当前位置:文档之家› 预分解窑后结圈的形成原因及处理

预分解窑后结圈的形成原因及处理

预分解窑后结圈的形成原因及处理
预分解窑后结圈的形成原因及处理

水泥生产预分解窑的统一操作的意义

水泥生产预分解窑的统一操作的意义 0、前言 在现代化水泥生产中,预分解窑具有窑温高、窑速快、产量高、熟料结粒细小、负荷重、系统工艺复杂、自动化程度高等特点,因此其操作控制应该是根据预分解窑的工艺特点、装备水平,制定相应的操作规程,正确处理系统关系,统一操作。 1、统一操作的必要性 预分解窑操作要求操作人员具有丰富的理论知识和一定的实践经验,通工艺、懂机电,熟悉现场环境,具有协调指挥能力,随时掌握系统状态,熟练掌握窑系统各点参数的变化情况,对每一个参数发生偏离都要进行分析,找出变化的原因,并及时采取措施处理,使系统尽快恢复到新的平衡状态,在三班统一操作的基础上,稳定窑系统热工制度,提高运转率,达到优质、高产、低消耗和长期、安全、连续运转的目的。 操作上的随意性是预分解窑热工制度不稳定的突出问题,因此必须强化统一操作的系统性,统一操作标准,规范程序控制。思想决定行动,行动决定结果, 思想是行动的先导和动力,人们无论做任何事,都是先有思想,后有行动。有正确的思想才有正确的行动,有积极的思想才有积极的行动,有统一的思想才有统一的行动。 统一思想是第一位的,只有在统一思想的前提下,统一指挥,统一行动,才能得到希望的结果。具体到窑系统的生产操作,应以窑为纲,

实现三统一,即:统一思想、统一指挥、统一操作。统一思想使操作认识一致化,有明确的方向;统一指挥使操作规范化、有序化;统一操作使行动连续化,避免随意性。 2、怎样实现统一操作 窑系统操作是整体操作,要求集中思想统一操作。就像汽车上路必须遵守交通规则一样,不能乱行,否则就要出事故。要稳定窑系统热工制度,统一操作是一个很好的方法,特别是在系统有问题、不稳定的时候,有助于尽早发现问题的原因,及时解决问题。要做到统一操作,首先,要有领导上的统一,在意见繁杂的时候,有人来管理队伍,和行军打仗一样,整齐划一才能形成共振的合力,可以有不同意见,但最终还必须遵章守纪,统一操作;其次,人员的统一,特别是相关操作岗位人员,必须高度统一,认识不同是技术层面上的事,统一操作则是管理层面的内容,窑系统工艺复杂,操作上涉及到的方面、单位、事务多,必须有统一的管理,特别是在困难、有问题的情况下,高度统一的队伍才能打硬仗、打赢仗,才能够使生产稳定运行;第三,统一操作是管理上的需要,也是技术上的需要,其最大好处就是不论方法的对与错,都能够容易得出结论。 3、统一操作的特性 3.1 统一操作具有连续性 窑操作是典型的体力劳动和脑力劳动相结合的岗位,要求集中思想、行动快捷;是一个应具有广泛理论知识与丰富的实践经验、复杂的操作技术与高科技知识相结合的特殊工种,稳定窑况、优化参

回转窑结圈的原因

13 结圈形成的原因、预防措施和处理方法 13.1 结圈形成的原因当窑内物料温度达到1 200℃左右时就出现液相,随着温度的升高,液相粘度变小,液相量增加。暴露在热气流中的窑衬温度始终高于窑内物料温度。当它被料层覆盖时,温度突然下降,加之窑简体表面散热损失,液相在窑衬上凝固下来,形成新的窑皮。窑继续运转,窑皮又暴露在高温的热气流中被烧熔而掉落下来。当它再次被物料覆盖,液相又凝固下来,如此周而复始。假如这个过程达到平衡,窑皮就不会增厚,这属正常状态。如果粘挂上去的多,掉落下来的少,窑皮就增厚。反之则变薄。当窑皮增厚达一定程度就形成结圈。形成结圈的原因主要有如下几点: 13.1.1 入窑生料成分波动大,喂料量不稳定实际生产过程中,窑操作员最头疼的事是人窑生料成分波动太大和料量不稳定。窑内物料时而难烧时而好烧或时多时少,遇到高KH料时,窑内物料松散,不易烧结,窑头感到“吃火”,熟料fCaO高,或遇到料量多时都迫使操作员加煤提高烧成温度,有时还要降低窑速;遇到低KH料或料量少时,窑操作上不能及时调整,烧成带温度偏高,物料过烧发粘,稍有不慎就形成长厚窑皮,进而产生熟料圈。 13.1.2 有害成分的影响分析结圈料可以知道,CaO+A1203+Fe203+Si02含量偏低,而R20和S03含量偏高。生料中的有害成分在熟料煅烧过程中先后分解、气化和挥发,在温度较低的窑尾凝聚粘附在生料颗粒表面,随生料一起人窑,容易在窑后部结成硫碱圈。在人窑生料中,当MgO和R20都偏高时,R20在MgO引起结圈过程中充当“媒介”作用形成镁碱圈。根据许多水泥厂的操作经验,当熟料中MgO>4.8%时,能使熟料液相量大量增加,液相粘度下降,熟料烧结范围变窄,窑皮增长,浮窑皮增厚。有的水泥厂虽然熟料中MgO<4.0%,但由于R20的助熔作用,使熟料在某一特定温度或在窑某一特定位置液相量陡然大量增加,粘度大幅度降低,迅速在该温度区域或窑某一位置粘结,形成熟料圈。 13.1.3 煤粉质量的影响灰分高、细度粗、水分大的煤粉着火温度高,燃烧速度慢,黑火头长,容易产生不完全燃烧,煤灰沉落也相对比较集中,就容易结熟料圈。取样分析结圈料未燃尽煤粉较多就是例证。另外,喂煤量的不稳定,使窑内温度忽高忽低,也容易产生结圈。 13.1.4 一次风量和二次风温度的影响三风道或四风道燃烧器内流风偏大,二次风温度又偏高,则煤粉一出喷嘴就着火,燃烧温度高、火焰集中,烧成带短,而且位置前移,容易产生窑口圈,也称前结圈。 13.2 前结圈 在正常煅烧条件下,物料温度达1350—1450 ℃时,液相量约为24%,粘度比较大。当熟料离开烧成带时,温度仍在1300℃以上,在烧成带和冷却带的交界处,熟料和窑皮有较大的温差。带有液相的高温熟料覆盖在温度相对较低的窑口窑皮上就会粘结形成前结圈。对于预分解窑来说,前结圈是不可避免的,只是高一点和矮一点的问题,尤其当窑操作员控制二次风温度过高、燃烧器内流风偏大和采用短焰急烧时,烧成带高温区更为集中,液相更多,粘度更小,熟料进入冷却带时,仍有大量液相在交界处迅速冷却。温差越大粘结越严重,前圈长得更快。另外,短焰急烧,熟料晶相生长发育差,易烧出大块熟料。但熟料中细粉比例也增加,冷却机返回窑的粉尘量大,这样更促进前圈的增长。 13.3 熟料圈它结的位置是在烧成带与过渡带之间,是窑操作员最头疼,对窑危害最大的结圈。在熟料煅烧过程中,当窑内物料温度达到1280℃时,其液相粘度较大,最容易形成熟料圈。这时如果生料KH、n值较低,操作时窑内拉风又太大,火焰太长,烧成带后边浮窑皮逐渐增长、长厚,发展到一定程度就形成熟料圈。 13.4 熟料圈形成以后的现象 1)火焰短而粗,火焰前部白亮但发浑,窑内气流不畅,火焰受阻伸不进窑内。窑前温度升高,窑简体表面温度也升高。

新型干法水泥预分解窑中控操作员(讲课精简版)

预分解窑中控操作员精细操作讨论(讲课精简版) 讨论的背景与目的 预分解窑发展迅速,经济指标相差较大,操作员水平参差不齐。运转水平高者不多,带病运转者不少。与国际平均水平有差距。 新型干法企业之间的竞争日趋激烈。操作技术相互封闭,缺乏培训与交流机会。 企业重发展,疏管理。认为是都已掌握的…下里巴人?技术,无潜力可挖。实际存在不少误区。企业技术力量不足,员工培训质量不高。 (谢:中国的水泥产量在世界排名第一,年产水泥约大于14亿吨,第二名是印度,年产约4、5亿吨,但评价一下我们水泥技术的实际情况,在成本消耗和环保上还是与世界水平存在一定的差距,国外5000吨生产线每公斤熟料消耗700大卡,国内普遍在750~800大卡,大水是770大卡、110公斤标煤,要把能耗降下去,这是降成本的最重要的一条,要把经济指标搞得最好。 降能耗不是降员工的工资,反而要想办法提高员工的待遇,目的是提高员工的素质。人是第一位的,能够节能降耗的员工是我们企业最需要的!很多企业都缺少搞技术的人。) 序:用什么衡量运转水平 (谢:江西亚泥一条生产线转400多天,窑砖没换,运转率几乎月月100%,个别的时候也在99%以上。我们要客观地区分差别,我们要提前判断窑现在存在什么问题,就像人要定期体检一样。我们只有区分了现状生产水平之后,明确了差距,才会找到努力的目标,措施才有针对性,而且采取措施越早越有效。)

(一)、提高运转水平的意义 1、企业提高效益的途径:充分利用国家政策;增加生产规模;挖掘企业内涵。 挖掘企业内涵就是提高运转水平:与增加生产规模应当是企业腾飞的两只翅膀。 (谢:企业要想在社会上生存就得挣钱,挣钱有几个方法,所有的企业家对于“利用国家政策”都会,这没多大潜力。最大的潜力不是增加生产规模,) 2、我国新型干法生产线现状 目前,全国预分解窑生产线的运行状态大致分为三类:精细运转(<10%)、正常运转(60%)、带病运转(>30%)。 差距产生在何处: 国内水平国际水平 设计方面相差不大 装备方面仪表及个别设备依靠进口 施工质量相差不大 企业管理刚起步高 现场操作深受其它窑型影响成熟 带病运转的产生原因: (1)投产后就带病运转:多属设计、设备、施工质量; (2)运转一年后带病运转:多属资金或人员培训不足所致; (3)运转数年后带病运转:多属管理与操作不善造成。 (二)、衡量运转水平的指标 1、能耗指标的实现水平; 2、环保治理的水平; 3、劳动生产率水平;(上述具体指标后续分解) (三)、什么是精细运转

预分解窑操作中常见的问题及原因

预分解窑操作中常见的问题及原因 (1)窑尾和预分解系统温度偏高 1)检查是否生料KH、SM值偏高,熔融相(A1203和Fe203)含量偏低;生料中是否f-Si02含量比较高和生料细度偏粗。如若干项情况属实,则由于生料易烧性差,熟料难 烧结,上述温度偏高属正常现象。但应注意极限温度和窑尾O2含量的控制。 2)窑内通风不好,窑尾空气过剩系数控制偏低,系统漏风产生二次燃烧。 3)排灰阀配重太轻或因为怕堵塞,窑尾岗位工把排灰阀阀杆吊起来,致使旋风筒收尘效率降低,物料循环量增加,预分解系统温度升高。 4)供料不足或来料不均匀。 5)旋风筒堵塞使系统温度升高。 6)燃烧器外流风太大、火焰太长,致使窑尾温度偏高。 7)烧成带温度太低,煤粉后燃。 8)窑尾负压太高,窑内抽力太大,高温带后移。 (2)窑尾和预分解系统温度偏低 1)对于一定的喂料量来说,用煤量偏少。 2)排灰阀工作不灵活,局部堆料或塌料。由于物料分散不好,热交换差,致使预热 器C1出口温度升高,但窑尾温度下降。 3)预热器系统漏风,增加了废气量和烧成热耗,废气温度下降。 (3)烧成带温度太低 1)风、煤、料配合不好。对于一定喂料量,热耗控制偏低或火焰太长,高温带不集中。 2)在一定的燃烧条件下,窑速太快。 3)预热器系统的塌料以及温度低、分解率低的生料窜入窑前。 4)窑尾来料多或垮窑皮时,用煤量没有及时增加。 5)在窑内通风不良的情况下,又增加窑头用煤量,结果窑尾温度升高,烧成带温度反 而下降。 6)冷却机一室篦板上的熟料料层太薄,二次风温度太低。 (4)烧成带温度太高 1)来料少而用煤量没有及时减少。 2)燃烧器内流风太大,致使火焰太短,高温带太集中。 3)一二次风温度太高,黑火头短,火点位置前移。 (5)二次风温度太高 1)火焰太散,粗粒煤粉掺入熟料,入冷却机后继续燃烧。 2)熟料结粒太细致使料层阻力增加,二次风量减少,风温升高;大量细粒熟料随二次 风一起返回窑内。 3)熟料结粒良好,但冷却机一室料层太厚。 4)火焰太短,高温带前移,出窑熟料温度太高。 5)垮窑皮、垮前圈或后圈,使某段时间出窑熟料量增加。 (6)冷却机废气温度太高 1)冷却机篦板运行速度太快,熟料没有充分冷却就进入冷却机中部或后部。 2)熟料冷却风量不足,出冷却机熟料温度高,废气温度自然升高。 3)熟料层阻力太大(料层太厚或熟料颗粒细)或料层太容易穿透(料层太薄或熟料颗粒 太粗),这样熟料冷却不好,出口废气温度升高。

回转窑清圈机百度知道

回转窑刮圈机 回转窑刮圈机(又名剃圈机、打圈机、清圈机、铲圈机)是用机械自动化的方法清理回转窑窑皮过厚的回转窑辅助设备,在不停窑的情况下发现结圈过厚时及时启动设备刮掉有害结圈,一般在二小时内能快速平整窑皮到合理厚度,采用该设备将彻底告别人工停窑打圈的历史。该技术是世界范围内唯一拥有自主知识产权的清除回转窑窑圈的机械类产品,国家知识产权局官方网站查询信息如下:发明专利号200410037079.1,专利名称是"清除回转窑窑圈方法及装置",商业名称是"回转窑快速刮圈机"。回转窑刮圈机解决了一个世界性难题,受到全世界的广泛关注,被国际业界所肯定,目前已经实现出口,成为澳大利亚莱纳斯公司稀土项目中最核心的技术装备之一。该知识产权已由中国最大的律师事务所-北京盈科律师事务所代理。 一、技术背景:由海田禾发明并研制的回转窑智能化快速刮圈机是针对回转窑普遍存在的回转窑窑皮不均匀、厚窑皮、长窑皮、结圈、结瘤、结蛋等痼疾导致回转窑红窑、料层不均匀、回转窑系统阻力增大、回转窑内有效截面积缩小,严重影响回转窑产能和运转率而设计的一种机电一体化并具有智能化的中型机械,该机由刮刀、机械臂、行走系统、冷却系统和自动化控制系统组成,一般规格长十至二十五米,宽一点五至二点二米,高一点八至三点五米。实际大小尺寸应当根据用户现场要求设计和配置。 二、回转窑快速刮圈机的用途:回转窑智能化快速刮圈机用于清除回转窑窑头和窑尾的结圈,包括前结圈、后结圈和窑口圈,平整回转窑的窑皮,扩大回转窑的有效截面积,提高回转窑产能和运转率。能有效的阻止和预防结圈。通过机械臂和刮刀在高温气体下对厚窑皮和回转窑窑圈底层的切削,实现不停窑快速、彻底清除回转窑厚窑皮和回转窑内结圈,使动态平衡中的回转窑窑皮表面均匀、平整、粗糙,物料翻滚移动顺畅平缓,料层均匀稳定。众所周知,回转窑轴瓦发热均来自回转窑窑皮和回转窑窑圈的不均匀,当结圈形成后,在窑内形成一道"门槛",阻碍了物料的前进和气体的流通,造成系统负荷超载;尤其是轮带处筒体的180°径向不均匀的回转窑窑皮对窑圈更具有危害性;回转窑窑皮不均匀易引发回转窑红窑和补挂窑皮困难。 使用回转窑快速刮圈机,可有效遏制回转窑红窑,保护轴瓦、电机和筒体,减少减速机、齿轮和齿圈的磨损,大幅度延长回转窑窑衬的使用寿命。使用中不改变回转窑的工艺参数,有了回转窑刮圈机,回转窑结圈后无需冷烧热烧、停窑或减料冲料,能够有效提高回转窑的运转率,提高物料的焙烧质量和产量,减少设备空转率和非正常排污,使用中没有窑衬、窑皮被烧毁或烧损的风险,使用时不耗费材料。回转窑快速刮圈机适合于新型干法水泥回转窑、湿法水泥回转窑、氧化铝熟料回转窑、红钒钠回转窑、氧化球团回转窑、活性石灰回转窑、金属镁回转窑、高岭土回转窑、氧化锌回转窑和铝矾土回转窑等所有的回转窑。 尤其重要的是,回转窑快速刮圈机的发明和应用对煤基回转窑直接还原铁(海绵铁)和煤基回转窑熔融还原铁(非焦炼铁)的健康发展具有决定性意义。可以说,没有刮圈机就没有煤基回转窑直接还原铁(海绵铁)和煤基回转窑熔融还原铁(非焦炼铁)的发展。 回转窑快速刮圈机的发明者是湖南大学和中南大学部分知识分子组成的团队,这个团队依托湖南大学和岳麓山大学园区内雄厚的科技力量和人才优势,其研究课题具有前瞻性和预见性。早在20年前,这个团队针对煤基回转窑直接还原铁和煤基回转窑熔融还原铁存在三大技术难题而数十年裹足不前的困局,开始了艰苦卓绝的攻关。经过十多年的潜心研究和实验,终于发明了刮圈机,成为煤基回转窑直接还原铁和煤基回转窑熔融还原铁技术中最核心的部分。

回转窑系统结圈原因

回转窑系统结圈原因.事故怎样判断和安全处理 (一)、回转窑结圈 1.造成结圈的主要原因 a、精矿粉品位低,SIO2高在有FeO存在的情况下,容易生存低熔点硅酸盐矿物。 b、生球强度低,在运输过程中容易产生粉末。 c、链篦机干球焙烧强度低,入窑后再次产生粉末。 d、操作不当回转窑窑温度控制过高,造成局部高温。 e、煤粉灰分含水量量高,灰分的熔点低,当灰分的熔点低于或接近焙烧温度时容易结圈。 f、高温状态下停窑。 2.防止结圈的措施 a、严格控制原、燃料成分达到技术要求。 b、提高生球强度。 c、控制焙烧质量,入窑球抗压强度控制在800N/个球以上杜绝粉末入窑。 d、严格控制窑温,不造成局部长时间高温。 e、严禁高温停窑。 3.回转窑清圈机处理方法 (1)旧的方法、冷却法除圈:,除圈的人工方法。采用风镐、钎子、大锤等工具(2)、新旧方法烧圈.热窑机械去除结圈:a、冷烧及热烧交替烧法。首先减少或停止入窑料(视结圈程度而定),在窑内结圈处增加煤量和风量,提高结圈处温度,再停止喷煤降低结圈处温度这样反复处理使圈受冷热交替相互作有用,造成开裂而脱落。;b、冷烧:在正常生产时,在结圈部位造成低温气氛使其自行脱落。新型快速方法停窑用回转窑结圈清圈机快速处理结圈 (二)、回转窑结块原因 1、结块的原因:是由于生球质量差,在链篦机内粉化或链篦机焙烧球强度不够,在回转窑内破裂后结块或排入环冷机后粘结成块 2.控制措施:a、严控进厂原、燃料质量,把好造球关;b、造球机启动控制;c、布料厚度与机速;d、提高生球和链篦机上干球质量;e、稳定热工制度防止局部出现高温。 3.结块处理方法:发现固定筛上有大块及时打碎或扒出。

预分解窑的规格

预分解窑的规格 《新世纪水泥导报》2000年第3期 成都建材设计研究院(610051)杜秀光 内容提要:本文通过对预分解窑规格的分析,并结合生产实践提出了几个新的计算方法,这对指导新型干法窑的选型和降低新型干法窑的投资具有一定意义。关键词:单位截面积热负荷、断面风速、停留时间、斜度、转速 前言 目前的预分解窑设计中,窑规格的确定一直沿用早期设计的一些生产线的平均水平进行统计回归得到的计算公式进行的。由于回归公式受到这些生产线水平比较低等因素的影响,采用这些公式进行计算所得到的结果也必然是低水平上的重复,造成有些指标甚至远远低于湿法窑,这就造成了窑和分解炉及预热器的匹配不和理,使窑的能力没有得到充分发挥,也造成了窑的能力的浪费。因此,有必要根据预分解窑的发展状况,对预分解窑规格的计算公式进行重新分析,确定更加准确合理的计算方法,以适应预分解窑技术发展的要求。 1.窑直径的确定 窑的直径主要影响窑的单位截面积热负荷和断面风速,这也是预分解窑与其它窑型具有可比性的两个指标。单位截面积热负荷是衡量窑的发热能力和热力强度的最主要的指标,这一指标的高低从一定意义上决定了窑的产量;而窑内断面风速的高低主要影响窑内传热效率的高低,过高的断面风速回带走窑内过多的物料、削弱传导传热、增大阻力、破坏窑内正常工况。根据目前国内外比较典型的几种窑型中不同规格的窑的设计和生产水平计算的单位截面积热负荷和断面风速列于表1,其中预分解窑的窑头用煤量按40%计算,燃料燃烧生成的废气量按0.335Nm3/1000kJ计算。

注:表中带“*”的数据为国外某公司最新的设计资料,带“**”的数据为日本住友公司赤穗厂生产数据,带“***”的数据为拉法基北京兴发水泥有限公司1998年的生产数据,该公司计划1999年将产量提高到50-55t/h,这样一来,该窑的单位截面积热负荷和断面风速将分别达到15.5-17.05和1.32-1.45。 从表中可以看出,无论是单位截面积热负荷还是断面风速,都是湿法窑最高,预热器窑次之,预分解窑最低,而湿法窑的历史最长,技术也是最成熟的,湿法窑的这两个指标才是窑的热力强度的真实反映,从表中带“*”和“**”的两个数据也证明了这一点。这表明,我们过去在预分解窑的设计过程中,由于当时的水平所限,对窑的发热能力估计不足,造成了很大的浪费。从表中的两个先进数据可以看出,经过努力和对预热器及分解炉的优化设计,预分解窑的指标是可以得到提高的,达到湿法窑的水平是完全能够办到的。因此,我们认为,过去的一些预分解窑的回归计算公式已经不能适应新的技术水平的要求了。笔者根据分析对预分解窑的直径计算提出以下公式: D i=6.325(Qlq/πq f)1/2 (1)式中:D i--窑内径(m); Q --设计系统产量(t/h); l --设计窑头燃料比例(%); q --设计单位热耗(kJ/kg.cl); q f--单位截面积热负荷(kJ/m2.h),可取16-19kJ/m2.h,小规模的取低值,规模大的取高值。 计算出窑的直径后,可根据具体情况乘以1.05-1.10的富余系数,以保证系统的生产能力,避免给操作造成困难。然后再核算窑内的断面风速,窑内的断面风速一般可取1.4-1.8 Nm/s,且不宜超过2.0Nm/s,小规模的取低值,规模大的取高值。 2.窑的斜度和转速 目前,无论是干法窑还是湿法窑,窑的斜度一般均为3.5-4%,预分解窑的转速一般运行在2.5-3.2r/min范围内。这两个参数主要影响物料在窑内的运动速度,目前几种典型的预分解窑的物料运动速度列于表2,其中窑的斜度按3.5%计算,转速按2.8r/min计算。窑的斜度越高,物料流速越快,物料在窑内的翻滚次数越少,物料与气流的接触次数和时间也就越少,因此,过快的窑速引起热交换效率降低;窑的转速不仅影响物料的运动速度,还影响了物料被带起的高度,窑速越高,物料被带起越高,它与窑内热气流的接触越好,传热效率也就越高。因此,我们认为,在保证物料运动速度的情况下,适当降低窑的斜度,提高窑的转速,可以提高物料的翻滚次数和被带起的高度,这对于提高窑内的热交换效率是有益的。我们推荐窑的斜度为2.5-3.0%,窑转速为3.0-4.0r/min. 窑的长度主要影响物料在窑内的停留时间。在窑内物料运动速度一定的情况下,窑的长度越长,物料的停留时间也就越长。保证窑内足够的停留时间,也

回转窑结圈

回转窑结圈/治理清除预防回转窑结圈的设备/回转窑清圈机/窑结圈处理机/回转窑结圈觧 决措施 生产中使用回转窑设备的正常生产非常重要,关于回转窑结圈的问题原因,我们巳经探讨许多,也介绍了回转窑故障事故,回转窑结圈前结圈,窑后结圈的原因,以巳处理方法,现着介绍一下制理处理清除回转窑结圈的设备,名称回转窑清圈机别名窑结圈处理机/的创造发明过程,,用什么机械设备处理回转窑结圈解决回转窑结圈措施一、概述 由巩义市中佳节能设备制造公司研制的提高回转窑产能的高新技术产品.预防治理处理回转窑结圈的设备,快速处理回转窑结圈的设备,处理回转窑结大球大蛋设备,回转窑清圈机.窑内结蛋球打蛋机,窑内结圈处理机(窑内结圈打圈机铲圈机)是针对回转窑普遍存在的回转窑皮不均匀、回转窑厚窑皮、回转窑长窑皮、回转窑内结圈、回转窑内结瘤、回转窑内结蛋结大小球、等痼疾导致回转窑红窑、料层不均匀、回转窑系统阻力增大、回转窑内有效截面积缩小,严重影响回转窑产能和有郊预防回转窑结圈而设计的,一种机电一体化并具有智能化的中型机械,该机由、钎杆、冲击装置、行走自动退让系统、冷却系统和人工变频控制系统组成,一般规格长十至二十二米,宽一点五至二点二米,高一点八至三点五米。实际大小、回转窑结圈快速清圈机长度根据用户现场要求设计和配置。 回转窑结圈、结瘤、结蛋、长厚窑皮和长长窑皮是各种回转窑普遍存在的现象,曾有人说过回转窑结圈是世界性难题。无论是早期的湿法水泥回转窑系统,还是近年来兴起的链篦机-回转窑-环冷机氧化球团回转窑系统;无论是以煤为燃料的回转窑还是以气或油为燃料的回转窑;无论是各种水泥回转窑、红钒钠回转窑、氧化铝熟料回转窑、氧化镁回转窑、氧化球团回转窑、二氧化钛回转窑和活性石灰回转窑等氧化类回转窑,还是碳素回转窑、永磁铁氧体回转窑或还原钛铁矿回转窑等还原类回转窑;从小到直径不足1米的永磁铁氧体回转窑到直径6米以上的大型链篦机-回转窑-环冷机氧化球团回转窑等,几乎所有的回转窑都有结圈的问题。回转窑结圈,严重的影响了回转窑的运转率,给企业带来巨大的经济损失,耗费了大量的人力物力。如河南某企业的活性石灰回转窑,投资数千万元人民币,由于频繁结圈,严重影响正常的生产,导致长期不能达产,甚至长期停产。国内某企业在投资活性石灰窑选型时,由于考虑活性石灰回转窑有结圈问题,居然决定放弃石灰活性度高的回转窑系统,转而选用石灰活性度较低的竖窑系统。又如国内某红钒钠回转窑生产企业准备耗资数百万元建造煤气发生炉生产半水煤气,用来替代现有的煤粉作燃料,以减少结圈。我国是煤炭大国,煤炭资源丰富,以煤为燃料,成本相对较低,我国大多数回转窑采用煤为燃料,然而,以煤粉为燃料的回转窑其结圈的频率大大高于以油和气为燃料的回转窑,因此有效预防和消除回转窑的结圈问题势在必行。 早在上世纪90年代初,河南巩义中佳节能设备有限公司李建坡总工在对回转窑进行自动化控制的同时,就开始致力于回转窑窑圈和厚窑皮的研究和治理,先后在氧化锌回转窑,水泥回转窑,铝酸钙粉回转窑、红钒钠回转窑、二氧化钛回转窑和活性石灰回转窑上实验,经历过多少次的失败和挫折,遭受过不少责难和非议,也最终得到过企业的理解和支持;耗费了大量的财力物力,取得了宝贵的经验教训;我们设计过多种多样的机型,特别是铲头的设计

回转窑结圈的影响因素及解决措施

回转窑结圈的影响因素及解决措施 -----龙仕连我司从11月23日开始窑内断断续续出现少量漏料,并出现了三次大料球,严重影响到窑的正常运转,公司及部门领导高度重视。经分析是窑23米处结后圈导致窑尾漏料和结料球。于25日开始处理后圈:1、窑减产到350 t/h煅烧;2、窑头煤管每个班移动两次,-200~+100冷热交替处理;3、每班清理煤管头部积料结焦4次,以保证头煤燃烧好,火焰集中;4、控制煤粉细度及水分,以保证煤粉燃烧效果(煤磨出磨温度控制在63~65度,入磨温度<300度。内部控制煤粉细度<6.0);5、适当提高熟料KH。通过3天的处理,23料处后圈薄了很多,并有缺口,于28日窑恢复了365 t/h正常生产。出现这样的工艺事故,我们必须深度反思。特别是工艺管理人员和窑操作员一定要密切关注窑皮的变化趋势及原燃材料的变化,及时调整窑参数,保证窑正常运转。下面让我们再次学习一下窑内结圈的成因、危害及解决措施:结圈是指回转窑在正常生产中,由于原燃材料的变化,或者操作和热工制度的影响,窑内因物料过度粘结,在特定的区域形成一道阻碍物料运动的环形、坚硬的圈。这种现象在回转窑内是一种不正常的窑况,它破坏了正常的热工制度,影响窑内通风,造成窑内来料波动很大,直接影响到回转窑的产量、质量、消耗和长期安全运转。而且处理窑内结圈费时费力,严重时需停窑停产,危害极其严重。 结圈的成因及危害: 结圈的形成: 结圈实际上是在烧成带末端与放热反应带交界处形成的窑皮,是回转窑内危害最大的结圈。在熟料煅烧过程中,当物料温度达到1280℃时,其液相黏度较大,最容易形成结圈,而且冷却后比较坚固,不易除掉。在正常的煅烧情况下,后结圈体的内径部分往往被烧熔而掉落,保持正常的圈体内径。如果在1 250~l 280℃温度范围内出现的液相量偏多,往往会形成妨碍生产的后结圈。后结圈一般结在烧成带的边界或更远,开始是烧成带后边的窑皮逐渐增长、增厚,发展到一定程度即形成后结圈。结圈严重时的窑皮长度是正常窑皮的数倍。 结圈的成因: (1)入窑生料成分波动大,喂料量不稳定。 (2)原燃材料中有害成分的影响。 (3)煤的影响: 煤粉的制备质量差,水分大,细度粗,煤粉容易产生不完全燃烧,导致结圈。

中国预分解窑

中国预分解窑(旋窑)的发展与机立窑的淘汰 一、世界水泥行业概况 水泥生产是物理化学过程,最重要的化学反应是在水泥窑中完成的。 水泥从1824年投入工业生产以来,水泥窑的发展经历了立窑、干法中空窑、湿法窑、悬浮预热器窑、预分解窑五个阶段。我国所说的新型干法窑是对悬浮预热器窑和预分解窑的总称。 二、中国水泥工业概况 中国的第一袋水泥是1892年由唐山启新洋灰公司生产出来的,中国是 亚洲最早生产水泥的国家之一。 新中国成立以后,水泥工业的发展可分为两个历史时期。第一个历史时期是1949~1995年,这是个高速发展时期,45年间年均增长速度达17.5%,创世界水泥发展速度之最。在这个时期内,按投资性质分类,大致又可分三个阶段: 1950~1979年为第一阶段,主要特点是依靠中央投资为主,以引进东欧设备为主,以行政区域布局为主,以发展湿法回转窑为主,建设了一批中型水泥厂,成为我国国有水泥企业的主体。1979年末全国旋窑水泥的产量占60%。 1980~1992年为第二个阶段,主要特点是国民经济快速发展,乡镇企业异军突起,水泥供求矛盾十分突出,各行各业、各级政府、民间集资办水泥厂的积极性空前高涨,立窑得以爆炸性的发展,中央投资只是围绕确保国家重点工程所需水泥的目的,建设了几个大中型水泥厂。 1993~1995年为第三个阶段,即从小平南巡讲话到亚洲金融风暴,是外商来华直接投资建设水泥厂的最活跃时期。在这期间由中央批准建设的大中型水泥项目中,90%以上是“三资”企业。

1995年末,全国有水泥企业8435个,水泥窑9093座,其中立窑占89 %,预分解窑只有86座,仅占1%;水泥生产能力5.93亿吨,产量4.76 亿吨,立窑水泥占81%,500号及以上水泥仅占9%。 1996年,中国水泥工业进入了第二个历史时期,即结构调整时期,或稳定发展时期。6年来,年均增长速度5.6%;累计淘汰小水泥窑4894 座,淘汰生产能力9450万吨,新增预分解窑生产线84条,熟料生产总能力已经达到7790万吨,全行业规模以上水泥企业4507家,总生产能力7. 18亿吨,产量6.4亿吨。 中国是水泥生产大国,也是消费大国,但是并没有获得相应的国际地位和应有的市场份额,突出问题表现在以下几个方面: 一是生产集中度太低2000年世界水泥产量16.5亿吨(含中国2亿吨),1470家水泥厂(含中国1 50家),150家粉磨站,其中前5名企业Lafarge、Holcim、Cemex、Heidelberg、It alcementi的产能占世界产能的37%。 日本水泥年产量8330万吨,只有19家企业,太平洋公司就占40%左右。印度水泥年产量10400万吨,前五家企业的产量占总量的47.6%。泰国水泥年产量4780万吨,只有6家企业,平均规模是800万吨。韩国水泥年产量5990万吨,只有10家企业,“东洋”与“双龙”两家企业的生产能力占总量的48%。台湾岛内水泥年生产能力已经达到2300万吨,而消费市场的容量只有1800万吨左右,目前尚有两条7000t/d生产线正在建设,年内投产。中国水泥行业前10名企业的年产能只占全行业的6%,占预分解窑产能的50%。由此可见,我国水泥行业的集中度不要说与发达国家比,就是与世界平均水平比,与周边国家比,均存在较大的差距。二是低标号水泥比重过大2001年我国按新标准42.5号及以上和特种水泥的产量只占总量的15%,其中还有20%出口了,这不仅反映了我国建筑材

回转窑窑后结圈原因分析及处理方法

回转窑窑后结圈原因分析及处理方法 巩义市恒昌冶金建材设备厂生产的1000t/d熟料生产线是由天津水泥工业设计研究院有限公司设计的,主要包括TDF型分解炉、单系列五级旋风预热器、Φ3.2m×50m回转窑及TC-836篦式冷却机。自2007年2月以来,窑后频繁发生结圈、结球的工艺事故,巩义市恒昌冶金建材设备厂技术人员现将原因分析及解决措施介绍如下,供同仁参考。 1、结圈情况 2007年3月19日最为严重,窑前返火,窑尾有漏料现象,无法操作煅烧,迫使停窑处理。从窑内看,主窑皮长达22m,副窑皮长到窑尾,35~37m处形成后结圈,结圈最小孔洞呈不规则状,直径约l.5m,进窑观察该圈明显分为两层,且层次明确、清晰,第一层厚约150mm,呈黄白色,第二层厚约460mm,呈黑色,圈体非常致密。对圈体取样分析见表1。 表1 圈体取样分析结果 从表l可以看出,第一层硫碱含量较高,是硫碱圈,第二层明显是煤粉圈,熟料液相出现过早、过多导致结圈。 2、原因分析 (1)由于2006年煤价不断上涨,加之公路运输距离远,为了降低成本,采用当地劣质煤煅烧,煤质下降,灰分高,挥发分低,发热值低,煤工业分析如表2、3。实际生产中,煤可燃性差,煤粉燃烧不完全,大量煤灰不均掺入生料中,液相在窑后面提前出现,而未燃尽的煤灰产生沉积及液相的提前出现结圈。 (2)2007年以来,由于机械原因,高温风机l号轴与密封圈强烈摩擦,产生局部高温,使轴侧曲,水平振动最高达6.4mm/s。为了降低振动,不得不降低高温风机转速,由原来的1130r/min降至l060r/min,有时更低,严重影响了窑内通风,加上煤质又差,更多的窑头燃烧不完全的煤粉沉积在窑后燃烧,使窑内后部温度升高,液相量增加,加速了窑后结圈的形成。

1200td预分解窑操作用风控制的体会

1200t/d 预分解窑操作用风控制的体会 2008-11-6 作者: 向安斌,青松建化集团 我厂1200t/d 熟料新型干 法水泥生产线,生料采用石 灰石、砂岩、粉煤灰、河泥、 风积沙和硫酸渣六组分进 行工艺配料,熟料烧成系统 采用成都院带CDC 分解炉 的单列五级低压损预热器 窑、回转窑规格为Φ3.3m ×52m ,设计熟料生产能力为1200t/d ,熟料冷却系统采用LBTF1400型第三代控制流篦冷机。现结合生产实际,对RF5/1200预分解系统、LBTF1400篦冷机和Φ3.3m ×52m 窑在生产过程中的操作用风控制的体会介绍如下: 1 主要工艺设备配置 主要工艺设备配置见下表1。 表1 主要工艺设备配置 序号设 备 名 称 及 主 要 技 术 参 数 单位 数量 1 中卸式生料磨机 型号: Ф3.5m×10m 台产:90t/h 功率:1250Kw 台 1 2 生料磨系统风机 型号:M6-29No.26.5F 处理风量:150000m3 /h 全压:8000Pa 功率:450Kw 台 1 3 回转窑 台 1

2 预分解窑系统总风量的操作控制和要求 2.1 系统总风量的操作控制主要依据窑炉耗煤量的大小和熟料产量的高低 系统总风量的操作控制主要依据窑炉耗煤量的大小和预分解窑熟料产量的高低。在实际生产中,注意以下要点:

1)在投料初期或熟料产量低于设计能力阶段,为保证预热器各点风速高于最低允许值,用风控制要求适当加大空气过剩系数,提高气固比(1.8Nm3/Kg生料以上),此时不要过分追求风、煤、料的配合比例关系。 2)投料前将C1级筒出口负压拉到3300~3500Pa,即采取大风量投料操作的用风控制方法,初始投料量为95t/h,在投料正常之后不需要对用风进行过多的调整、便可以满足用风要求。 3)在熟料产量达到或超过设计值时,由于上升烟道缩口(有效内径Φ1140mm)、三次风管内径(有效内径Φ1300mm)在设计时均以固定,预分解窑系统用风控制,主要以头尾煤完全燃烧所需要空气量为标准,这时候过剩空气量不要太大。 2.2 系统总风量的操作控制主要采取以下方法 1)提高头尾两煤的燃尽率,尽可能降低C1级筒出口废气温度。2)根据各级旋风筒进出口的温度、负压值以及锥体的温度、负压值,并结合窑尾高温风机进口温度来综合分析和判断风量是否匹配,以此来调节系统总风量和窑头篦冷机的用风量。 3)通过高温风机的电流值,计算拉风量,再计算出单位熟料产生的废气量,由此判断用风操作的合理性。 3 窑头操作用风及一次风量的控制 窑头操作用风控制的好与否在很大程度上影响到窑系统能否长期稳定安全运转,为了灵活调节窑内火焰的形状、强度、长度及规整性,适当减少窑头一次风的用量,应重点控制好一次风量、

结圈形成的原因、预防措施和处理方法

结圈形成的原因、预防措施和处理方法 1.结圈形成的原因 当窑内物料温度达到1200℃左右时就出现液相,随着温度的升高,液相粘度变小,液相量增加。暴露在热气流中的窑衬温度始终高于窑内物料温度。当它被料层覆盖时,温度突然下降,加之窑简体表面散热损失,液相在窑衬上凝固下来,形成新的窑皮。窑继续运转,窑皮又暴露在高温的热气流中被烧熔而掉落下来。当它再次被物料覆盖,液相又凝固下来,如此周而复始。假如这个过程达到平衡,窑皮就不会增厚,这属正常状态。如果粘挂上去的多,掉落下来的少,窑皮就增厚。反之则变薄。当窑皮增厚达一定程度就形成结圈。形成结圈的原因主要有如下几点: 1.1入窑生料成分波动大,喂料量不稳定 实际生产过程中,窑操作员最头疼的事是人窑生料成分波动太大和料量不稳定。窑内物料时而难烧时而好烧或时多时少,遇到高KH料时,窑内物料松散,不易烧结,窑头感到“吃火”,熟料fCaO高,或遇到料量多时都迫使操作员加煤提高烧成温度,有时还要降低窑速;遇到低KH料或料量少时,窑操作上不能及时调整,烧成带温度偏高,物料过烧发粘,稍有不慎就形成长厚窑皮,进而产生熟料圈。 1.2 有害成分的影响 分析结圈料可以知道,CaO+A1203+Fe203+Si02含量偏低,而R20和S03含量偏高。生料中的有害成分在熟料煅烧

过程中先后分解、气化和挥发,在温度较低的窑尾凝聚粘附在生料颗粒表面,随生料一起人窑,容易在窑后部结成硫碱圈。在人窑生料中,当MgO和R20都偏高时,R20在MgO引起结圈过程中充当“媒介”作用形成镁碱圈。根据许多水泥厂的操作经验,当熟料中MgO>4.8%时,能使熟料液相量大量增加,液相粘度下降,熟料烧结范围变窄,窑皮增长,浮窑皮增厚。有的水泥厂虽然熟料中MgO<4.0%,但由于R20的助熔作用,使熟料在某一特定温度或在窑某一特定位置液相量陡然大量增加,粘度大幅度降低,迅速在该温度区域或窑某一位置粘结,形成熟料圈。 1.3 煤粉质量的影响 灰分高、细度粗、水分大的煤粉着火温度高,燃烧速度慢,黑火头长,容易产生不完全燃烧,煤灰沉落也相对比较集中,就容易结熟料圈。取样分析结圈料未燃尽煤粉较多就是例证。另外,喂煤量的不稳定,使窑内温度忽高忽低,也容易产生结圈。 1.4 一次风量和二次风温度的影响 三风道或四风道燃烧器内流风偏大,二次风温度又偏高,则煤粉一出喷嘴就着火,燃烧温度高、火焰集中,烧成带短,而且位置前移,容易产生窑口圈,也称前结圈。 2. 前结圈 在正常煅烧条件下,物料温度达1350—1450℃时,液相量约为24%,粘度比较大。当熟料离开烧成带时,温度仍在1300℃以上,在烧成带和冷却带的交界处,熟料和窑皮有较

陶粒砂煅烧回转窑前后结圈不同处理办法

陶粒砂煅烧回转窑前后结圈不同处理办法 随着科学技术的不断发展,回转窑作为建材设备,它促进了国内工业发展进程,陶粒砂回转窑是一个生产高品质陶瓷砂的关键设备,在生产中作用大。河南豫晖是专业制造环保陶粒砂回转窑机械设备厂家,我公司生产设备质量高价格低,品质保证。 目前我国陶粒砂回转窑煅烧超细高岭土工艺技术成熟、先进,这种煅烧技术能耗低、产量高,产品经脱水、脱碳增白,性能稳定,可用于造纸及涂料等工业领域。

在陶粒砂回转窑烧结过程中结圈是经常发生的,在结圈前如果预防的得当会减少陶粒砂回转窑结圈的故障;在陶粒砂回转窑结圈后的处理方法也一定要得当,要不然会造成巨大损失的,下面我们就来看看豫晖小编总结的回转窑前结圈和后结圈的不同处理办法。 结圈分为前结圈和后结圈两种,一般都是在窑速较慢的情况下才能形成的。 (1)前结圈的处理。当前结圈不高时,对锻烧操作影响不大,但会增加烧成的料层厚度,延长物料在烧成带的停留时间;当前结圈比较高时,会对窑况或热工制度产生较大影响,引起窑内通风变差,窑头时有正压现象,火焰伸不进去且火焰的形状不好;大块熟料也不易滚出,容易砸坏窑皮,等等。处理时,只要将喷煤管拉出,使高温集中在结圈的位置,就可以逐步将前结圈烧掉。

(2)后结圈的处理。后结圈主要在烧成带与过渡带之间形成,它会影响整个系统的通风、产量及质量,处理时通常要采用冷热交替法。其中:当后结圈结得长而不高时,只要将喷煤管向外拉出,调整火焰形状,使火焰粗而短,就可降低结圈处的温度,使之逐渐垮落(此法称为冷烧法);若圈已经长高并严重影响了窑内的通风时,要先减喂料量(为正常喂料量的80%左右),并采用冷热交替法各烧2h左右,直到把圈烧垮为止。后者,往往圈后会积有很多生料粉,当圈垮落后,会迅速涌向烧成带,这时应将喷煤管及时拉出,减慢窑速(通常称为预打小慢车),适当关小排风,让火力强度集中在烧成带,以尽量避免跑生料或久烧料出现。 (3)用陶粒砂回转窑窑内结圈快速处理机。结圈快速处理机。第一,停机、止料、停止整个操作系统。第二,快速移动陶粒砂回转窑窑内结圈处理机到窑头处,钎杆伸入窑内,击打窑圈内部,利用陶粒砂回转窑的慢转动。寻找下一个窑圈的击打部位,

回转窑结圈的原因及处理方法

回转窑结圈的原因及处理方法 1、结圈的危害 回转窑“结圈”的部位一般在距窑口一定距离的固体燃料集中燃烧点附近的耐火窑衬上,厚度可达200-500 mm左右。“结圈”对球团生产的危害有以下几方面: (1)降低产量,增加劳动强度 窑圈一经形成,对燃料烧烧所产生的热气流势必起阻碍作用,如图-1所示。热气流被部分阻挡在A区,影响了球团的焙烧效果。同时,由于链篦机上生球的干燥、预热过程是利用窑尾废气进行的,故此,结圈也对生球的干燥、预热产生不良影响。具体地说,就是透气性差,火焰不进,后部温度低,干燥时水分不易脱除,生球爆裂、粉化严重,成品率低,从而降低了劳动生产率。 另外,圈结形成后,如不及时处理,就会使圈的纵向长度、厚度增加,当圈掉下时,必然增加工人的劳动强度,有时甚至需停机处理,也影响了球团矿的产量。 (2) 增加了设备负荷 如图-1所示,一定面积及厚度的结圈使物料流被阻于B区,此时,被阻的料量要高出正常时许多,加之圈本身的重量,必然增加了托轮、轴承的磨损,同时,增加了电机的负荷,甚至烧毁。 (3) 浪费能源 在实际看火操作中,当出现“结圈”现象后,由于热气流被阻于A区,为保证链篦机的干燥和预热效果,看火工往往采用加大给煤

量的方式,这无疑造成了能源浪费。 2、结圈的原因 结圈的原因,在生产中主要可以归纳为操作不当。具体地说,是由于上料量过大,干燥效果差,生球爆裂,粉化严重,致使透气性差,使得引风机抽动火焰的作用不明显,火焰只在窑内一定距离燃烧。在大于1 200℃的高温下,未完全氧化的Fe3O4就与磁铁矿中一定数量的SiO2发生反应形成液相。 2Fe3O4+3SiO2+2CO=3Fe2SiO4+2CO2 2FeO+SiO2=Fe2SiO4 另外,当给煤量较大时,在1 150℃条件下,Fe2O3也会部分分解为Fe3O4,与SiO2作用而生成2FeO·SiO2,形成渣相粘结。这就使得物料在流经焙烧带时,所产生的液相、渣相极易粘附在窑衬的表面,同时粘结物料而产生结圈现象。 3、处理方法 为减少或杜绝结圈现象,在生产中首先是要采取措施防止结圈,即采用正确的操作方法,稳定上料量,使料层厚度适宜,以保证干燥、预热效果,减少生球的爆裂和粉化,同时,控制喂煤量,不宜过大,使温度保持在较低范围内,避免出现渣相。 在出现结圈后,一定要及时处理,否则将出现窑壁加宽加厚的不良后果,这样就增加了处理难度,甚至影响生产正常进行。 去圈的方法有以下三种: (1) 在窑内安设移动的合金刮刀;

新型干法预分解窑生产中重点监控的主要工艺参数

预分解窑生产中重点监控的主要工艺参数 一、烧成带物料温度二、氧化氮(No x)浓度三、窑转动力矩四、窑尾气体温度 五、分解炉或最低一级旋风筒出口气体温度六、最上一级旋风筒出口气体温度七、窑尾、分解炉出口或预热器出口气体成分八、最上一级及最低一级旋风筒出口负压九、最下一、二旋风筒锥体下部负压十、预热器主排风机出口管道负压十一、电收尘器入口气体温度十二、窑速及生料喂料量十三、窑头负压十四、篦冷机一室下压力 预分解窑工艺控制的自动调节回路 1、窑头负压∽篦冷机余风排风机风门开度; 2、篦冷机一室下压力∽篦床速度 3、分解炉加煤量∽最下一级旋风筒(或分解炉)出口温度 4、增湿xxxx压力∽增湿xx出口阀门开度 5、增湿塔出口气温∽增湿塔水泵回水阀门开度 6、窑尾主排风机风门开度∽最上一级旋风筒出口气体O 2含量及压力; 7、电收尘器进口风压∽电收尘器出口风机风门开度; 8、喂料称测重负荷传感器∽喂料仓自动调节计量阀门开度 9、生料计量标准仓重量∽均化库出口阀门开度 10、其他可根据需要设置; 预分解窑系统的调节控制原则

从悬浮预热器窑到预分解窑生产的客观规律可以看出,均衡稳定运转是悬浮预热器窑及预分解窑生产状态良好的重要标志。运转不能均衡稳定,调节控制变化频繁,甚至出现恶性“周期循环”,则是窑系统生产效率低、工艺和操作混乱的明显迹象。因此,调节控制的目的就在于使窑系统保持最佳的热工制度,实现持续均衡稳定地运转。 对水泥窑的调节控制,概括地说,往往有两种不同的方法。 第一种,将烧成带温度作为调节控制的主要依据。通过风、煤(或其他燃料)料以及窑速等调节,来达到保证烧成温度正常的目的。这是一种不完备的调节方法。其缺点在于调节控制只注意烧成带温度,而忽视了预烧带的状况,忽视了全窑系统的热力平衡分布,容易导致恶性“周期循环”。第二种,对全窑系统“前后兼顾”,从热力平衡分布规律出发,综合平衡,力求稳定各项技术参数,做到均衡稳定地运转。例如,当烧成带温度降低,需要增加燃料喂入量时,同时要考虑燃料能否完全燃烧,以及对窑系统各部位热力平衡影响等。 在现代化水泥企业中,窑7系统一般是在中央控制室集中控制、自动调节,并且同生料磨系统联合操作。窑系统各部位装有各种测量、指示、记录、自控仪器仪表,自动调节回路,有的则是用电子计算机监控。指示和可调的工艺参数有几十项,从各个工艺参数的个别角度观察,这个工艺参数是独立存在的,各有作用,但是从窑系统整体观察,各个参数又是按热工制度要求,按比例平衡分布,互相联系,互为因果。因此,实际生产中,只要根据工艺规律要求,抓住关键,监控若干主要参数,便可控制生产,满足要求。就是采用计算机对窑系统自动控制,其输入的应用程序设计,也是按此指导思想进行。 控制方式及内容 一、控制方式 全厂采用计算机集散控制系统,即分散控制集中管理,该控制方式是集集中控制与分散控制的各自优点,即系统功能分散设备分散,又有具有高度的灵活性、易扩性,并可实现全厂计算机管理。 二、控制内容

相关主题
文本预览
相关文档 最新文档