与△POC 全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.【考点】二次函数综合题.【分析】(1)由待定系数法确定函数解析式;(2)先确定出点C坐标,再由△POB≌△POC建立方程,求解即可,(3)分三种情况计算,分别判断△DAQ1∽△DOB,△BOQ2∽△DOB,△BOQ3∽△Q3EA,列出比例式建立方程求解即可.【解答】解:(1)把A(1,4)代入y=kx+6,。
2014凉山州初中毕业㊁高中阶段招生统一考试数学全真模拟试卷(十二)㊀㊀本试卷分为A 卷(120分)㊁B 卷(30分),全卷150分,考试时间120分钟.A 卷又分为第Ⅰ卷和第Ⅱ卷.A 卷(共120分)第Ⅰ卷(选择题㊀共48分)注意事项:1.第Ⅰ卷答在答题卡上,不能答在试卷上.答卷前,考生务必将自己的姓名㊁准考证号㊁试题科目涂写在答题卡上.2.每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.一㊁选择题(共12小题,每小题4分,共48分.在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置)1.c o s 45ʎ等于(㊀㊀).A.12B .22C .32D.32.计算-22+(-2)2--12æèçöø÷-1的结果是(㊀㊀).A.2B .-2C .6D.103.下列说法中正确命题有(㊀㊀).(1)一个角的两边分别垂直于另一个角的两边,则这两个角相等;(2)数据5,2,7,1,2,4的中位数是3,众数是2;(3)等腰梯形既是中心对称图形,又是轴对称图形;(4)在R t әA B C 中,øC =90ʎ,两直角边a ,b 分别是方程x 2-7x +7=0的两个根,则边A B上的中线长为1235.A.0个B .1个C .2个D.3个4.下列运算正确的是(㊀㊀).A.-(-a +b )=a +bB .3a 3-3a 2=aC .a +a -1=0D.1ː23æèçöø÷-1=235.分式方程x x -3=x +1x -1的解为(㊀㊀).A.x =1B .x =-1C .x =3D.x =-36.下列图形是正方体的表面展开图的是(㊀㊀).7.如图,点C ㊁D 是以线段A B 为公共弦的两条圆弧的中点,A B =4,点E ㊁F 分别是线段C D ㊁A B 上的动点,设A F =x ,A E 2-F E 2=y ,则能表示y 与x 的函数关系的图象是(㊀㊀).(第7题)㊀㊀(第8题)㊀㊀(第9题)8.如图,在梯形A B C D 中,A D ʊB C ,点E 在B C 上,A E =B E ,点F 是C D 的中点,且A F ʅA B ,若A D =2.7,A F =4,A B =6,则C E 的长为(㊀㊀).A.22B .2.3C .2.5D.23-19.一个几何体的三视图如图:其中主视图和左视图都是腰长为4㊁底边为2的等腰三角形,则这个几何体的侧面展开图的面积为(㊀㊀).A.2πB .12πC .4πD.8π10.如图,A B 为☉O 的直径,P D 切☉O 于点C ,交A B 的延长线于点D ,且C O =C D ,则øP C A 的度数为(㊀㊀).A.30ʎB .45ʎC .60ʎD.67.5ʎ题)㊀㊀㊀㊀题)11.如图,把R t әA B C 放在直角坐标系内,其中øC A B =90ʎ,B C =5,点A ㊁B 的坐标分别为(1,0)㊁(4,0),将әA B C 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段B C 扫过的面积为(㊀㊀).A.4B .8C .16D.8212.已知函数y =(x -1)2-1(x ɤ3),(x -5)2-1(x >3),{则使y =k 成立的x 值恰好有三个,则k 的值为(㊀㊀).A.0B .1C .2D.3第Ⅱ卷(非选择题㊀共72分)题号A 卷二三四五总分B 卷六七总分总分得分注意事项:1.答卷前将密封线内的项目填写清楚,准考证号前7位填在密封线方框内,末两位填在卷首方框内.2.答题时用钢笔或圆珠笔直接答在试卷上.得分评卷人㊀㊀㊀二㊁填空题(共5小题,每小题4分,共20分)13.分解因式:a-6a b +9a b2=㊀㊀㊀㊀.14.计算:412-8=㊀㊀㊀㊀.15.如图,C D 与B E 互相垂直平分,A D ʅD B ,øB D E =70ʎ,则øC A D =㊀㊀㊀㊀ʎ.(第15题)㊀㊀㊀㊀(第16题)16.在R t әA B C 中,øA C B =90ʎ,B C =2c m ,C D ʅA B ,在A C 上取一点E ,使E C =B C ,过点E 作E F ʅA C 交C D 的延长线于点F ,若E F =5c m ,则A E =㊀㊀㊀㊀c m .17.读一读:式子 1+2+3+4+ +100 表示从1开始的100个连续自然数的和.由于式子比较长,书写不方便,为了简便起见,我们将其表示为ð100n =1n ,这里 ð 是求和符号.通过对以上材料的阅读,计算ð2012n =11n (n +1)=㊀㊀㊀㊀.得分评卷人㊀㊀㊀三㊁解答题(共2小题,每小题6分,共12分)18.解不等式组:2x +6>2(1-x ),2x -34ɤx .{19.已知:如图,在әA B C ㊁әA D E 中,øB A C =øD A E =90ʎ,A B =A C ,A D =A E ,点C ㊁D ㊁E三点在同一直线上,连接B D .求证:(1)әB A D ɸәC A E ;(2)试猜想B D ㊁C E 有何特殊位置关系,并证明.(第19题)得分评卷人㊀㊀㊀四㊁解答题(共3小题,第20题7分,第21㊁22题每题8分,共23分)20.根据上海市政府智囊团关于上海世博会支出的一份报告,绘制出了以下两个统计图表:表一:上海世博会运营费统计表:运营项目世博园维护相关活动宣传推广保安接待贵宾行政管理费用(万美元)99006000234003000A8700占运营费的比例0.165B0.390.050.150.145图一:上海世博会支出费用统计图:(第20题)求:(1)上海世博会建设费占总支出的百分比;(2)表一中的数据A㊁B;(3)上海世博会专项费的总金额.21.如图,四边形A B C D内接于☉O,C DʊA B,且A B是☉O的直径,A EʅC D交C D延长线于点E.(1)求证:A E是☉O的切线;(2)若A E=2,C D=3,求☉O的直径.(第21题)22.有3张扑克牌,分别是红桃3㊁红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)先后两次抽得的数字分别记为s和t,求︱s-t︱ȡ1的概率;(2)甲㊁乙两人做游戏,现有两种方案.A方案:若两次抽得相同花色,则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数,则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?得分评卷人㊀㊀㊀五㊁解答题(共2小题,第23题8分,第24题9分,共17分)23.如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里/时的速度向西北方向航行,我渔政船立即沿北偏东60ʎ方向航行,1.5小时后,在我领海区域的C处截获可疑渔船.问我渔政船的航行路程是多少海里?(结果保留根号)(第23题)24.A 市与B 市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m 与该列车每次拖挂车厢节数n 的部分数据如下:车厢节数n 4710往返次数m16104(1)请你根据上表数据,在三个函数模型:①y =k x +b (k ,b 为常数,k ʂ0);②y =k x(k 为常数,k ʂ0);③y =a x 2+b x +c (a ,b ,c 为常数,a ʂ0)中,选取一个适合的函数模型,求出的m 关于n 的函数关系式是m =㊀㊀㊀㊀㊀㊀;(不写n 的取值范围)(2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时,一天的实际运营人数Q 最多.(每节车厢载客量设定为常数p )B 卷(共30分)得分评卷人㊀㊀㊀六㊁填空题(共2小题,每小题5分,共10分)25.如图,在R t әA B C 中,øA C B =90ʎ,øA =60ʎ.将әA B C 绕直角顶点C 按顺时针方向旋转,得әA ᶄB ᶄC ,斜边A ᶄB ᶄ分别与B C ㊁A B 相交于点D ㊁E ,直角边A ᶄC 与A B 交于点F .若C D =A C =2,则әA B C 至少旋转㊀㊀㊀㊀度才能得到әA ᶄB ᶄC ,此时әA B C 与әAᶄB ᶄC 的重叠部分(即四边形C D E F )的面积为㊀㊀㊀㊀㊀㊀.(第25题)㊀㊀㊀(第26题)26.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50米,半圆的直径为4米,则圆心O 所经过的路线长是㊀㊀㊀㊀.得分评卷人㊀㊀㊀七㊁解答题(共2小题,第27题8分,第28题12分,共20分)27.已知,在矩形A B C D中,A B=a,B C=b,动点M从点A出发沿边A D向点D运动.(1)如图(1),当b=2a,点M运动到边A D的中点时,请证明øB M C=90ʎ; (2)如图(2),当b>2a时,点M在运动的过程中,是否存在øB M C=90ʎ;若存在,请给予证明;若不存在,请说明理由;(3)如图(3),当b<2a时,(2)中的结论是否仍然成立?请说明理由.(1)㊀㊀(2)㊀㊀(3) (第27题)28.如图,点A在x轴上,O A=4,将线段O A绕点O顺时针旋转120ʎ至O B的位置.(1)求点B的坐标;(2)求经过点A㊁O㊁B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P㊁O㊁B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.(第28题)2014凉山州初中毕业㊁高中阶段招生统一考试数学全真模拟试卷(十二)1.B ㊀2.A㊀3.C ㊀4.D㊀5.D ㊀6.C ㊀7.C ㊀8.B9.C ㊀10.D ㊀11.C ㊀12.D 13.a (1-3b )2㊀14.0㊀15.70㊀16.3㊀17.2012201318.x >-119.(1)由A B =A C ,øB A D =øC A E ,A D =A E ,所以әB A DɸәC A E (S A S ).(2)B D ʅC E ,证明略.20.(1)58%㊀(2)A =9000,B =0.1㊀(3)10000万美元21.(1)ȵ㊀C D ʊA B ,C E ʅA E ,ʑ㊀A E ʅA B .又㊀点A 在☉O 上,ʑ㊀A E 是☉O 的切线.(2)直径A B =5.22.(1)23(2)A 方案:P (甲胜)=59,B 方案:P (甲胜)=49,故选择A 方案甲的胜率更高.23.过点C 作A B 的垂线,垂足为D .ȵ㊀南北方向ʅA B ,ʑ㊀øC A D =30ʎ,øC B D =45ʎ.在等腰R t әB C D 中,B C =12ˑ1.5=18,ʑ㊀C D =18s i n 45ʎ=92.在R t әA C D 中,C D =A C ˑs i n 30ʎ,ʑ㊀A C =182.ʑ㊀我渔政船的航行路程是182海里.24.(1)-2n +24(2)每次挂6节车厢,一天往返12次.25.30㊀6-532㊀26.4π+5027.(1)ȵ㊀b =2a ,点M 是A D 的中点,ʑ㊀A B =AM =MD =D C .又㊀在矩形A B C D 中,øA =øD =90ʎ,ʑ㊀øAM B =øDM C =45ʎ.ʑ㊀øB M C =90ʎ.(2)存在.理由:若øB M C =90ʎ,则øAM B +øDM C =90ʎ.又㊀øAM B +øA B M =90ʎ,ʑ㊀øA B M =øDM C .又㊀øA =øD =90ʎ,ʑ㊀әA B M ʐәDM C .ʑ㊀AM C D =A BDM.设AM =x ,则x a =a b -x,整理,得x 2-b x +a 2=0.ȵ㊀b >2a ,a >0,b >0,ʑ㊀Δ=b 2-4a 2>0.ʑ㊀方程有两个不相等的实数根,且两根均大于零,符合题意.ʑ㊀当b >2a 时,存在øB M C =90ʎ.(3)不成立.理由:若øB M C =90ʎ,由(2)可知x 2-b x +a 2=0,ȵ㊀b <2a ,a >0,b >0,ʑ㊀Δ=b 2-4a 2<0.ʑ㊀方程没有实数根.ʑ㊀当b <2a 时,不存在øB M C =90ʎ,即(2)中的结论不成立.28.(1)如图,过点B 作B C ʅx 轴,垂足为C ,则øB C O =90ʎ.ȵ㊀øA O B =120ʎ,ʑ㊀øB O C =60ʎ.又㊀O B =O A =4,ʑ㊀O C =12O B =12ˑ4=2,B C =O B s i n 60ʎ=4ˑ32=23.ʑ㊀点B 的坐标是(-2,-23).(2)ȵ㊀抛物线过原点O 和点A ㊁B ,ʑ㊀可设抛物线解析式为y =a x 2+b x .将A (4,0)㊁B (-2,-23)代入,得16a +4b =0,4a -2b =-23.{解得a =-36,b =233.ìîíïïïʑ㊀此抛物线的解析式为y =-36x 2+233x .(3)存在.如图,抛物线的对称轴是x =2,直线x =2与x 轴的交点为D .设点P 的坐标为(2,y ).(第28题)①若O B =O P ,则22+|y|2=42,解得y =ʃ23.当y =23时,在R t әP O D 中,øP D O =90ʎ,s i n øP O D =P D O P=234=32.ʑ㊀øP O D =60ʎ.ʑ㊀øP O B =øP O D +øA O B =60ʎ+120ʎ=180ʎ,即P ㊁O ㊁B 三点在同一条直线上.ʑ㊀y =23不符合题意,舍去.ʑ㊀点P 的坐标为(2,-23).②若O B =P B ,则42+|y +23|2=42,解得y =-23.ʑ㊀点P 的坐标是(2,-23).③若O P =B P ,则22+|y |2=42+|y +23|2,解得y =-23.ʑ㊀点P 的坐标是(2,-23).综上所述,符合条件的点P 只有一个,其坐标为(2,-23).。
浙江省金华市四校2024学年中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A .2 cmB .32cmC .42cmD .4cm2.如图,在△ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .3.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=- 4.下列计算,结果等于a 4的是( )A .a+3aB .a 5﹣aC .(a 2)2D .a 8÷a 2 5.一个几何体的三视图如图所示,则该几何体的表面积是( )A .24+2πB .16+4πC .16+8πD .16+12π6.用配方法解方程x 2﹣4x+1=0,配方后所得的方程是( )A .(x ﹣2)2=3B .(x+2)2=3C .(x ﹣2)2=﹣3D .(x+2)2=﹣37.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-的值为()A .7-B .3-C .7D .38.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )A .1B .2C .3D .49.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )A .14.4×103B .144×102C .1.44×104D .1.44×10﹣410.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A .能中奖一次B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 12.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.14.如图,在菱形ABCD中,AB=3,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC 于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________________.16.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.17.若一个棱柱有7个面,则它是______棱柱.18.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=13BD,若四边形AECF为正方形,则tan∠ABE=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积. (2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.20.(6分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.21.(6分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?22.(8分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.23.(8分)(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.24.(10分)如图所示,在▱ABCD中,E是CD延长线上的一点,BE与AD交于点F,DE=12 CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.25.(10分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C 测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)26.(12分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.27.(12分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为端点均为非等距点的对角线长为(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结A D,AC,BC,若四边形ABCD 是以A为等距点的等距四边形,求∠BCD的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【题目详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),226242-cm).故选C.【题目点拨】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.2、C【解题分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【题目详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【题目点拨】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.3、D【解题分析】试题分析:方程22311xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.4、C【解题分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【题目详解】A.a+3a=4a,错误;B.a5和a不是同类项,不能合并,故此选项错误;C.(a2)2=a4,正确;D.a8÷a2=a6,错误.故选C.【题目点拨】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.5、D【解题分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【题目详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16, 故选:D .【题目点拨】 本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.6、A【解题分析】方程变形后,配方得到结果,即可做出判断.【题目详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【题目点拨】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.7、D【解题分析】由根与系数的关系得出x 1+x 2=5,x 1•x 2=2,将其代入x 1+x 2−x 1•x 2中即可得出结论.【题目详解】解:∵方程x 2−5x +2=0的两个解分别为x 1,x 2,∴x 1+x 2=5,x 1•x 2=2,∴x 1+x 2−x 1•x 2=5−2=1.故选D .【题目点拨】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x 1+x 2=5,x 1•x 2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.8、A【解题分析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB , ∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质9、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【题目详解】14400=1.44×1.故选C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、B【解题分析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.11、D【解题分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【题目详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【题目点拨】解答此题要明确概率和事件的关系:()①,为不可能事件;=P A0()=②为必然事件;P A1()③<<为随机事件.0P A112、D【解题分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【题目详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【题目点拨】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、a<﹣1【解题分析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.14、1或33 【解题分析】 由四边形ABCD 是菱形,得到BC ∥AD ,由于EF ∥AB ,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF ∥AB ,于是得到EF=AB=3,当△EFG 为等腰三角形时,①EF=GE=3时,于是得到DE=DG=12AD÷32=1,②GE=GF 时,根据勾股定理得到DE=33. 【题目详解】 解:∵四边形ABCD 是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC ∥AD ,∵EF ∥AB ,∴四边形ABFE 是平行四边形,∴EF ∥AB ,∴EF=AB=3,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG ,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG 为等腰三角形时,当EF=EG 时,EG=3,如图1,过点D 作DH ⊥EG 于H ,∴EH=12EG=32, 在Rt △DEH 中,DE=0cos30HE =1,GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=123Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=12EG=12,同①的方法得,3当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为13【题目点拨】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.15、4【解题分析】∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4,故答案为4.16、13【解题分析】根据同时同地物高与影长成比列式计算即可得解.【题目详解】解:设旗杆高度为x米,由题意得,1.5x=326,解得x=13.故答案为13.【题目点拨】本题考查投影,解题的关键是应用相似三角形.17、5【解题分析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.18、1 3【解题分析】利用正方形对角线相等且互相平分,得出EO=AO=12BE,进而得出答案.【题目详解】解:∵四边形AECF为正方形,∴EF与AC相等且互相平分,∴∠AOB=90°,AO=EO=FO,∵BE=DF=13 BD,∴BE=EF=FD,∴EO=AO=12 BE,∴tan∠ABE=AOBO=13.故答案为:1 3【题目点拨】此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=12BE 是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、 (1)3;(2)①2,②3【解题分析】分析:(1)重合部分是等边三角形,计算出边长即可.()2①证明:在图3中,取AB 中点E,证明OEE '≌OBF ,即可得到,EE BF '=2BE BF BE EE BE +=+=''=', ②由①知,在旋转过程60°中始终有OEE '≌,OBF 四边形OE BF '的面积等于OEB S=3.详解:(1)∵四边形为菱形,120,ADC ∠=︒∴60,ADO ∠=︒∴ABD △为等边三角形∴30,60,DAO ABO ∠=︒∠=︒∵AD //,A O '∴60,A OB ∠=︒'∴EOB △为等边三角形,边长2,OB = ∴重合部分的面积:23234⨯= ()2①证明:在图3中,取AB 中点E,由上题知,60,60,EOB E OF ∠=︒∠=︒'∴,EOE BOF ∠=∠'又∵2,60,EO OB OEE OBF '==∠=∠=︒∴OEE '≌OBF ,∴,EE BF '=∴2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE '≌,OBF∴四边形OE BF '的面积等于OEB S 点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.20、(1)y=60x ;(2)300【解题分析】(1)由题图可知,甲组的y 是x 的正比例函数.设甲组加工的零件数量y 与时间x 的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y 与时间x 之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍. 所以a-100100=24.8-2.82⨯,解得a=300. 21、(1)y 1=(120-a )x (1≤x≤125,x 为正整数),y 2=100x-0.5x 2(1≤x≤120,x 为正整数);(2)110-125a (万元),10(万元);(3)当40<a <80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a <100时,选择方案二.【解题分析】(1)根据题意直接得出y 1与y 2与x 的函数关系式即可;(2)根据a 的取值范围可知y 1随x 的增大而增大,可求出y 1的最大值.又因为﹣0.5<0,可求出y 2的最大值; (3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a >1以及2000﹣200a <1.【题目详解】解:(1)由题意得:y 1=(120﹣a )x (1≤x≤125,x 为正整数),y 2=100x ﹣0.5x 2(1≤x≤120,x 为正整数);(2)①∵40<a <100,∴120﹣a >0,即y 1随x 的增大而增大,∴当x=125时,y 1最大值=(120﹣a )×125=110﹣125a (万元)②y 2=﹣0.5(x ﹣100)2+10,∵a=﹣0.5<0,∴x=100时,y 2最大值=10(万元);(3)∵由110﹣125a >10,∴a <80,∴当40<a <80时,选择方案一;由110﹣125a=10,得a=80,∴当a=80时,选择方案一或方案二均可;由110﹣125a <10,得a >80,∴当80<a <100时,选择方案二.考点:二次函数的应用.22、-1≤x<4,在数轴上表示见解析.【解题分析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x 122x x +>-≥-①②, 由①得,x<4;由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:23、(1)BC=BD+CE ,(2)10(3)32【解题分析】(1)证明△ADB ≌△EAC ,根据全等三角形的性质得到BD=AC ,EC=AB ,即可得到BC 、BD 、CE 之间的数量关系;(2)过D 作DE ⊥AB ,交BA 的延长线于E ,证明△ABC ≌△DEA ,得到DE=AB=2,AE=BC=4,Rt △BDE 中,BE=6,根据勾股定理即可得到BD 的长;(3)过D 作DE ⊥BC 于E ,作DF ⊥AB 于F ,证明△CED ≌△AFD ,根据全等三角形的性质得到CE=AF ,ED=DF ,设AF=x ,DF=y ,根据CB=4,AB=2,列出方程组,求出,x y 的值,根据勾股定理即可求出BD 的长.【题目详解】解:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:2262210BD=+=;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,则42x yx y+=⎧⎨+=⎩,解得:13,xy=⎧⎨=⎩∴BF=2+1=3,DF=3,由勾股定理得:223332BD=+=.【题目点拨】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.24、(1)见解析;(2)16【解题分析】试题分析:(1)要证△ABF ∽△CEB ,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB ∥CD ,可得一对内错角相等,则可证.(2)由于△DEF ∽△EBC ,可根据两三角形的相似比,求出△EBC 的面积,也就求出了四边形BCDF 的面积.同理可根据△DEF ∽△AFB ,求出△AFB 的面积.由此可求出▱ABCD 的面积.试题解析:(1)证明:∵四边形ABCD 是平行四边形∴∠A=∠C ,AB ∥CD∴∠ABF=∠CEB∴△ABF ∽△CEB(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC ,AB 平行且等于CD∴△DEF ∽△CEB ,△DEF ∽△ABF∵DE=12CD ∴21()9DEF CEB SDE S EC ==, 21()4DEF ABF SDE S AB == ∵S △DEF =2S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △BCE -S △DEF =16∴S 四边形ABCD =S 四边形BCDF +S △ABF =16+8=1.考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.25、52【解题分析】根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【题目详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则29411636520.7533AF xCF xtan+=≈=+︒',在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴41165633x x+=+,解得:x=52,答:该铁塔的高AE为52米.【题目点拨】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.26、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解题分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【题目详解】(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE⎧⎨⎩==, ∴Rt △ADF ≌Rt △ABE (HL )∴BE=DF ;(2)四边形AEMF 是菱形,理由为:证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC (正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF ,∴平行四边形AEMF 是菱形.27、(1)是;(2)见解析;(3)150°.【解题分析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS 证明△AEC ≌△BED ,得出AC=BD ,由等距四边形的定义得出AD=AB=AC ,证出AD=AB=BD ,△ABD 是等边三角形,得出∠DAB=60°,由SSS 证明△AED ≌△AEC ,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD 的度数,即可得出答案.【题目详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得:CD ==在图3中,由勾股定理得:CD ==(3)解:连接BD .如图1所示:∵△ABE 与△CDE 都是等腰直角三角形,∴DE=EC ,AE=EB ,∠DEC+∠BEC=∠AEB+∠BEC ,即∠AEC=∠DEB ,在△AEC 和△BED 中,,DE CE AEC BED AE BE =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△BED (SAS ),∴AC=BD ,∵四边形ABCD 是以A 为等距点的等距四边形,∴AD=AB=AC ,∴AD=AB=BD ,∴△ABD 是等边三角形,∴∠DAB=60°,∴∠DAE=∠DAB ﹣∠EAB=60°﹣45°=15°,在△AED 和△AEC 中,,AD AC DE CE AE AE =⎧⎪=⎨⎪=⎩∴△AED ≌△AEC (SSS ),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,∵AB=AC ,AC=AD ,∴180301803075,75,22ACB ACD--∠==∠==∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【题目点拨】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
吉林长春中考模拟(十二)数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】比1小2的数是()A.-3 B.-2 C.-1 D.0【答案】C.【解析】试题解析:1-2=-1.故选C.考点:有理数的减法.【题文】PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,数0.0000025用科学记数法表示为()A.25×10-7 B.2.5×10-6 C.0.25×10-5 D .2.5×10-7【答案】B.【解析】试题解析:0.0000025=2.5×10-6,故选B.考点:科学记数法--表示较小的数.【题文】不等式组的解集在数轴上表示正确的是()【答案】A.【解析】评卷人得分试题解析:不等式组的解集是-3<x≤1,在数轴上表示为:故选A.考点:用数轴表示不等式的解集.【题文】下列四个物体的俯视图与右边给出视图一致的是()【答案】C.【解析】试题解析:几何体lD、△=(-2)2-4×1×(-1)=8>0,有两个不相等实数根.故选A.考点:根的判别式.【题文】如图,AB∥CD,点E在直线CD上,EA平分∠CEB,若∠BED=40°,则∠A大小为()A.80° B.70° C.50° D.40°【答案】B.【解析】试题解析:∵∠BED=40°,∴∠BEC=180°-40°=140°,∵EA是∠CEB的平分线,∴∠AEC=70°,∵AB∥CD,∴∠A=∠AEC=70°,故选B.考点:平行线的性质.【题文】如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=120°,则∠APD的大小为()A.45° B.40° C.35° D.30°【答案】D.【解析】试题解析:连接DO,∵∠BCD=120°,∴∠DAB=180°-120°=60°,∴△ADO为等边三角形,∴∠ODA=60°,∵PD与⊙O相切,∴∠PDO=90°,∴∠ADP=90°-60°=30°,∴∠APD=∠ODA-∠ADP=60°-30°=30°.故选D.考点:切线的性质.【题文】如图,在平面直角坐标系中,△OAB的顶点A、B的坐标分别为(0,1)、(2,1),点C在边AB 上(不与点B重合),设点C的横坐标为m,△BOC的面积为S,则下面能够反映S与m之间的函数关系的图象是()【答案】C.【解析】试题解析:由题意可得, =2-m,所以,S随着m的增大而减小,当m=0时,取得最大值2,m的取值范围是0≤m<2,故选C.考点:动点问题的函数图象.【题文】计算:(3x)2=.【答案】9x2.【解析】试题解析:(3x)2=32x2=9x2.考点:积的乘方.【题文】某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a的代数式表示).【答案】(50-3a).【解析】试题解析:∵购买这种售价是每千克a元的水果3千克需3a元,∴根据题意,应找回(50-3a)元.考点:列代数式.【题文】如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴上一点B在第一象限,函数y=(x>0)的图象经过BC边上的点M,且MB=2MC,若矩形OABC的面积为6,则k的值为.【答案】2.【解析】试题解析:如图作MN⊥x轴垂足为N,∵S矩形ABCD=6,BM=2MC,∴S矩形MNOC=×6=2,∴k=S矩形MNOC=2.考点:反比例函数k的几何意义.【题文】如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.【答案】π.【解析】试题解析:图中阴影部分的面积=π×22-=2π-π=π.答:图中阴影部分的面积等于π.考点:扇形面积的计算.【题文】如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且DC=BC,DE∥AC,与AB边的交点为E ,若DE=4,则BE的长为.【答案】8.【解析】试题解析:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠EDA,∴∠EAD=∠EDA,∴EA=ED=4,∵DE∥AC,∴,而DC=BC,∴BE=2AE=8.考点:平行线分线段成比例.【题文】如图,在平面直角坐标系中,抛物线y=ax2-2ax+(a<0)的顶点为A,与y轴的交点为B,点B 关于抛物线对称轴的对称点为D,四边形ABCD为菱形,若点C在x轴上,则a的值为.【答案】-.【解析】试题解析:∵y=ax2-2ax+=a(x-1)2-a+,∴顶点A的坐标为(1,-a+),令x=0,则y=,所以,点B的坐标为(0,),∵点B关于抛物线对称轴的对称点为D,四边形ABCD为菱形,∴-a+=2×,解得a=-.考点:1.菱形的轴对称性,2.二次函数的性质.【题文】先化简,再求值:,其中.【答案】;.【解析】试题分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.试题解析:====;把,代入原式=.考点:分式混合运算.【题文】如图,有3张不透明的卡片,除正面写有不同的数字外,其他均相同,将这3张卡片背面向上洗匀,从中随机抽取一张,记下数字后放回;重新洗匀后再从中随机抽取一张,将抽取的第一张、第二张卡片上的数字分别作为十位数字和个位数字组成两位数,请用画树状图(或列表)的方法,求这个两位数能被3整除的概率.【答案】.【解析】试题分析:根据题意直接画出树状图,进而利用概率公式求出答案.试题解析:如图所示:,故这个两位数能被3整除的概率为:.考点:树状图法求概率.【题文】某超市2015年1月份的营业额为10000元,3月份的营业额为12100元,若该超市2015年前4个月营业额的月增长率相同,求该超市2015年4月份的营业额.【答案】该超市2015年4月份的营业额为13310元.【解析】试题分析:设该超市2015年前4个月营业额的月增长率为x,根据3月份的销售额=1月份的销售额×(1+增长率)的平方,列出关于x的一元二次方程,解方程即可求出x的值,再根据4月份的销售额=3月份的销售额×(1+增长率)即可得出结论.试题解析:设该超市2015年前4个月营业额的月增长率为x,由题意,得10000(1+x)2=12100,解得x=0.1,或x=-2.1(舍去),则12100×(1+10%)=13310(元).答:该超市2015年4月份的营业额为13310元.考点:一元二次方程的应用.【题文】如图,在△ABC中,AB=AC,D为BC边的中点,以AB、BD为邻边作▱ABDE,连接AD,EC.求证:四边形ADCE是矩形.【答案】证明见解析.【解析】试题分析:由等腰三角形的三线合一性质得出AD⊥BC,BD=CD,∠ADC=90°,由平行四边形的性质得出AE ∥BD,AE=BD,得出AE∥CD,AE=CD,证出四边形ADCE是平行四边形,即可得出结论.试题解析:∵AB=AC,D为BC边的中点,∴AD⊥BC,BD=CD,∴∠ADC=90°,∵四边形ABDE是平行四边形,∴AE∥BD,AE=BD,∴AE∥CD,AE=CD,∴四边形ADCE是平行四边形,又∵∠ADC=90°,∴四边形ADCE是矩形.考点:1.等腰三角形的性质;2.平行四边形的判定与性质;3.矩形的判定.【题文】如图,某广场有一灯柱AB高7.5米,灯的顶端C离灯柱顶端A的距离CA为1.7米,且∠CAB=110°,求灯的顶端C距离地面的高度CD.(结果精确到0.1米)【参考数据:sin20°=0.34,cos20°=0.94,tan20°=0.36】【答案】灯的顶端C距离地面的高度CD约为8.1米.【解析】试题分析:过点C作地面的垂线,垂足为D,过点A作AE⊥CD于E,在RT△ACE中,利用sin∠CAE=,即可解决问题.试题解析:如图,过点C作地面的垂线,垂足为D,过点A作AE⊥CD于E,∵∠EDB=∠ABD=∠AEB=90°,∴四边形ABDE是矩形,∴ED=AB=7.5,∵∠CAE=∠CAB-90°=110°-90°=20°,在RT△CAE中,∠AEC=90°,∠CAE=90°,∠CAE=20°,AC=1.7,∵sin∠CAE=,∴CE=AEsin∠CAE=1.7×0.34=0.578,∴CD=CE+ED=0.578+7.5=8.078≈8.1米.答:灯的顶端C距离地面的高度CD约为8.1米.考点:解直角三角形.【题文】国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.某中学为了解学生体育活动情况,随机抽查了520名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,并根据调查结果绘制成如下不完整的统计图.根据统计图提供的信息,解答下列问题:(1)这520名毕业生中每天在校锻炼时间超过1消失的人数是.(2)请补全条形统计图.(3)2016年该中学所在城市的初中毕业生约为5.2万人,估计2016年该城市初中毕业生中因为没时间导致每天锻炼时间未超过1小时的人数.【答案】(1)399;(2)补图见解析;(3)0.7万人.【解析】试题分析:(1)将每天在校锻炼时间超过1小时所对应圆心角占周角的比例乘以总人数可得;(2)先求出锻炼时间未超过1小时的人数,再将未超过1小时人数减去“不喜欢”和“其他”的人数即可补全图形;(3)将样本中“没时间”的人数占调查人数的比例乘以总体中的人数可得.试题解析:(1)这520名毕业生中每天在校锻炼时间超过1小时的人数是:×520=390(人);(2)每天在校锻炼时间未超过1小时的人数是:520-390=130(人),则“没时间”的人数是:130-50-10=70(人),补全图形如下:(3)5.2×=0.7(万人),答:估计2016年该城市初中毕业生中因为没时间导致每天锻炼时间未超过1小时的人数约为0.7万人.考点:1.条形统计图;2.扇形统计图.【题文】感知:如图①,在矩形ABCD中,点E是边BC的中点,将△ABE沿AE折叠,使点B落在矩形ABCD 内部的点F处,延长AF交CD于点G,连结FC,易证∠GCF=∠GFC.探究:将图①中的矩形ABCD改为平行四边形,其他条件不变,如图②,判断∠GCF=∠GFC是否仍然相等,并说明理由.应用:如图②,若AB=5,BC=6,则△ADG的周长为.【答案】探究:∠GCF=∠GFC,理由见解析;应用:16.【解析】试题分析:探究:由▱ABCD及折叠可得∠B+∠ECG=∠AFE+∠ECG=∠AFE+∠EFl∴∠ECG=∠EFG,又∵点E是边BC的中点,∴EC=BE,∵EF=BE,∴EC=EF,∴∠ECF=∠EFC,∴∠ECG-∠ECF=∠EFG-∠EFC,∴∠GCF=∠GFC;应用:∵△AFE是由△ABE翻折得到,∴AF=AB=5,由(1)知∠GCF=∠GFC,∴GF=GC,∴△ADG的周长AD+AF+GF+GD=AD+AB+GC+GD=AD+AB+CD=6+5+5=16考点:1.翻折变换;2. 平行四边形的性质.【题文】小明家、学校与图书馆依次在一条直线上,小明、小亮两人同时分别从小明家和学校出发沿直线匀速步行到图书馆借阅图书,小明到达图书馆花了20分钟,小亮每分钟步行40米,小明离学校的距离y (米)与两人出发时间x(分)之间的函数图象如图所示.(1)小明每分钟步行米,a=,小明家离图书馆的距离为米.(2)在图中画出小亮离学校的距离y(米)与x(分)之间的函数图象.(3)求小明和小亮在途中相遇时二人离图书馆的距离.【答案】(1) 60;960;1200.(2)画图见解析;(3) 小明和小亮在途中相遇时二人离图书馆的距离为480米.【解析】试题分析:(1)根据速度=路程÷时间可得出小明的速度,由此得出小明每分钟步行的路程;结合路程=速度×时间,可找出a的值;由小明家离图书馆的距离=小明家离学校的距离+学校离图书馆的距离,由此得出结论;(2)根据时间=路程÷速度,算出小亮到达图书馆的时间,由两点可画出小亮离学校的距离y(米)与x(分)之间的函数图象;(3)根据待定系数法求出小明从学校到图书馆这段路程对应的函数表达式以及小亮从学校到图书馆这段路程对应的函数表达式,由两关系式可得出交点坐标,由此可得出小明和小亮在途中相遇时二人离图书馆的距离.试题解析:(1)240÷4=60(米),60×(20-4)=960(米),240+960=1200(米).(2)960÷40=24(分钟).画出图形如图所示.(3)设小明从学校到图书馆这段路程对应的函数表达式为y=kx+b(k≠0),∵图象经过点(4,0)、(20,960),∴,解得.∴函数表达式为y=60x-240(4≤x≤20).又∵小亮每分钟步行40米,∴小亮从学校到图书馆这段路程对应的函数表达式为y=40x(0≤x≤24).∴当二人相遇时,有60x-240=40x,解得x=12.∴960-40×12=480(米).∴小明和小亮在途中相遇时二人离图书馆的距离为480米.考点:1.一次函数的应用;2.待定系数法求函数解析式.【题文】如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN与△ABC重叠部分图形的面积为S(平方单位).(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示).(2)当点M落在边BC上时,求t的值.(3)求S与t之间的函数关系式.(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-l【解析】试题分析:(1)分两种情况讨论:当点Q在线段AC上时,当点Q在线段BC上时.(2)根据AP+PN+NB=AB,列出关于t的方程即可解答;(3)当0<t≤时,当<t≤4,当4<t<7时;(4)或或.试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t.当点Q在线段BC上时,PQ=7-t.(2)当点M落在边BC上时,如图③,由题意得:t+t+t=7,解得:t=.∴当点M落在边BC上时,求t的值为.(3)当0<t≤时,如图④,S=.当<t≤4,如图⑤,.当4<t<7时,如图⑥,.(4)或或..考点:四边形综合题.【题文】如图,在平面直角坐标系中,经过原点的抛物线y=-x2+4mx(m>0)与x轴的另一个交点为点A,过点P(1,m)作直线PB⊥x轴,交抛物线于点B,作点B关于抛物线对称轴的对称点C(点B、C不重合),连结BC,当点P、B不重合时,以BP、BC为边作矩形PBCQ,设矩形PBCQ的周长为l.(1)当m=1时,求点A的坐标.(2)当BC=时,求这条抛物线所对应的函数表达式.(3)当点P在点B下方时,求l与m之间的函数关系.(4)连结CP,以CP为直角边作等腰直角三角形PCM,直接写出点M落在坐标轴上时m的值.【答案】(1) (4,0);(2) y=-x2+x或y=-x2+x.(3)l=-2m+2.(4)m=,m=.【解析】试题分析:(1)根据自变量与函数值的对应关系,可得答案;(2)根据BC的长,可得关于m的方程,根据解方程,可得m的值;(3)根据周长公式,可得答案;(4)利用直线PC的斜率求出直线PE的斜率,并求出直线PE的参数方程,讨论点E在x轴与y轴的情况,并分别求出点E的参数坐标,根据PC=PE,利用两点间距离公式求解.此题也可用开锁法进行求解.试题解析:(1)当m=1时,抛物线的解析式为y=-x2+4x.当y=0时,-x2+4x=0,解得x1=0,x2=4,即A点坐标为(4,0);(2)当y=-x2+4mx中x=1时,y=4m-1,B(1,4m-1).且抛物线的对称轴为x=-=2m.当点B在对称轴左侧时,即m>时,BC=2(2m-1)=4m-2.当BC=时,4m-2=.m=,这条抛物线的解析式为y=-x2+x.当BC=时,2-4m=.m=,这条抛物线的解析式为y=-x2+x.(3)当点B在对称轴左侧,同时点P在点B的下方,即<m<时,l=2[2(1-2m)+(4m-1-m)],l=-2m+2.(4)分三种情况:P在对称轴左侧,P(1,m),B(1,4m-1),C(4m-1,4m-1),BC=4m-2,BP=3m-1,①若∠CPQ=90°,PC=PQ,如图1,此时,△CBP≌△PFQ,∴CB=PF,即4m-2=m,解得m=,②若∠PCQ=90°,CP=CQ,如图2,此时,△QFP≌△CDQ,∴DF=CD,即4m-1=4m-1,方程无解;∴此种情况不成立.③如图3,B(1,4m-1),P(1,m),C(4m-1,4m-1),若∠CPQ=90°,PC=PQ,△CBP≌△QFC,BP=CF,即3m-1=4m-1,解得m=0(舍),④如图4,∠CQP=90°,CQ=CP,△CBP≌△PFQ,BP=QF,即4m-1-m=1,解得m=;⑤如图5,∠CQP=90°,CQ=CP,△CBP≌△PFQ,BC=PF,即2-4m=m,解得m=;综上所述:m=,m=.考点:二次函数综合题.。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共12小题)1.下列实数中,比1大的数是()A. B.12- C. 12D. 22.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A. B.C. D.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为( )A. 2B. 3C. 6D. 544.如图,AD是O的直径,若40B︒∠=,则DAC∠的度数为()A. 30°B. 40°C. 50°D. 60°5.下列命题为真命题的是()A. 直角三角形的两个锐角互余B. 任意多边形的内角和为360°C. 任意三角形的外角中最多有一个钝角D. 一个三角形中最多有一个锐角6.估计3(32)218-的值应在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间7.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个”二果问价”问题,原题如下:”九百九十九文钱,甜果、苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个;”其大意为:用999文钱,可以买甜果和苦果共1000个,买9个甜果需要11文钱,买7个苦果需要4文钱,问买甜果和苦果的数量各多少个?设买甜果、苦果的数量分别为个、个,则可列方程组为( ) A. 999114100097x y x y +=⎧⎪⎨+=⎪⎩ B. 999971000114x y x y +=⎧⎪⎨+=⎪⎩ C. 100011499997x y x y +=⎧⎪⎨+=⎪⎩ D. 100097999114x y x y +=⎧⎪⎨+=⎪⎩ 8.根据如图所示的程序计算函数的值,若输入的值为43,则输出的值为( )A. 173B. 133C. 103D. 539.如图,菱形OABC 在第一象限内,60AOC ∠=︒,反比例函数(0)k y x x=>的图象经过点,交BC 边于点,若AOD ∆的面积为23,则的值为( )A. 43B. 33C. 23D. 410.如图,某建筑物CE 上挂着”巴山渝水,魅力重庆”宣传条幅CD ,王同学利用测倾器在斜坡的底部处测得条幅底部的仰角为60°,沿斜坡AB 走到B 处测得条幅顶部C 的仰角为50°.已知斜坡AB 的坡度1:2.4,13i AB ==米,12AE =米(点A B C D E 、、、、在同平面内,CD AE ⊥,测倾器的高度忽略不计),则条幅CD 的长度约为(参考数据:sin 500.77,cos500.64,tan 50 1.19,︒︒︒≈≈≈3 1.73≈)A. 12.5米B. 12.8米C. 13.1米D. 13.4米11.若数使关于的分式方程2311a x x x --=--有正数解,且使关于的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数的个数为( )A. 1B. 2C. 3D. 412.如图,在等腰三角形纸片ABC 中,120,6ABC BC ︒∠==,点D E 、分别在边AC BC 、上,连接DE ,将CDE △沿DE 翻折使得点恰好落在点处,则AE 的长为( )A. 37B. 152C. 37D. 67二.填空题(共6小题)13.计算:0()1|5|5π-+-=_______.14.重庆市组织开展依法打击陆生野生动物违法犯罪活动专项行动.截至2月27日,全市林业系统共出动执法检查人员12583人次,查办案件69件(其中刑事案件24件),涉案野生动物37369只.将数据37369用科学记数法表示为________.15.现有5张除正面数字外完全相同的卡片,正面数字分别为1,2,3,4,5,将卡片背面朝上洗匀,从中随机抽出一张记下数字后放回,洗匀后再次随机抽出一张,则抽出的两张卡片上所写数字相同的概率______.16.如图,正方形ABCD 的边长为4,分别以AD DC 、为直径作半圆,则图中阴影部分的面积为____.17.疫情之下,中华儿女共抗时艰.重庆和湖北同饮长江水,为更好地驰援武汉,打赢防疫攻坚战,我市某公益组织收集社会捐献物资.甲、乙两人先后从地沿相同路线出发徒步前往地进行物资捐献,甲出发1分钟后乙再出发,一段时间后乙追上甲,这时甲发现有东西落在地,于是原路原速返回地去取(甲取东西的时间忽略不计),而乙继续前行,甲乙两人到达B 地后原地帮忙.已知在整个过程中,甲乙均保持各自的速度匀速行走,甲、乙两人相距的路程 (米)与甲出发的时间 (分钟)之间的函数关系如图所示,则当乙到达地时,甲距地的路程是_______米.18.如图,在矩形ABCD 中,AB =3,BC =1,将△ABD 沿射线DB 平移得到△A 'B 'D ',连接B ′C ,D ′C ,则B 'C +D 'C 最小值是_____.三.解答题(共8小题)19.计算:(1)2()()()a b a b a b +---; (2)22222b a b a b a b a ab b a b-++÷--+-. 20.如图,△ABC 为⊙O 内接三角形,∠ABC 的角平分线交⊙O 于点D ,过点D 作DE ∥AC 交BC 的延长线于点E .(1)求证:DE 为⊙O 的切线;(2)若DE =12AC ,求∠ACB 的大小.21.为了让学生掌握知识更加牢固,某校九年级物理组老师们将物理实验的教学方式由之前的理论教学改进为理论+实践,一段时间后,从九年级随机抽取15名学生,对他们在教学方式改进前后的物理实验成绩(百分制)进行整理、描述和分析(成绩用表示,共分成4组:A .6070x <,B .7080x <,C .8090x <,D .90100x ),下面给出部分信息:教学方式改进前抽取的学生的成绩在组中的数据为:80,83,85,87,89.教学方式改进后抽取的学生成绩为:72,70,76,100,98,100,82,86,95,90,100,86,84,93,88. 教学方式改进前抽取的学生成绩频数分布直方图教学方式改进前后抽取的学生成绩对比统计表 统计量改进前 改进后 平均数88 88 中位数众数98根据以上信息,解答下列问题:(1)直接写出上述图表中,,a b c 的值;(2)根据以上数据,你认为该校九年级学生物理实验成绩在教学方式改进前好,还是改进后好?请说明理由(一条理由即可);(3)若该校九年级有300名学生,规定物理实验成绩在90分及以上为优秀,估计教学方式改进后成绩为优秀的学生人数是多少?22.定义:将一个大于0的自然数,去掉其个位数字,再把剩下的数加上原数个位数字的4倍,如果得到的和能被13整除,则称这个数是”一刀两断”数,如果和太大无法直接观察出来,就再次重复这个过程继续计算,例如552635526125538,553855332585,585582078,78136→+=→+=→+=÷=,所以55263是”一刀两断”数.324732428352,35843,431334→+=+=÷=,所以3247不是”一刀两断”数.(1)判断5928是否为”一刀两断”数:_____(填是或否),并证明任意一个能被13整除的数是”一刀两断”数;(2)对于一个”一刀两断”数100010010(19,09,09,09,,,,m a b c d a b c d a b c d =+++均为正整数),规定()G m =2b c a d--.若的千位数字满是14a ,千位数字与十位数字相同,且能被65整除,求出所有满足条件的四位数中,()G m 的最大值.23.在初中阶段的函数学习中,我们经历了”确定函数的表达式——利用函数图象研究其性质——应用函数解决问题”的学习过程.在画函数图象时,我们可以通过描点或平移的方法画出一个函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数|2|(0)y x b kx k =++≠中,当0x =时,1y =;当1x =-时,3y =.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数112y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式1|2|12x b kx x ++-的解集.24.新型冠状病毒肺炎是一种急性感染性肺炎,其病原体是一种先前未在人体中发现的新型冠状病毒.市民出于防疫的需求,持续抢购防护用品.某药店口罩每袋售价20元,医用酒精每瓶售价15元.(1)该药店第一周口罩的销售袋数比医用酒精的销售瓶数多100,且第一周这两种防护用品的总销售额为9000元,求该药店第一周销售口罩多少袋?(2)由于疫情紧张,该药店为了帮助大家共渡难关,第二周口罩售价降低了1%2a ,销量比第一周增加了2%a ,医用酒精的售价保持不变,销量比第一周增加了%a ,结果口罩和医用酒精第二周的总销售额比第一周增加了65%a ,求的值. 25.如图,已知抛物线2:(0)L y ax bx c a =++≠与轴交于A B 、两点,与轴交于点,且(1,0),3A OB OC OA -==.(1)求抛物线的函数表达式;(2)连接AC BC 、,在抛物线上是否存在一点,使2ABC OCN S S =△△?若存在,求出点的坐标;若不存在,请说明理由.26.如图①,在Rt OAB ∆中,90,,AOB OA OB D ∠=︒=为OB 边上一点,过点作DC AB ⊥交AB 于点,连接AD ,为AD 的中点,连接,OE CE . 【观察猜想】(1)①,OE CE 的数量关系是___________②,OEC OAB ∠∠的数量关系是______________【类比探究】(2)将图①中BCD ∆绕点逆时针旋转45︒,如图②所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;拓展迁移】(3)将BCD ∆绕点旋转任意角度,若2,3BD OB ==,请直接写出点,,O C B 在同一直线上时OE 的长.答案与解析一.选择题(共12小题)1.下列实数中,比1大的数是()A. B.12C. 12D. 2【答案】D【解析】【分析】根据实数的大小比较,进行判断即可.【详解】根据实数的大小比较,负数都小于0,正数都大于0,比1大的是2,故选:D.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.2.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A. B.C. D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是3个小正方形,第二层左边一个小正方形.故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为( )A. 2B. 3C. 6D. 54【答案】C【解析】【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【详解】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.故选:C.【点睛】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.∠的度数为()4.如图,AD是O的直径,若40B︒∠=,则DACA. 30°B. 40°C. 50°D. 60°【答案】C【解析】【分析】连接CD,根据同弧所对圆周角相等,得出∠D=∠B,再利用直径所对的圆周角等于90°即可得出∠DAC 的度数.【详解】连接CD,由题意可得:∠D=∠B=40°,AD是O的直径,∴∠ACD=90°,∠DAC=90°-∠D=90°-40°=50°,故选:C.【点睛】本题考查了圆的基本性质,同弧所对的圆周角相等,直径所对的圆周角等于90°,掌握圆的基本性质是解题的关键.5.下列命题为真命题的是()A. 直角三角形的两个锐角互余B. 任意多边形的内角和为360°C. 任意三角形的外角中最多有一个钝角D. 一个三角形中最多有一个锐角【答案】A【解析】【分析】根据三角形的性质,对照选项逐一分析即可.【详解】A.直角三角形的两个锐角互余,故此选项正确;B.任意多边形的内角和(n-2)×180°,故此选项错误;C.在锐角三角形中,三个外角都是钝角,故此选项错误;D.一个三角形中至少有两个锐角,故此选项错误,故选:A.【点睛】本题考查了三角形角的性质,掌握三角形角的性质是解题的关键.-的值应在()6.估计3(32)218A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】B【解析】【分析】化简二次根式,然后合并二次根式,利用无理数的大小估算判断即可.-,33=27【详解】原式=33+66=33<252736∴527<<6, 故选:B . 【点睛】本题考查了二次根式的化简计算,无理数的大小估算,掌握无理数的估算是解题的关键. 7.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个”二果问价”问题,原题如下:”九百九十九文钱,甜果、苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个;”其大意为:用999文钱,可以买甜果和苦果共1000个,买9个甜果需要11文钱,买7个苦果需要4文钱,问买甜果和苦果的数量各多少个?设买甜果、苦果的数量分别为个、个,则可列方程组为( )A. 999114100097x y x y +=⎧⎪⎨+=⎪⎩ B. 999971000114x y x y +=⎧⎪⎨+=⎪⎩ C. 100011499997x y x y +=⎧⎪⎨+=⎪⎩ D. 100097999114x y x y +=⎧⎪⎨+=⎪⎩ 【答案】C【解析】【分析】 根据甜果和苦果的总数量是1000个,总费用是999文钱,找到等量关系列出方程式即可.【详解】根据题意,设买甜果、苦果的数量分别为个、个,则可得:100011499997x y x y +=⎧⎪⎨+=⎪⎩, 故选:C .【点睛】本题考查了二元一次方程组的列式问题,掌握找题目中的等量关系是解题的关键.8.根据如图所示的程序计算函数的值,若输入的值为43,则输出的值为( )A. 173B. 133C. 103D. 53【答案】A【解析】【分析】根据程序框图,把x=43>1,代入代数式152y x =+求解即可. 【详解】由题意知,x=43>1,代入152y x =+, ∴14217552333y =⨯+=+=, 故选:A .【点睛】本题考查了程序框图的判断求解,代数式的的求值,掌握程序框图的判断是解题的关键.9.如图,菱形OABC 在第一象限内,60AOC ∠=︒,反比例函数(0)k y x x=>的图象经过点,交BC 边于点,若AOD ∆的面积为23,则的值为( )A. 43B. 33C. 23D. 4【答案】C【解析】【分析】 过A 作AE ⊥x 轴于E ,设OE=,则AE=3a ,OA=2a ,即菱形边长为2a ,再根据△AOD 的面积等于菱形面积的一半建立方程可求出2a ,利用点A 的横纵坐标之积等于k 即可求解.【详解】如图,过A 作AE ⊥x 轴于E ,设OE=,在Rt △AOE 中,∠AOE=60°∴AE=OE tan 60=3⋅︒a ,OA=OE =2cos 60︒a ∴A (),3a a ,菱形边长为2a由图可知S 菱形AOCB =2S △AOD ∴OC AE=223⋅⨯,即23=43⋅a a∴2=2a∴23323=⋅==k a a a故选C.【点睛】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A 点坐标是解决本题的关键.10.如图,某建筑物CE 上挂着”巴山渝水,魅力重庆”的宣传条幅CD ,王同学利用测倾器在斜坡的底部处测得条幅底部的仰角为60°,沿斜坡AB 走到B 处测得条幅顶部C 的仰角为50°.已知斜坡AB 的坡度1:2.4,13i AB ==米,12AE =米(点A B C D E 、、、、在同平面内,CD AE ⊥,测倾器的高度忽略不计),则条幅CD 的长度约为(参考数据:sin 500.77,cos500.64,tan 50 1.19,︒︒︒≈≈≈3 1.73≈)A. 12.5米B. 12.8米C. 13.1米D. 13.4米【答案】B【解析】【分析】 过点B 作BF ⊥AE 于点F ,BH ⊥DE 于点H ,在Rt △AFB 中,由坡度和勾股定理可以求出BF 、AF 的长度,在Rt△BHC 中,利用三角函数求出CH ,再求出DH ,最后用CH-DH 求出CD 即可.【详解】如图所示:过点B 作BF ⊥AE 于点F ,BH ⊥DE 于点H ,∵AB 的坡度1:2.4,13i AB ==m ,∴1:2.4BF AF=,222BF AF AB +=, ∴222(2.4)13BF BF +=,BF 为边长,∴解得BF=5,则AF=12m ,∵AE=12m ,∴EF=AF+AE=24(m ),∵∠BHE=∠HEF=∠BFE=90°,∴四边形BFEH 是矩形,∴EH=BF=5m ,BH=EF=24m ,在Rt △BHC 中,∠CBH=50°,∴CH=BH tan50⋅︒24×1.19=28.56(m ),在Rt △ADE 中,∠DAE=60°,∴DE=AE tan60⋅︒=12×320.76(m ),∴CD=CH-DH=28.56-(20.76-5)=12.8(m ),∴条幅CD 的长度约为12.8m ,故选:B .【点睛】本题考查了坡度的应用, 勾股定理的应用,直角三角形中三角函数定义的应用,掌握直角三角形中的三角函数的定义是解题的关键.11.若数使关于的分式方程2311a x x x --=--有正数解,且使关于的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数的个数为( )A. 1B. 2C. 3D. 4【答案】B【解析】根据分式方程的解为正数即可得出a>-1且a1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2. 【详解】解方程2311a x x x--=--,得: 12a x +=, ∵分式方程的解为正数, ∴1a +>0,即a>-1, 又1x ≠,∴12a +1,a1, ∴a>-1且a1,∵关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解, ∴a-1<y8-2a ,即a-1<8-2a ,解得:a<3,综上所述,a 的取值范围是-1<a<3,且a1,则符合题意的整数a 的值有0、2,有2个,故选:B .【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.12.如图,在等腰三角形纸片ABC 中,120,6ABC BC ︒∠==,点D E 、分别在边AC BC 、上,连接DE ,将CDE △沿DE 翻折使得点恰好落在点处,则AE 的长为( )37 B. 152 C. 37 D. 67【答案】C【分析】过点E 作EH ⊥AB ,交AB 的延长线于点H ,由等腰△ABC,点C 与点B 关于直线DE 对称,可以推出BE=CE=12BC ,在Rt △BEH 中,∠EBH=60°,利用三角函数求得EH 、BH ,然后由勾股定理求出AE 即可. 【详解】过点E 作EH ⊥AB ,交AB 的延长线于点H ,如图,∴∠H=90°,∵△ABC 是等腰三角形,∠ABC=120°,∴AB=BC=6,∵点C 与点B 关于直线DE 对称,∴BE=CE=12BC=12×6=3, 在Rt △BEH 中,∠EBH=180°-∠ABC=180°-120°=60°, ∴BH=BE cos EBH ⋅∠=3cos60°=3×12=32, EH=BE sin EBH ⋅∠=3sin60°=3×32=332, ∴AH=AB+BH=6+31522=, 在Rt △AEH 中,AE=22221533()()3722AH EH +=+=, 故选:C .【点睛】本题考查了对称的性质,三角函数的应用,勾股定理的应用,等腰三角形的性质,掌握等腰三角形的性质和三角函数的应用是解题的关键.二.填空题(共6小题)13.计算:0()1|5|5π-+-=_______.【答案】6【解析】根据0(15)π-=1,|5|-=5相加计算即可.【详解】原式=1+5=6,故答案为:6.【点睛】本题考查了非零数的零次幂等于1,绝对值的性质,注意任何非零数的零次幂都等于1. 14.重庆市组织开展依法打击陆生野生动物违法犯罪活动专项行动.截至2月27日,全市林业系统共出动执法检查人员12583人次,查办案件69件(其中刑事案件24件),涉案野生动物37369只.将数据37369用科学记数法表示为________.【答案】43.736910⨯【解析】【分析】根据大数的科学记数法的一般形式10,110n a a ⨯≤<,n 为正整数表示出来即可.【详解】根据大数的科学记数法的一般形式10,110n a a ⨯≤<,n 为正整数,用科学记数法表示37369=43.736910⨯,故答案为:43.736910⨯.【点睛】本题考查了大数的科学记数法的表示形式,掌握科学记数法的表示形式是解题的关键. 15.现有5张除正面数字外完全相同的卡片,正面数字分别为1,2,3,4,5,将卡片背面朝上洗匀,从中随机抽出一张记下数字后放回,洗匀后再次随机抽出一张,则抽出的两张卡片上所写数字相同的概率______. 【答案】15【解析】【分析】根据列举法,把两次抽取的所有结果都列出来,从中找出两张卡片上所写数字相同的结果,计算出概率即可.【详解】放回抽取,抽取的所有结果有(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(2,1)(2,2)、(2,3)、(2,4)、(2,5)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5),共有25种,其中两张卡片数字相同的结果为5种,所以抽出的两张卡片上所写数字相同的概率为51255=, 故答案为:15. 【点睛】本题考查了列举法计算基本事件数以及求事件发生的概率问题,掌握列举法计算事件发生的概率是解题的关键.16.如图,正方形ABCD 的边长为4,分别以AD DC 、为直径作半圆,则图中阴影部分的面积为____.【答案】122π-【解析】【分析】【详解】解:如解图,设两半圆交点为,两半圆的圆心分别为E F 、,连接EO OF ,,易证四边形EOFD 为正方形,2OE OF ==,由解图可得,214422216421222ABCD EOFD S S S S πππ=--=⨯-⨯-⨯⨯=--=-阴影正方形正方形半圆. 故答案为:12-2π17.疫情之下,中华儿女共抗时艰.重庆和湖北同饮长江水,为更好地驰援武汉,打赢防疫攻坚战,我市某公益组织收集社会捐献物资.甲、乙两人先后从地沿相同路线出发徒步前往地进行物资捐献,甲出发1分钟后乙再出发,一段时间后乙追上甲,这时甲发现有东西落在地,于是原路原速返回地去取(甲取东西的时间忽略不计),而乙继续前行,甲乙两人到达B 地后原地帮忙.已知在整个过程中,甲乙均保持各自的速度匀速行走,甲、乙两人相距的路程 (米)与甲出发的时间 (分钟)之间的函数关系如图所示,则当乙到达地时,甲距地的路程是_______米.【答案】160【解析】【分析】根据题意和函数图象中的数据可以求得甲、乙的速度,从而可以解答本题.【详解】由题意得,甲的速度为:80÷1=80(米/分钟),乙的速度为:(80×5-16)÷(5-1)=96(米/分钟),甲乙到达C地的时间为第t分钟,则80t=96(t-1),得t=6,乙从C地到B地用的时间为:(864-80×6)÷96=4(分钟),∴乙到达B地时,甲与A地相距的路程是:80×(6-4)=160(米),故答案:160米.【点睛】本题考查了一次函数图象和追及问题的应用,掌握函数图象的应用是解题的关键.18.如图,在矩形ABCD中,AB=3,BC=1,将△ABD沿射线DB平移得到△A'B'D',连接B′C,D′C,则B'C+D'C的最小值是_____.7【解析】【分析】根据矩形的性质和勾股定理可得BD=2,即为B′D′的长,作点C关于BD的对称点G,连接CG交BD于E,连接D′G,如图,则有CD′=GD′,CE⊥BD,CG=2CE,利用三角形的面积可求得CG3B′D′,GD′为邻边作平行四边形B′D′GH,可得B′H=D′G=CD′,于是当C,B′,H在同一条直线上时,CB′+B′H最短,且B'C+D'C的最小值=CH,再根据勾股定理即可求出结果.【详解】解:∵四边形ABCD 是矩形,∴AD =BC =1,∠A =90°, ∴222BD AB AD =+=,∵将△ABD 沿射线DB 平移得到△A 'B 'D ',∴B ′D ′=BD =2, 作点C 关于BD 的对称点G ,连接CG 交BD 于E ,连接D ′G ,如图,则CD ′=GD ′,CE ⊥BD ,CG =2CE ,∵CE =133BC CD BD ⋅⨯==CG 3 以B ′D ′,GD ′为邻边作平行四边形B ′D ′GH ,则B ′H =D ′G =CD ′,∴当C ,B ′,H 在同一条直线上时,CB ′+B ′H 最短,则B 'C +D 'C 的最小值=CH ,∵四边形B ′D ′GH 是平行四边形,∴HG =B ′D ′=2,HG ∥B ′D ′,∴HG ⊥CG ,∴CH 227HG CG +.7【点睛】本题考查了矩形的性质、轴对称的性质、平移的性质、平行四边形的性质和勾股定理等知识,具有一定的难度,利用轴对称和平移的思想把所求B 'C +D 'C 的最小值转化为求CB ′+B ′H 的最小值是解题的关键.三.解答题(共8小题)19.计算:(1)2()()()a b a b a b +---;(2)22222b a b a b a b a ab b a b-++÷--+-. 【答案】(1)222ab b -;(2)a a b-. 【解析】【分析】(1)根据平方差公式,完全平方公式展开后相加减即可;(2)根据分式混合运算的法则进行计算即可.【详解】(1)原式2222(2)a b a b ab =--+- 222ab b =-,故答案为:222ab b -;(2)原式2()()()b a b a b a b a b a b a b+--=+⋅--+ 1b a b=+- b a b a b+-=- a a b=-, 故答案为:a ab -. 【点睛】本题考查了整式的乘法,整式的加减计算,分式除法,分式加减计算问题,掌握整式和分式的运算法则是解题的关键.20.如图,△ABC 为⊙O 的内接三角形,∠ABC 的角平分线交⊙O 于点D ,过点D 作DE ∥AC 交BC 的延长线于点E .(1)求证:DE 为⊙O 的切线;(2)若DE =12AC ,求∠ACB 的大小.【答案】(1)见解析;(2)90°【解析】【分析】(1)连接OD交AC于H,因为∠ABC的角平分线交⊙O于点D,所以∠ABD=∠CBD,即AD CD=,可得OD⊥AC,由DE∥AC,得OD⊥DE,进而得出DE为⊙O的切线;(2)证明四边形CHDE为矩形,可得∠ACB=∠E=90°.【详解】(1)如图,连接OD交AC于H,∵∠ABC角平分线交⊙O于点D,∴∠ABD=∠CBD,∴AD CD=,∴OD⊥AC,∵DE∥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)∵OD⊥AC,∴CH=12 AC,∵DE=12 AC,∴CH=DE,∵DE∥AC,∴四边形CHDE为平行四边形,∵∠ODE=90°,∴四边形CHDE为矩形,∴∠ACB =∠E =90°.【点睛】本题考查了圆的基本性质,切线的判定,矩形的判定和性质.掌握切线的判定方法是解题的关键. 21.为了让学生掌握知识更加牢固,某校九年级物理组老师们将物理实验的教学方式由之前的理论教学改进为理论+实践,一段时间后,从九年级随机抽取15名学生,对他们在教学方式改进前后的物理实验成绩(百分制)进行整理、描述和分析(成绩用表示,共分成4组:A .6070x <,B .7080x <,C .8090x <,D .90100x ),下面给出部分信息:教学方式改进前抽取的学生的成绩在组中的数据为:80,83,85,87,89.教学方式改进后抽取的学生成绩为:72,70,76,100,98,100,82,86,95,90,100,86,84,93,88. 教学方式改进前抽取的学生成绩频数分布直方图教学方式改进前后抽取的学生成绩对比统计表 统计量改进前 改进后 平均数88 88 中位数众数98根据以上信息,解答下列问题:(1)直接写出上述图表中,,a b c 的值;(2)根据以上数据,你认为该校九年级学生的物理实验成绩在教学方式改进前好,还是改进后好?请说明理由(一条理由即可);(3)若该校九年级有300名学生,规定物理实验成绩在90分及以上为优秀,估计教学方式改进后成绩为优秀的学生人数是多少?【答案】(1)87,88,100a b c ===;(2)教学方式改进后学生成绩好,理由:①教学方式改进前后成绩的平均数一样,而改进后的中位数高于改进前,说明改进后成绩好;②教学方式改进前后成绩的平均数一样,而改进后的众数高于改进前,说明改进后成绩好;(3)估计教学方式改进后成绩为优秀的学生有140人.【解析】分析】(1)根据题意可知,抽取15人,中位数是第八个,从频数分布直方图和统计表分析即可得出结果,从改进后的所有成绩可以得出众数;(2)①教学方式改进前后成绩的平均数一样,而改进后的中位数高于改进前,说明改进后成绩好;②教学方式改进前后成绩的平均数一样,而改进后的众数高于改进前,说明改进后成绩好;(3)根据教学方式改进后成绩为优秀的学生人数占抽取人数的比,乘以总人数300即可得.【详解】(1)根据题意,可得:87,88,100a b c ===,故答案为:87;88;100;(2)教学方式改进后学生成绩好,理由如下(写出其中一条即可):理由:①教学方式改进前后成绩的平均数一样,而改进后的中位数高于改进前,说明改进后成绩好; ②教学方式改进前后成绩的平均数一样,而改进后的众数高于改进前,说明改进后成绩好,故答案为:教学方式改进后学生成绩好;(3)730014015⨯=(人), 答:估计教学方式改进后成绩为优秀的学生有140人,故答案为:140.【点睛】本题考查了中位数,众数的定义,依据数据的计算结果分析前后的优势,利用样本估计总体的思想,掌握中位数,众数的定义是解题的关键.22.定义:将一个大于0的自然数,去掉其个位数字,再把剩下的数加上原数个位数字的4倍,如果得到的和能被13整除,则称这个数是”一刀两断”数,如果和太大无法直接观察出来,就再次重复这个过程继续计算,例如552635526125538,553855332585,585582078,78136→+=→+=→+=÷=,所以55263是”一刀两断”数.324732428352,35843,431334→+=+=÷=,所以3247不是”一刀两断”数.(1)判断5928是否为”一刀两断”数:_____(填是或否),并证明任意一个能被13整除的数是”一刀两断”数;(2)对于一个”一刀两断”数100010010(19,09,09,09,,,,m a b c d a b c d a b c d =+++均为正整数),规定()G m =2b c a d--.若的千位数字满是14a ,千位数字与十位数字相同,且能被65整除,求出所有满足条件的四位数中,()G m 的最大值.【答案】(1)是;证明见解析;(2)()G m 的最大值为45.【解析】【分析】(1)根据”一刀两断”数的定义,计算即可得,设任意一个能被13整除的位数前1n -位数字为,个位数字为Q ,则这个位数可表示为1013P Q k +=,根据定义进行推理即可证得;(2)由m 能被65整除,得出m 是13的倍数也是5的倍数,可得d=0或5,分情况讨论,分别求出满足条件的所有的m 的值,代入()G m 中计算即可判断出.【详解】(1)592859232624,624621678,78136→+=→+=÷=,所以5928是”一刀两断”数 证明:设任意一个能被13整除的位数前1n -位数字为,个位数字为Q ,则这个位数可表示为1013P Q k +=(为正整数),1310Q k P ∴=-,1044(1310)523913(43)P Q P Q P k P k P k P ∴+→+=+-=-=-,10P Q ∴+是”一刀两断”数;∴任意一个能被13整除的数是”一刀两断”数,故答案为:是;(2)100010010,m a b c d m =+++能被65整除,且a=c ,m ∴既能被13整除又能被5整除.0d ∴=或5d =.当0d =时,100104100101011010()713131313a b c d a b a a b a b a +++++++===+, a b ∴+是13的倍数.19,09a b ,13a b ∴+=.又14a ,49a b =⎧∴⎨=⎩. 4940m ∴=.当5d =时,1001041001020101102010(2)713131313a b c d a b a a b a b a ++++++++++===+, 2a b ∴++是13的倍数,213a b ∴++=,11a b +=∴.14a ,29a b =⎧∴⎨=⎩或38a b =⎧⎨=⎩或47a b =⎧⎨=⎩. 2925m ∴=或3835m =或4745m =.776179(4940),(4745)45,(3835),(2925)423G G G G ∴====. ()G m ∴的最大值为45,故答案为:45.【点睛】本题考查了”一刀两断”数的新定义,分类讨论的思想,5的倍数的特征数,代数式求值,理解”一刀两断”数的新定义是解题的关键.23.在初中阶段的函数学习中,我们经历了”确定函数的表达式——利用函数图象研究其性质——应用函数解决问题”的学习过程.在画函数图象时,我们可以通过描点或平移的方法画出一个函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数|2|(0)y x b kx k =++≠中,当0x =时,1y =;当1x =-时,3y =.。
2019九年级中考数学模拟试卷含参考答案(12)一.选择题(共12小题,满分36分,每小题3分)1.﹣3的倒数是()A.3 B.C.﹣D.﹣32.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2?a3=2a54.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10106.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.如图,钟面上的时间是8:30,再经过t分钟,时针、分针第一次重合,则t为()A.B.C.D.8.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别是()A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.709.二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A.a>0 B.b>0 C.c<0 D.abc>010.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,11.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB =5,则AE的长为()A.4 B.6 C.8 D.1012.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于()A.4 B.5 C.6 D.14二.填空题(共4小题,满分12分,每小题3分)13.因式分解:a3﹣ab2=.14.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是.15.用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.16.如图,已知点O是△ABC的内切圆的圆心,若∠BOC=124°,则∠A=.三.解答题(共7小题,满分52分)17.(6分)计算:﹣24﹣+|1﹣4sin60°|+(2015π)0.18.(6分)解不等式组:,并写出该不等式组的整数解.19.(7分)佳佳调査了七年级400名学生到校的方式,根据调查结果绘制出统计图的一部分如图:(1)补全条形统计图;(2)求扇形统计图中表示“步行”的扇形圆心角的度数;(3)估计在3000名学生中乘公交的学生人数.20.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=100千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)21.(8分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.22.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),BC=6,求∠ABN的度数;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.23.(9分)如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.【解答】解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2?a3=2a5,故D选项正确,故选:D.【点评】本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.4.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n 为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.6.【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.【分析】解决这个问题就要弄清楚时针与分针转动速度的关系:每一小时,分针转动360°,而时针转动30°,即分针每分钟转动6°,时针每分钟转动0.5°.【解答】解:设从8:30点开始,经过x分钟,时针和分针第一次重合,由题意得:6x﹣0.5x=755.5x=75x=,答:至少再经过分钟时针和分针第一次重合.故选:B.【点评】此题考查一元一次方程的应用,钟表上的分钟与时针的转动问题本质上与行程问题中的两人追及问题非常相似,行程问题中的距离相当于这里的角度,行程问题中的速度相当于这里时(分)针的转动速度.8.【分析】根据中位数、众数的定义即可解决问题.【解答】解:这些运动员成绩的中位数、众数分别是 4.70,4.75.故选:C.【点评】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.9.【分析】由抛物线的开口方向向上可以得到a>0,由与y轴的交点为在y轴的负半轴上可以推出c<0,而对称轴为x=>0可以推出b<0,由此可以确定abc的符号.【解答】解:∵抛物线的开口方向向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∵对称轴为x=>0,∴a、b异号,即b<0,∴abc>0.故选:B.【点评】考查二次函数y=ax2+bx+c系数符号的确定.10.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选:D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.11.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.12.【分析】如图,易证△CDE≌△ABC,得AB2+DE2=DE2+CD2=CE2,同理FG2+LK2=HL2,S1+S2+S3+S4=1+3=4.【解答】解:∵在△CDE和△ABC中,,∴△CDE≌△ABC(AAS),∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,同理可证FG2+LK2=HL2=1,∴S1+S2+S3+S4=CE2+HL2=1+3=4.故选:A.【点评】本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB2+DE2=DE2+CD2=CE2是解题的关键.二.填空题(共4小题,满分12分,每小题3分)13.【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).14.【分析】列举出所有情况,看出现2个男婴、1个女婴的情况数占总情况数的多少即可.【解答】解:可能出现的情况如下表婴儿1 婴儿2 婴儿3男男男男男女男女男男女女女男男女男女女女男女女女一共有8种情况,出现2个男婴、1个女婴的情况有3种,故答案为.【点评】用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:设第n个图形的棋子数为Sn.第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;…第n个图形,S n=1+4+7+…+(3n﹣2)=.故答案为:;【点评】主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.16.【分析】根据三角形内角和定理求出∠OBC+∠OCB,根据内心的性质得到∠ABC=2∠OBC,∠ACB=2∠OCB,根据三角形内角和定理计算即可.【解答】解:∵∠BOC=124°,∴∠OBC+∠OCB=180°﹣124°=56°,∵点O是△ABC的内切圆的圆心,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=112°,∴∠A=180°﹣112°=68°,故答案为:68°.【点评】本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握角形的内心是三角形三个内角角平分线的交点是解题的关键.三.解答题(共7小题,满分52分)17.【分析】根据实数的运算法则以及特殊角的锐角三角函数值即可求出答案.【解答】解:原式=﹣16﹣2+|1﹣2|+1=﹣16﹣2+2﹣1+1=﹣16.【点评】本题考查实数的运算,解题的关键是熟练运用实数的运算法则,本题属于基础题型.18.【分析】首先解每个不等式,然后确定两个不等式的解集的公共部分即可得到不等式组的解集及整数解.【解答】解:,解①得:5x+6>2x﹣6,5x﹣2x>﹣6﹣6,3x>﹣12,x>﹣4,解②得:3(1﹣5x)≥2(3x+1)﹣6,3﹣15x≥6x+2﹣6,﹣15x﹣6x≥2﹣6﹣3,﹣21x≥﹣7,x≤,∴不等式组的解集为:﹣4<x≤,∴该不等式组的整数解为﹣3,﹣2,﹣1,0.【点评】此题考查了一元一次不等式组的解法和确定其整数解,属常规题,其步骤一般为:去分母,去括号,移项合并同类项,将x的系数化为1.19.【分析】(1)乘公交的学生数=400﹣步行人数﹣骑自行车人数﹣乘私车人数;(2)先计算步行所占调查人数的比,再计算步行扇形圆心角的度数;(3)先计算乘公交的学生占调查学生的百分比,再估计3000人中乘公交的人数.【解答】解:(1)乘公交的人数为:400﹣80﹣20﹣60=240(人)补全的条形图如右图所示(2)“步行”的扇形圆心角的度数为:360°×=72°(3)因为调查的七年级400名学生中,乘公交的学生有240人,所以乘公交的学生占调查学生的百分比为:×100%=60%.所以3000名学生中乘公交的约为:3000×60%=1800(人)答:3000名学生中乘公交的学生有1800人.【点评】本题考查了条形图和扇形图及用样本估计总体.题目难度不大,看懂条形图和扇形图是解决本题的关键.20.【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出答案.【解答】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=100千米,∴CD=BC?sin30°=100×=50(千米),AC==50(千米),AC+BC=(100+50)千米,答:开通隧道前,汽车从A地到B地要走(100+50)千米;(2)∵cos30°=,BC=100(千米),∴BD=BC?cos30°=100×=50(千米),CD=BC=50(千米),∵tan45°=,∴AD==50(千米),∴AB=AD+BD=(50+50)千米,答:开通隧道后,汽车从A地到B地可以少走(50+50)千米.【点评】本题考查了解直角三角形的应用,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.22.【分析】(1)得出AN、AB,利用直角三角形的性质解答即可;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∴AM=MC=2,∵AN是⊙M的直径,∴∠ACN=∠BCN=90°,∴△ACN∽△BNC,∵BC=6,∴AC=2,∴AB=2AN=8,∴∠ABN=30°,(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;(3)根据平行四边形的性质和坐标特点解答即可.【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB=S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
山东省菏泽市2024届中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹2.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A.2233π-B.2233π-C.233π-D.233π-3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q5.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC ,求证:ADE ∽DBF .证明:①又DF//AC ,DE //BC ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴∽DBF .A .③②④①B .②④①③C .③①④②D .②③④①6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .7.下列图形中,周长不是32 m 的图形是( )A .B .C .D .8.下列多边形中,内角和是一个三角形内角和的4倍的是( )A .四边形B .五边形C .六边形D .八边形9.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n )个图形中面积为1的正方形的个数为( )A .()12n n +B .()22n n + C .()32n n + D .()42n n +10.如图,在平面直角坐标系xOy 中,A (2,0),B (0,2),⊙C 的圆心为点C (﹣1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最小值是( )A .2B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.12.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .13.已知圆锥的底面半径为3cm ,侧面积为15πcm 2,则这个圆锥的侧面展开图的圆心角 °.14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为 .15.计算:(2+1)(2﹣1)= .16.已知点P (a ,b )在反比例函数y=2x的图象上,则ab=_____. 三、解答题(共8题,共72分)17.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).18.(8分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.19.(8分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).20.(8分)(1)计算:|﹣2|﹣(π﹣2015)0+(12)﹣2﹣2sin60°12;(2)先化简,再求值:221aa a--÷(2+21aa+),其中2.21.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是 ;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数. 22.(10分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC 为4米,落在斜坡上的影长CD 为3米,AB ⊥BC ,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ 在斜坡上的影长QR 为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)23.(12分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.求证:BDE CAD ∆∆∽;若13AB =,10BC =,求线段DE 的长.24.如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【题目详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,∴故本选项错误.故选B.【题目点拨】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.2、B【解题分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【题目详解】由旋转可知AD=BD ,∵∠ACB=90°∴CD=BD ,∵CB=CD ,∴△BCD 是等边三角形,∴∠BCD=∠CBD=60°,∴BC=23π3AC=2,∴阴影部分的面积2602360π⨯23π. 故答案选:B.【题目点拨】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算. 3、B【解题分析】根据轴对称图形与中心对称图形的概念判断即可.【题目详解】解:A 、是轴对称图形,也是中心对称图形,故错误;B 、是中心对称图形,不是轴对称图形,故正确;C 、是轴对称图形,也是中心对称图形,故错误;D 、是轴对称图形,也是中心对称图形,故错误.故选B .【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、C【解题分析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.5、B【解题分析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【题目详解】证明:DE //BC ②,ADE B ∠∠∴=④,①又DF//AC ,A BDF ∠∠∴=③,ADE ∴∽DBF .故选B .【题目点拨】本题考查了相似三角形的判定与性质;关键是证明三角形相似.6、B【解题分析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.7、B【解题分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【题目详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【题目点拨】此题考查多边形的周长,解题在于掌握计算公式.8、C【解题分析】利用多边形的内角和公式列方程求解即可【题目详解】设这个多边形的边数为n.由题意得:(n﹣2)×180°=4×180°.解得:n=1.答:这个多边形的边数为1.故选C.【题目点拨】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.9、C【解题分析】由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=()32n n+.【题目详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=()32n n+个.【题目点拨】本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.10、C【解题分析】当⊙C与AD相切时,△ABE面积最大,连接CD ,则∠CDA=90°,∵A (2,0),B (0,2),⊙C 的圆心为点C (-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD==2,∵∠AOE=∠ADC=90°,∠EAO=∠CAD ,∴△AOE ∽△ADC , ∴即,∴OE=,∴BE=OB+OE=2+∴S △ABE = BE?OA=×(2+)×2=2+故答案为C.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解题分析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.12、-6【解题分析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【题目详解】请在此输入详解!13、1【解题分析】试题分析:根据圆锥的侧面积公式S=πrl 得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.解:∵侧面积为15πcm 2,∴圆锥侧面积公式为:S=πrl=π×3×l=15π, 解得:l=5, ∴扇形面积为15π=,解得:n=1,∴侧面展开图的圆心角是1度. 故答案为1. 考点:圆锥的计算. 14、2 【解题分析】试题分析:由OA=1,OC=6,可得矩形OABC 的面积为6;再根据反比例函数系数k 的几何意义,可知k=6,∴反比例函数的解析式为6y x =;设正方形ADEF 的边长为a ,则点E 的坐标为(a+1,a ),∵点E 在抛物线上,∴61a a =+,整理得260a a +-=,解得2a =或3a =-(舍去),故正方形ADEF 的边长是2. 考点:反比例函数系数k 的几何意义. 15、1. 【解题分析】根据平方差公式计算即可. 【题目详解】 原式=(22-12 =18-1 =1故答案为1. 【题目点拨】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键. 16、2 【解题分析】【分析】接把点P (a ,b )代入反比例函数y=2x即可得出结论.【题目详解】∵点P(a,b)在反比例函数y=2x的图象上,∴b=2a,∴ab=2,故答案为:2.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(共8题,共72分)17、(1)23;(2)这两个数字之和是3的倍数的概率为13.【解题分析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.【题目详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为23,故答案为23;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为39=13.【题目点拨】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.18、(1)13;(2)13【解题分析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【题目详解】解:(1)由于共有A、B、W三个座位,∴甲选择座位W的概率为13,故答案为:13;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P(甲乙相邻)=26=13.【题目点拨】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.19、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解题分析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN 中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.20、(1)3(22-1【解题分析】试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.试题解析:(1)原式=2﹣1+4﹣2×33﹣1+4333(2)原式=()()()()()()()22 111121·111a a a aa a aa a a a a a+-+-++÷=--+=11a+,当a=2时,原式=121+=2-1.21、(1)100;(2)作图见解析;(3)1.【解题分析】试题分析:(1)根据百分比=所占人数总人数计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,故答案为100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.22、13.1.【解题分析】试题分析:如图,作CM∥AB交AD于M,MN⊥AB于N,根据=,可求得CM的长,在RT△AMN中利用三角函数求得AN的长,再由MN∥BC,AB∥CM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长.试题解析:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN ∥BC ,AB ∥CM , ∴四边形MNBC 是平行四边形, ∴BN=CM=, ∴AB=AN+BN=13.1米.考点:解直角三角形的应用. 23、(1)见解析;(2)6013DE =. 【解题分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明; 对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE. 【题目详解】解:(1)证明:∵AB AC =, ∴B C ∠=∠.又∵AD 为BC 边上的中线, ∴AD BC ⊥. ∵DE AB ⊥,∴90BED CDA ︒∠=∠=, ∴BDE CAD ∆∆∽. (2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得2212AD AB BD =-=.由(1)得BDE CAD ∆∆∽,∴BD DECA AD=, 即51312DE =, ∴6013DE =.【题目点拨】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理. 24、证明见解析. 【解题分析】【分析】利用AAS 先证明∆ABH ≌∆DCG ,根据全等三角形的性质可得AH=DG ,再根据AH =AG +GH ,DG =DH +GH 即可证得AG =HD.【题目详解】∵AB ∥CD ,∴∠A =∠D ,∵CE ∥BF ,∴∠AHB =∠DGC , 在∆ABH 和∆DCG 中,A D AHB DGC AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴∆ABH ≌∆DCG(AAS),∴AH =DG ,∵AH =AG +GH ,DG =DH +GH ,∴AG =HD.【题目点拨】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.。
中考数学全真模拟试题(十二)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分.第1卷l 至4页,第Ⅱ卷5至12页.满分120分.考试时刻120分钟.第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦洁净后。
再选涂其它答案,不能答在试卷上。
3.考试终止,将本试卷和答题卡一并交回. 一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的. 1.一3的绝对值是( )(A)3 (C)±3 (B) 3 (D)±132.2004年聊都市的国民生产总值为1012亿元,用科学记数法表示正确的是( )(A)1012×108元 (B)1.012×1110元 (C)1.0×1110元. (D)1.012×1210元. 3.下列各式运算正确的是( )(A)527()a a =.(B)22122x x-= (C)236326a a a = (D)826a a a ÷=。
4.一个不透亮的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是( )(A) 18 (B) 13 (C) 38 (D) 355.如图,将两根钢条'AA 、'BB 的中点O 连在一起,使'AA 、'BB 能够绕着点0自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△AOB ≅△''A OB 的理由是( )(A)边角边 (B)角边角 (C)边边边 (D)角角边 6.已知两圆相交,其圆心距为6,大圆半径为8,则小圆半径r 的取值范畴是( ) (A)r>2 (B)2<r<14 (C)l<r<8 (D)2<r<87.化简24()22a a a a a a---+的结果是( ) (A)一4 (B)4 (C)2a (13) 2a +4第5题图8.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =10,DF =4,则菱形ABCD 的边长为( )(A)42. (B)52 (C)6. (D)9.9.小华同学自制了一个简易的幻灯机,其工作情形如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm 幻灯片到屏幕的距离是1.5m ,幻灯片上小树的高度是10cm ,则屏幕上小树的高度是( )(A)50cm . (B)500cm . (C)60 cm . (D)600cm . 10.多边形的内角中,锐角的个数最多有( ) (A)1个. (B)2个. (C)3个. (D)4个.11.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为( )(A)(0,0). (B)11(,)22-. (c) 22(,)22- (D) 11(,)22-. 12.等腰三角形一腰上的高与另一腰的夹角为30。
,则顶角的度数为( )(A)60︒. (B)120︒. (C)60︒或150︒. (D)60︒或120︒ 13.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为( )(A)4. (C)12 . (B)6 (D)15 14.已知△ABC ,(1)如图l ,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=1902A ︒+∠;(2)如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90A ︒-∠;(3)如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=1902A ︒-∠。
图3图2图1E FEPCBAABCABCPP上述说法正确的个数是( )(A)0个 (B)1个 (C)2个 (D)3个第九题图 AD E FOB中考数学全真模拟试题(十二)第Ⅱ卷(非选择题 共78分)注意事项:1.第Ⅱ卷共8页,用钢笔或园珠笔直截了当答在试卷上。
2.答卷前将密封线内的项目及座号填写清晰。
二、填空题(本大题共5小题.每小题3分,共15分)把答案填在题中横线上.15.关于x 的不等式3x 一2a ≤一2的解集如图所示,则a 的值是_______________。
6-6-5-4-3-254321-10(第15题图)16.若圆周角α所对弦长为sin α,则此圆的半径r 为___________。
17.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成那个灯罩的铁皮的面积___________cm 2。
(不考虑接缝等因素,运算结果用π表示)第18题图EFC18.如图,Rt △ABC 中,∠A =90︒,AB =4,AC =3,D 在BC 上运动(不与B 、C 重合),过D 点分别向AB 、Ac 作垂线,垂足分别为E 、F ,则矩形AEDF 的面积的最大值为___________。
19.判定一个整数能否被7整除,只需看去掉一节尾...(那个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.假如那个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的”倍的差能否被7整除来判定,则n =___________(n 是整数,且1≤n<7). 三、开动脑筋.你一定能做对20.(本小题满分6分)为了了解家庭日常生活消费情形,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 l 95 180 250 270 455 170请你用统计初步的知识,运算小亮家平均每年(每年按52周运算)的日常生活消费总费用.21.(本小题满分7分)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你关心她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.A B22.(本小题满分8分)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大、小包装均不拆开零售,那么如何样制定购买方案才能使所付费用最少?四、认真摸索,你一定能成功!23.(本小题满分9分)如图l ,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .(1)求证:OE=OF ; (2)如图2,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE=OF ”还成立吗?假如成立,请给出证明;假如不成立,请说明理由.图1C B24.(本小题满分10分)某厂从2001年起开始投入技术改进资金,经技术改进后,其产品的生产成函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2005年已投人技改资金5万元.①估量生产成本每件比2004年降低多少万元?②假如打算在2005年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元(结果精确到0.01万元)?五、相信自己。
加油呀 25.(本小题满分10分)△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,依照勾股定理,则222a b c +=。
若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.图1CB图2CB图3CB26.(本小题满分13分)如图1,已知抛物线的顶点为A(O,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连结PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判定△SBR的形状;③试探究在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似,若存在,请找出M点的位置;若不存在,请说明理由.中考数学全真模拟试题(十二)参考答案及评分标准注:第三、四、五题给出了一种解法或两种解法.考生若用其它解法.应参照本评分标准给分题号1 2 3 4 5 6 7 8 9 10 11 12 13 14答案A B D C A D A D C C B D B C1 5.一12; 16.12; 17. 300π; 18 .3; 19 .2。
三、开动脑筋,你一定能做对(共21分)20.解:由题中7周的数据.可知小亮家平均每周日常生活消费的费用为:17(230+195+180+250+270+455+170)=250(元) …………(4分)∴小亮家每年日常生活消费总赞用为: 250×52=13000(元)答:小亮家平均每年的日常生活消费总费用约为13000元…………… (6分) 2l.解:作法:(1)作AB的垂直平分线CD交AB于点O;(2)分别以A、B为圆心,以AO(或BO)的长为半径画弧,分别交半圆干点M、N;(3)连结OM、ON即可.说明:本小题满分7分。
画图正确得4分;写出作法,每步各1分,共3分。
22.解:依照题意,可有三种购买方案;方案一:只买大包装,则需买包数为:48048 505=;由于不拆包零卖.因此需买10包.所付费用为30×10=300(元) … (1分)方案二:只买小包装.则需买包数为:48016 30=因此需买1 6包,所付费用为1 6×20=320(元) ……… (2分)方案三:既买大包装.又买小包装,并设买大包装x包.小包装y包.所需费用为W 元。
则50304803020x y W x +=⎧⎨=+⎩…………(4分)103203W x =-+…………(5分) ∵050480x <<,且x 为正整数,∴x =9时,最小W =290(元).∴购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少.为290元。
………………………………………………………………(7分)答:购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少为290元。
……………………………………………………………… (8分) 四、认真摸索.你一定能成功!(共19分)23(1)证明:∵四边形ABCD 是正方形.∴∠BOE=∠AOF =90︒.OB =OA ……………… (1分) 又∵AM ⊥BE ,∴∠MEA+∠MAE =90︒=∠AFO+∠MAE ∴∠MEA =∠AFO ………………(2分)∴Rt △BOE ≌ Rt △AOF ……………… (3分) ∴OE=OF ………………(4分)(2)OE =OF 成立 ……………… (5分) 证明:∵四边形ABCD 是正方形,∴∠BOE=∠AOF =90︒.OB =OA ……………… (6分) 又∵AM ⊥BE ,∴∠F+∠MBF =90︒=∠B+∠OBE 又∵∠MBF =∠OBE∴∠F =∠E ………………(7分)∴Rt △BOE ≌ Rt △AOF ……………… (8分) ∴OE=OF ………………(9分)24.(1)解:设其为一次函数,解析式为y kx b =+ 当 2.5x =时,7.2y =; 当x =3时,y =6.7.2 2.563k bk b =+⎧⎨=+⎩解得 2.4k =-,13.2b =∴一次函数解析式为 2.413.2y x =-+把4x =时, 4.5y =代人此函数解析式,左边≠右边. ∴其不是一次函数. 同理.其也不是二次函数. ………… (3分)(注:学生如用其它合理的方式排除以上两种函数,同样得3分)设其为反比例函数.解析式为ky x=。