当前位置:文档之家› 回转窑结圈问题

回转窑结圈问题

回转窑结圈问题
回转窑结圈问题

?01,10,20,24,30,33 | 11

?04,16,20,22,24,27 | 15

?04,05,08,12,15,29 | 07

?04,18,20,30,31,33 | 10

?02,11,14,18,20,25 | 14

立即投注

第三代篦冷机应用现状及注意的问题

2011-2-28 作者:

一、国产第三代篦冷机的结构特点

高温区采用固定和活动充气梁技术进行热回收,中温区采用高阻尼低漏料篦板,低温区采用富勒改进型篦板,同时篦冷机实施厚料层操作,篦冷机结构上主要是充气梁安装高阻尼充气式篦板,固定式充气梁的供风由固定式分配风管实现篦板供风,活动式充气梁的供风由活套式分配风管或者关节式活动风管或者式金属绕性软连接风管实现篦板供风。高阻尼低漏料篦板和富勒改进型篦板的供风由篦冷机空气室供风来实现。

篦床的结构确定为复式水平推动布置,通常高温区5-10排固定篦板为15度角布置,一段为3度角布置,后段均为水平布置,破碎机根据实际情况选择使用锤式破碎机或者辊式破碎机,目前中国国产第三代控制流充气梁篦冷机普遍采用吹式破碎机,国外公司大多选择辊式破碎机。

整个篦冷机根据单机产量负荷情况进行分段,通常分为1-3段,日产700-1000吨熟料生产线的篦冷机仅仅设计为固定篦板和一段篦床,日产2000-3500吨熟料生产线的篦冷机设计为固定篦板和两段篦床,日产3500-10000吨熟料生产线的篦冷机设计为固定篦板和三段篦床,使用效果很好。第二代篦冷机单位篦床面积产量仅为30~40t/m2.d,而第三代篦冷机乃至第四代篦冷机单位篦床面积产量已达到40~50t/m2.d以上。第三代空气梁式篦冷机的广泛应用,使出窑熟料得到急速淬冷,冷却机热回收效率已达73%以上。比如安徽海螺集团2500吨及5000吨生产线上广泛使用TC1164、NC-III型LBT32216、TC12102、NC-III型LBT36356、NC-III型LBT36352、NC39325篦冷机,8000吨生产线使用伯利鸠斯公司的RS 4821/III型篦冷机,10000吨生产线采用英国CP公司的HE10 -1845R/1845R/1845R篦冷机,这些均代表水泥行业中第三代篦冷机的先进型号,同时也是使用在广泛的机型,比如天津水泥研究设计院设计的TC1164、TC12102在海螺集团内生产线上使用很广泛,而且技术成熟,使用效果好。

二、第三代篦冷机与第二代篦冷机的区别

1、料层厚度增加。由于采用充气梁技术、高阻尼技术和高压风机,熟料冷却风的穿透能力上升,熟料在篦床上采取厚料层操作。

2、高温区风机的风压上升。由于采用高阻尼篦板和充气梁技术,供风风机的风压上升,

一般在8000-12000Pa左右,在实际工作时,高压风呈水平方向穿射出篦板并冷却高温熟料。

3、总风量得到了下降。第三代篦冷机采用高阻尼篦板,篦板阻力远远大于二代篦冷机篦板,空气穿过篦板缝隙产生速度达到40m/s,通过实验可知,当速度达到一定时,篦床上物料的压力再增加,风速不会发生明显变化,这就告诉我们穿过高阻力篦板的冷风,继续穿过料层时,风速变化很小,结果为通过篦床上的冷风速度均匀,冷却速度均匀。所以不需要太多的风量。由于采用新型篦板,冷却空气得到了准确的利用,大量使用高压风机,总的风量得到了下降。

4、二次风温明显提高,篦冷机的热效率上升。二次风温由二代篦冷机普遍的600-900℃上升为1000-1200℃左右,促进了煤粉的燃烧,提高窑系统产量。

5、漏料量减少。在设计时,篦板的外形尺寸十分精确,同时篦板的漏料本身减少,结构缝得到了改进处理,总体篦床的漏料量大大减少。

6、单位电耗下降。减少了漏风和漏料的处理,同时冷却风量下降了,在产量不变的情况下,单位电耗必然下降。

三、第三代篦冷机的操作注意事项

篦式冷却机的操作目标是要提高其冷却效率,降低出冷却机的熟料温度,提高热回收效率和延长篦板的使用寿命。操作时,可通过调整篦床运行速度,保持篦板上料层厚度,合理调整篦式冷却机的高压、中压风机的风量,以得利于提高二、三次风温度。当床上料层较厚时,应加快床运行速度,开大高压风机的风门,使进入冷却机的高温熟料始终处于松动状态。并适当关小中压风机的风门,以减少冷却机的废气量;当析上料层较薄时,较低的风压就能克服料层阻力而吹透熟料层形成短路现象,熟料冷却效果差,为避免供风短路,这时可适当减慢床运行速度,关小高压风机风门,适当开大中压风机风门,以利于提高冷却效率

在第三代篦冷机的操作中关键是防止雪人的产生,产生雪人的主要原因很多主要是:配料不合理;烧流或跑生料;蓖床结构限制;风压不足;空气炮动作不良,压缩气不足或无润滑;冷却机中心线与窑中心线偏离不合理;蓖板堵塞;操作不当;风门开度不足或不合理;煤质差,熟料粘度大。

处理措施:合理配料;稳定操作;蓖床结构改进;操作上注意风压的变化;强化篦冷机空气炮的维护,确保工作状况良好,压缩气气压和注油雾化润滑;冷却机中心线与窑中心线偏离不合理要通过长时间验证后,确定科学的调整方案后在大修中实施;蓖板堵塞更换或者清理篦缝;风门开度要根据物料烧结状况进行调整;煤质差要与物料配料搭配结合,熟料粘度大时及时调整煅烧和物料配料。

操作中时刻注意窑内煅烧情况的变化,杜绝粉料和大块料的产生,

在投料初期窑内煤灰的影响,易烧流,防止烧流料堵塞篦板的篦缝,要做到经常到窑口和篦冷机一段观察,如有异常立即扭转操作状况。

为了严格控制篦板的使用周期,在实际操作中要坚决严禁关风推料操作和坚决杜绝关风

热料操作,特别是检修时清理篦冷机篦床熟料时一定要做到开风机后再推篦床。为了篦冷机紧急情况下的安全运行保护,一室的风机可以接入保安电源,确保窑在紧停时篦冷机高温区的篦板有冷却风机保护。

四、第三代篦冷机的检修维护注意事项

检修时必须彻底清理篦床上的积料和积灰,认真检查每块篦板和连接螺栓。

注重充气梁的放灰清理工作,确保空气梁的通畅。

注重篦板篦缝的清理工作,确保供风能够高速的射出篦缝,发挥急剧冷却熟料的作用。

注重空气室之间的密封工作和注重篦板结构缝和安装缝的处理,这是确保稳定空气室压力的关键,同时也是减少系统内漏风的主要途径。

在篦冷机耐火材料实施检修的同时必须做好篦板的保护工作,一般采用防雨布将整个篦床覆盖保护即可。防止耐火材料将篦板堵住或者粘结。

五、第三代篦冷机的常见故障处理

1、辊破失速(英国CP公司的HE10 -1845R/1845R/1845R篦冷机),故障现象:篦冷机熟料辊破经常发生电机空转或不转,辊破未动作(没有旋转),孰料无法破碎积压在辊破上造成破碎机上方大量堵塞熟料的故障。原因分析:操作错误;传动电机故障;传动减速机损坏;联接轴涨套打滑;轴断裂;速度开关故障;物料压死或卡死或下料口堵塞卡死;轴变形卡死;破碎程序选择不合理,PLC程序不合理或跳电;报警或紧停未复位。目前根据多次发生辊破失速故障的主要原因集中于物料压死或异物卡跳。处理措施:正确操作,严格按照操作规程操作;传动电机故障停窑修复或者更换;传动减速机损坏停窑更换;联接轴涨套打滑紧固选进螺栓;轴断裂责立即停窑更换;速度开关故障通知电气人员立即更换;物料压死或卡死或下料口堵塞、卡死则进行减速(篦床推速)对下料口进行检查清堵处理;轴变形卡死立即停窑更换;PLC程序不合理或跳电立即恢复正常程序和供电;报警或紧停未复位操作检查后复位

2、冷却机蓖床传动失速(液压传动或者机械链盘传动)故障现象:常见篦冷机临停处理其他故障后,准备开机时发生冷却机篦床压死不动作或者开不了,或者在篦冷机减速操作后发生篦冷机篦床过负荷突然跳停。原因分析:油品不正确,油位过低;操作错误;报警或紧停未复位;液压输送油管及接头漏油严重;液压模块故障;备用泵切换不正确;液压缸平衡阀错误打开;传动感应器错误安装或故障;物料压死;空气室积料满抵住活动篦床大梁;蓖床机械卡死;油泵电机烧或其他报警。但是根据现场实际情况分析,主要原因还是操作不当造成类似事故的发生,在机械传动时主要是因为启动篦床时未确认速度设定,结果高速启动冲断尼龙棒或者联结液偶、传动链条等等,严重时会将篦床传动减速机拉翻。也曾发生过因活动篦床的支撑辊损坏且调整垫片脱落导致活动篦床直接落在固定篦床上,阻力太大无法推动的故障。处理措施:操作严格按照操作规程操作;油泵电机烧则立即切换备用泵进行更换处理。无备用机时必须停窑处理故障;油管漏油严重或堵塞进行处理或者更换油管;各阀门开关不正确严格按照操作要求操作;过滤器堵塞或切换不到位则更换滤芯或者板阀操作规

范;泵回油压力调节器故障或回油过大则更换回油压力调节器或者调整回油量减少;安全溢流阀动作调压或者更换处理;压力低报报警设定过高调整处理;压力表损坏更换处理;系统漏油严重进行堵漏处理;仪表报警故障进行电器专业维修处理;油品正确规范使用确保合理油位;液压模块故障或者液压缸故障则进行更换;回油电磁阀动作则检查工作回路是否正确。同时组织检查机械专业因素和传动感应器的安装,为了防止事态严重,发生篦床失速时必须按照操作规程进行减产操作或者临停处理,在开动篦床前必须将鼓风机开启并将风门开大,减少篦床启动负荷。空气室积料严重抵住大梁情况时必须组织空气室放料操作,并检查积料来源,特别重点检查篦板是否开裂或者脱落,同时也有发生因加脂多导致熟料粉尘和油脂混合物堵住灰斗下料口,如果确实物料压死则立即停窑处理,待温度下降后组织清理篦床压料,注意安全。检修重点检查内外支撑辊和间隙调整垫片是否点焊牢固,并建立完整的篦冷机检修台帐。

3、冷却机空气室灰斗弧型阀跑风严重,故障现象:篦冷机空气室漏风严重,且漏飞砂,空气室压力的不到保障,空气室压力一直偏低。伴随着冷却机冷却效果差,熟料温度高等等问题,同时篦冷机的二次三次风温偏低,篦冷机热效率下降。原因分析:弧型阀未关闭到位漏风严重;阀内阀芯磨损;阀芯关闭不严或密封磨损;灰斗未存料粉形成料封;弧型阀传动故障;灰斗破裂跑风严重;操作错误;报警或紧停未复位。处理措施:弧型阀未关闭进行关闭处理,并调整开和关位置的限位开关状态;阀内阀芯磨损进行补焊或者更换处理;阀芯关闭不严或密封磨损机进行补焊或者更换处理;灰斗未存料粉形成料封,延长关闭时间,形成足够的料封;弧型阀传动故障进行处理或者更换;灰斗破裂跑风严重进行补焊和加固防震裂处理;操作上严格按照操作规程操作。

六、国产第三代篦冷机的进一步改进优化

1、篦床传动十字滑块加设干油注入密封,加强十字滑块的密封和防磨损作用,这样可以减少空气漏风和减少十字滑块的磨损消耗;

2、强化空气室漏料灰斗的料封作用,采用双层料位计控制空气室灰斗料位,这样可以保证空气室的压力,确保向篦板供风的压力

3、空气室分区需要科学合理便于巡检维修施工,建议模块化设计制造,检修门的安装和结构要合理。

4、熟料破由高速锤式破碎机改进成为低速辊式破碎机,这样可以在长时间的确保熟料破碎粒度。同时取消篦冷机尾部的链条、链幕。

5、低温区采用高阻尼低漏料篦板,提高空气室风压和低温区料床厚度,这样确保熟料的冷却效果和降低熟料的最终出口温度。

6、废气取风口风管内衬没有耐磨材料保护,建议采用低温耐磨捣打料实施内衬保护,减少钢风管磨损漏风。

7、设备采取模块式制造安装,减少制造和安装时间,提高设备安装质量

七、高原环境下第三代篦冷机选用注意事项

若在高海拔地区情况就发生变化了,由于高海拔地区气压低,空气体积增大。保持篦冷机规格不变(篦床面积不变),保持气体质量流量不变,这时就需要加大风量,增加空气体积流量,增加的空气量,要根据海拔高度的变化情况适当加大风机的规格即可。

八、结束语

目前国产第三代控制流充气梁篦冷机已在已建、新建水泥熟料生产线上广泛使用,虽然现在已出现了更加先进更加节能的第四代篦冷机,但是由于设备价格和技术要求很高。目前还无法在短期内全面替代第三代篦冷机的广泛使用,同时一味的改用第四代篦冷机也不符合国情和企业实际情况,在目前还必须强化第三代篦冷机的功能作用,为充分发挥控制流充气梁篦冷机的优点,广大水泥工作者和生产厂家还需逐步优化操作,减少篦冷机的漏风及故障提高设备运转率,降低生产成本,达到节能降本的创利途径。

在新型干法窑水泥生产中,熟料的冷却方式基本采用篦式冷却机冷却。在实际生产中,篦冷机前壁与回转窑筒体转向后侧的卸料溜子处,常常会遇到篦板不能及时将热熟料推走,使其堆积越来越高,严重时可堵到窑口,人们通常把这种现象称为“堆雪人”;在篦床上熟料层的细料侧,从进料至出料呈现一条高温灼红熟料带,俗称“红河”。

新型干法水泥窑篦冷机“堆雪人”与“红河”现象分析

一、篦冷机“堆雪人”与“红河”的危害

堆雪人与红河是篦冷机经常出现的不正常现象,严重影响着生产线的正常运转。

雪人的形成,影响系统通风、入窑二次风量、风温,破坏窑及预热器系统的热平衡,使窑内煅烧状况不好,熟料产量、质量下降,严重时会造成窑头正压,窑尾漏料,窑口护铁磨蚀加重。

红河会造成篦板损坏。篦板受热损坏后,部分高温熟料经篦板破损处落入篦床下风斗内,易使篦床下的大梁和风斗的密封板及斗下阀门等部件受热变形,造成冷风漏出机外或在篦下各室之间相互串风,熟料得不到冷却,以致影响到熟料输送、储存、粉磨和水泥性能。二、“堆雪人”的形成原因

由于入窑二次空气量不足,燃料燃烧速度较慢,导致煤粉不完全燃烧,熟料在窑内翻滚过程中表面粘上的细煤粉,一并落入篦冷机后,在熟料表面进行无焰燃烧,释放出热量,随着风冷却的加大红料越是不断,使得本来应该受到骤冷的液相不但不消失,反而可维持相当一段时间;另一方面由于煤灰包裹在熟料表面,导致熟料表面铝率偏高,液相粘度加大,更为重要的是不完全燃烧极易导致还原气氛。在还原气氛下,熟料中的被还原为低熔点的FeO,生成低熔点矿物,粘附在墙壁上。如果这种还原气氛持续的时间过长或篦床操作不当,如停床、慢床致使物料在篦床一室形成堆积状态,使熟料与墙壁有足够的接触时间;再加上盲板的阻风作用,使靠近墙壁的熟料冷却效果差,一部分液相就会在墙壁上粘挂,逐渐形成雪人。

三、“红河”形成的原因

熟料在篦冷机的冷却过程是: 从窑头落下的高温熟料堆积在篦冷机进料口篦床上。随篦板向前推动覆盖在整个篦床上,冷风经篦缝向上透过熟料层,熟料在推动的过程中逐步得到

冷却。而熟料冷却的好坏取决于冷风透过熟料层的阻力。阻力小,透过的冷风量多,则出篦冷机的熟料温度低。阻力大,则出篦冷机熟料温度高。

冷风透过熟料层的透气阻力影响因素较多,其计算公式较为复杂,为说明问题,简化如——阻力损失,Pa;

V ——气体透过篦床的速度,m/s;

g ——重力加速度,;

——阻力系数, 值与熟料结粒大小,料层内缝隙率以及熟料粘度等有关;

——气体容重,。

从公式来看,冷风透过料层的阻力与气流速度、气体容重、阻力系数有关。当冷风透过高温熟料料层时,风料之间热交换因温差较大而作用强烈,此时高温熟料将较多的热量传给冷风,冷风受热后温度升高,体积随之增加,其透过料层的气流速度也相应增加。气体透过料层的阻力随气流速度的平方增加,而气体的容重随温度增加而减小,结果是透气阻力随气流温度增加而呈平方增加。反之当气流透过温度较低的熟料层时,气流温差小,透过的气体温度低则阻力也低,空气易从低阻力区域的熟料层透过,气体透过量愈多,熟料温度愈低。熟料随篦板推动而向前移动。从篦冷机的横断截面来看,愈是在冷端,高透气阻力的料层和低阻力的料层之间的温差也愈大,冷风愈来愈集中在低阻力的熟料层透过,而高阻力的料层很少有气流透过,此部位熟料的冷却效果相当要差一些。

熟料在窑内煅烧时,受离心力的作用,产生离析,大颗粒一般集中在中间,随着颗粒直径变小,细颗粒愈来愈集中在窑筒体一边。当熟料从窑头落至篦床上时,大颗粒集中在一侧,细颗粒集中在另一侧,篦床横截面中部为粗细颗粒的过渡部位。当窑速较快且窑内细颗粒熟料较多时,细颗粒集中在一侧的现象尤为明显。熟料颗粒在篦床纵向随篦板向前推动逐步覆盖整个篦床面,虽然在推动过程中,颗粒层级配有所变化,但纵向变化不大,此时,从篦冷机的进料口至出料口,细颗粒在一侧形成带状、较大颗粒分别形成条带而随颗粒直径增大向另一侧集中。由于细颗粒堆积致密,冷风透过时阻力大,从进料口的高温熟料层开始,冷风较少或不透过细颗粒熟料层,较多地透过阻力低的较大颗粒层。此时细颗粒层因冷风透过量少而得不到冷却,其料层表面呈高温红色,透过冷风的熟料层因冷却其表面呈黑色。随着篦板的推动,在同一横截面上粗、细熟料颗粒层之间的温差愈来愈大,冷风愈来愈集中从较大颗粒的熟料层透过,而细颗粒熟料层得不到冷却, 形成一条从冷却机进料口至出料口的,红熟料带,这就是红河现象出现的原因。

四、“堆雪人”的解决措施

篦冷机堆雪人的原因较多,有时几种原因共存,所以应根据具体情况具体分析,从工程设计开始就引起重视。

正确确定篦冷机与回转窑中轴线的相对位置

篦冷机与回转窑中轴线的相对位置是引起堆雪人的重要原因,设计者应从在理论和实践

中总结经验,提出合理的位置关系。另外,在回转窑的制造、安装和调试过程中应严格把关,尤其是中轴线的相当位置,减少尺寸误差。

改善熟料的颗粒组成,正确控制液相量

新型干法的特点之一是熟料的细颗粒较多,当温度提高时,便容易形成浮动料层,使篦冷机堆雪人的几率增高。料层厚度应始终保持在600mm左右。在同等生料质量的条件下,由于窑速调节不当和三风道喷煤管使用不好,都会使细粒熟料增多;同时熟料中的液相量与温度也密切相关。预分解窑几乎没有冷却带,进入篦冷机的熟料温度一般都高达1300—1450 oC,个别甚至会更高。

熟料在正常煅烧的过程中,当温度略低于1300 oC时便开始生成液相。然后,随温度的继续升高而液相量逐渐增加,但达到某一定温度后,液相量增加的速度缓慢下来。只有温度再剧增,液相量才会进一步增加,正常情况下温度在1300—1400 oC的范围内是液相量剧增区域。适当的液相量有利于高质量熟料的形成,液相的粘度对良好熟料的形成也有重要作用。但温度过高时液相量增加,粘度却降低,难以形成良好的团块,这也是篦冷机产生堆雪人的原因之一,所以,在操作中应特别注意温度的控制,避免堆雪人的现象产生。

提高篦冷机冷却能力

篦冷机是熟料冷却的重要设备,合理设定各室风量和风压,加速熟料冷却,努力提高入窑二次风和入分解炉三次风温度,减少热损失,提高冷却效率,可避免堆雪人和出红料。提高冷却能力的措施有:增加淬冷风量,避免冷风短路,控制合适的高低温度段速比,一般为1:1.2,注意风煤料的变化。当煤灰分大时,熟料中含量高或喷煤嘴磨损严重时均有堆雪人和出红料的危险。

五、“红河”的解决措施

红河的起因较复杂,其解决的方法也是多样化。解决红河的措施是:首先应从原料性能和热工操作上解决,使窑内熟料结粒均匀,从根源上解决料层透风的均匀性,才能较好地解决红河的问题。但各厂生产受种种条件的制约,很难对原料和操作作大的变动,在此情况下对篦冷机可以采取改变通风方式和改变篦板形状来减缓红河状况。

改善窑的操作

为使熟料结粒均齐,应尽量提高入窑物料分解率,改善篦冷机的操作,尽可能提高二次和三次风温,改善喷煤管火焰形状,缩短物料在窑内分解带和过渡带的停留时间,延长在熔融带的停留时间,在最高温度带保持合适的烧成温度,以上操作状况有利于结粒。提高入窑物料分解率的措施是加强窑、预热器、三次风管、废气管道等装备的密闭,减少漏风,改善预热器、分解炉的性能,提高换热效率,增强上述装备的隔热,减少散热损失等。

采用侧吹风技术

侧吹风技术是在篦冷机出现红河料层的侧墙边,设置一排吹风孔,用一台风压较高的风机,在篦上水平向细颗粒层喷吹,此时部分细颗粒被吹动而使料层发生松动,而使料层的透风阻力下降,篦下的冷风因细料层阻力下降而得以透过料层,使熟料得到冷却,红河则减缓。

篦上侧吹风操作时,在高温细颗粒熟料与篦板之间有冷风吹过,形成一层冷风垫层,使篦板不致受高温熟料的过热损坏。同时篦下冷风因料层松动得以透过,使熟料得以冷却,这将延长篦板的使用时间。

采用特殊形状篦面的篦板

在红河料层下部的篦床上,设置篦面较高且形状较为特殊的篦板。当红河料层随篦板向前堆动时,其底部熟料层被特殊篦板的篦面破坏,致使料层料积至密度发生变化,冷风透过料层的阻力降低,相应冷风可透过料层,使熟料得以冷却,红河现象得以减缓。但此类篦板磨损较重。

加强风室(斗)的密封

在生产时加强风室(斗) 下锁风阀门的维护,减少冷风从该部位漏出风室(斗) 外,同时加强风室(斗) 之间隔板的密闭,以防止各风室(斗) 之间的串风,以保持各室(斗)有足够的冷风透过料层。

采用可控气流通风篦板

从1990 年代起,国外出现了可控气流篦板。冷风不从篦下风斗向篦上料层透风,而是通过篦板下的空心梁经篦板本身水平贴篦面喷出,然后透过料层使熟料得以冷却。篦下空气梁透风,结构上可以单排或单块篦板单独通风,解决了风斗供风时通风面积过大,冷风集中于低阻力料层透过而高阻力熟料层冷风透过量少而得不到冷却,致使篦板受高温熟料的过热损坏的问题。采用可控气流通风篦板后,可以采用较高的风压和风量来透过红河料层,相应消除和减缓红河现象。可控气流通风篦板篦冷机的优点是通风均匀、鼓风量小、出篦冷机的熟料温度低、热效率高、供燃烧用的二次和三次空气温度高、篦板损坏量少、设备事故率低、废气量少、收尘设备小。其冷风量可降至熟料以下,单位有效冷却面积熟料量提高至以上,篦冷机热效率可提高至75 %以上。

中国水泥技术网版权与免责声明:

①凡本网注明“来源:中国水泥技术网”的所有文字、图片和音视频稿件,版权均为“中国水泥技术网”独家所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本网协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国水泥技术网”,违者本网将依法追究责任。

②本网转载并注明其他来源的稿件,是本着为读者传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如对稿件内容有疑议,请及时与我们联系。

③如本网转载稿涉及版权等问题,请作者在两周内尽快来电或来函联系。

回转窑结圈的原因

13 结圈形成的原因、预防措施和处理方法 13.1 结圈形成的原因当窑内物料温度达到1 200℃左右时就出现液相,随着温度的升高,液相粘度变小,液相量增加。暴露在热气流中的窑衬温度始终高于窑内物料温度。当它被料层覆盖时,温度突然下降,加之窑简体表面散热损失,液相在窑衬上凝固下来,形成新的窑皮。窑继续运转,窑皮又暴露在高温的热气流中被烧熔而掉落下来。当它再次被物料覆盖,液相又凝固下来,如此周而复始。假如这个过程达到平衡,窑皮就不会增厚,这属正常状态。如果粘挂上去的多,掉落下来的少,窑皮就增厚。反之则变薄。当窑皮增厚达一定程度就形成结圈。形成结圈的原因主要有如下几点: 13.1.1 入窑生料成分波动大,喂料量不稳定实际生产过程中,窑操作员最头疼的事是人窑生料成分波动太大和料量不稳定。窑内物料时而难烧时而好烧或时多时少,遇到高KH料时,窑内物料松散,不易烧结,窑头感到“吃火”,熟料fCaO高,或遇到料量多时都迫使操作员加煤提高烧成温度,有时还要降低窑速;遇到低KH料或料量少时,窑操作上不能及时调整,烧成带温度偏高,物料过烧发粘,稍有不慎就形成长厚窑皮,进而产生熟料圈。 13.1.2 有害成分的影响分析结圈料可以知道,CaO+A1203+Fe203+Si02含量偏低,而R20和S03含量偏高。生料中的有害成分在熟料煅烧过程中先后分解、气化和挥发,在温度较低的窑尾凝聚粘附在生料颗粒表面,随生料一起人窑,容易在窑后部结成硫碱圈。在人窑生料中,当MgO和R20都偏高时,R20在MgO引起结圈过程中充当“媒介”作用形成镁碱圈。根据许多水泥厂的操作经验,当熟料中MgO>4.8%时,能使熟料液相量大量增加,液相粘度下降,熟料烧结范围变窄,窑皮增长,浮窑皮增厚。有的水泥厂虽然熟料中MgO<4.0%,但由于R20的助熔作用,使熟料在某一特定温度或在窑某一特定位置液相量陡然大量增加,粘度大幅度降低,迅速在该温度区域或窑某一位置粘结,形成熟料圈。 13.1.3 煤粉质量的影响灰分高、细度粗、水分大的煤粉着火温度高,燃烧速度慢,黑火头长,容易产生不完全燃烧,煤灰沉落也相对比较集中,就容易结熟料圈。取样分析结圈料未燃尽煤粉较多就是例证。另外,喂煤量的不稳定,使窑内温度忽高忽低,也容易产生结圈。 13.1.4 一次风量和二次风温度的影响三风道或四风道燃烧器内流风偏大,二次风温度又偏高,则煤粉一出喷嘴就着火,燃烧温度高、火焰集中,烧成带短,而且位置前移,容易产生窑口圈,也称前结圈。 13.2 前结圈 在正常煅烧条件下,物料温度达1350—1450 ℃时,液相量约为24%,粘度比较大。当熟料离开烧成带时,温度仍在1300℃以上,在烧成带和冷却带的交界处,熟料和窑皮有较大的温差。带有液相的高温熟料覆盖在温度相对较低的窑口窑皮上就会粘结形成前结圈。对于预分解窑来说,前结圈是不可避免的,只是高一点和矮一点的问题,尤其当窑操作员控制二次风温度过高、燃烧器内流风偏大和采用短焰急烧时,烧成带高温区更为集中,液相更多,粘度更小,熟料进入冷却带时,仍有大量液相在交界处迅速冷却。温差越大粘结越严重,前圈长得更快。另外,短焰急烧,熟料晶相生长发育差,易烧出大块熟料。但熟料中细粉比例也增加,冷却机返回窑的粉尘量大,这样更促进前圈的增长。 13.3 熟料圈它结的位置是在烧成带与过渡带之间,是窑操作员最头疼,对窑危害最大的结圈。在熟料煅烧过程中,当窑内物料温度达到1280℃时,其液相粘度较大,最容易形成熟料圈。这时如果生料KH、n值较低,操作时窑内拉风又太大,火焰太长,烧成带后边浮窑皮逐渐增长、长厚,发展到一定程度就形成熟料圈。 13.4 熟料圈形成以后的现象 1)火焰短而粗,火焰前部白亮但发浑,窑内气流不畅,火焰受阻伸不进窑内。窑前温度升高,窑简体表面温度也升高。

回转窑清圈机百度知道

回转窑刮圈机 回转窑刮圈机(又名剃圈机、打圈机、清圈机、铲圈机)是用机械自动化的方法清理回转窑窑皮过厚的回转窑辅助设备,在不停窑的情况下发现结圈过厚时及时启动设备刮掉有害结圈,一般在二小时内能快速平整窑皮到合理厚度,采用该设备将彻底告别人工停窑打圈的历史。该技术是世界范围内唯一拥有自主知识产权的清除回转窑窑圈的机械类产品,国家知识产权局官方网站查询信息如下:发明专利号200410037079.1,专利名称是"清除回转窑窑圈方法及装置",商业名称是"回转窑快速刮圈机"。回转窑刮圈机解决了一个世界性难题,受到全世界的广泛关注,被国际业界所肯定,目前已经实现出口,成为澳大利亚莱纳斯公司稀土项目中最核心的技术装备之一。该知识产权已由中国最大的律师事务所-北京盈科律师事务所代理。 一、技术背景:由海田禾发明并研制的回转窑智能化快速刮圈机是针对回转窑普遍存在的回转窑窑皮不均匀、厚窑皮、长窑皮、结圈、结瘤、结蛋等痼疾导致回转窑红窑、料层不均匀、回转窑系统阻力增大、回转窑内有效截面积缩小,严重影响回转窑产能和运转率而设计的一种机电一体化并具有智能化的中型机械,该机由刮刀、机械臂、行走系统、冷却系统和自动化控制系统组成,一般规格长十至二十五米,宽一点五至二点二米,高一点八至三点五米。实际大小尺寸应当根据用户现场要求设计和配置。 二、回转窑快速刮圈机的用途:回转窑智能化快速刮圈机用于清除回转窑窑头和窑尾的结圈,包括前结圈、后结圈和窑口圈,平整回转窑的窑皮,扩大回转窑的有效截面积,提高回转窑产能和运转率。能有效的阻止和预防结圈。通过机械臂和刮刀在高温气体下对厚窑皮和回转窑窑圈底层的切削,实现不停窑快速、彻底清除回转窑厚窑皮和回转窑内结圈,使动态平衡中的回转窑窑皮表面均匀、平整、粗糙,物料翻滚移动顺畅平缓,料层均匀稳定。众所周知,回转窑轴瓦发热均来自回转窑窑皮和回转窑窑圈的不均匀,当结圈形成后,在窑内形成一道"门槛",阻碍了物料的前进和气体的流通,造成系统负荷超载;尤其是轮带处筒体的180°径向不均匀的回转窑窑皮对窑圈更具有危害性;回转窑窑皮不均匀易引发回转窑红窑和补挂窑皮困难。 使用回转窑快速刮圈机,可有效遏制回转窑红窑,保护轴瓦、电机和筒体,减少减速机、齿轮和齿圈的磨损,大幅度延长回转窑窑衬的使用寿命。使用中不改变回转窑的工艺参数,有了回转窑刮圈机,回转窑结圈后无需冷烧热烧、停窑或减料冲料,能够有效提高回转窑的运转率,提高物料的焙烧质量和产量,减少设备空转率和非正常排污,使用中没有窑衬、窑皮被烧毁或烧损的风险,使用时不耗费材料。回转窑快速刮圈机适合于新型干法水泥回转窑、湿法水泥回转窑、氧化铝熟料回转窑、红钒钠回转窑、氧化球团回转窑、活性石灰回转窑、金属镁回转窑、高岭土回转窑、氧化锌回转窑和铝矾土回转窑等所有的回转窑。 尤其重要的是,回转窑快速刮圈机的发明和应用对煤基回转窑直接还原铁(海绵铁)和煤基回转窑熔融还原铁(非焦炼铁)的健康发展具有决定性意义。可以说,没有刮圈机就没有煤基回转窑直接还原铁(海绵铁)和煤基回转窑熔融还原铁(非焦炼铁)的发展。 回转窑快速刮圈机的发明者是湖南大学和中南大学部分知识分子组成的团队,这个团队依托湖南大学和岳麓山大学园区内雄厚的科技力量和人才优势,其研究课题具有前瞻性和预见性。早在20年前,这个团队针对煤基回转窑直接还原铁和煤基回转窑熔融还原铁存在三大技术难题而数十年裹足不前的困局,开始了艰苦卓绝的攻关。经过十多年的潜心研究和实验,终于发明了刮圈机,成为煤基回转窑直接还原铁和煤基回转窑熔融还原铁技术中最核心的部分。

回转窑系统结圈原因

回转窑系统结圈原因.事故怎样判断和安全处理 (一)、回转窑结圈 1.造成结圈的主要原因 a、精矿粉品位低,SIO2高在有FeO存在的情况下,容易生存低熔点硅酸盐矿物。 b、生球强度低,在运输过程中容易产生粉末。 c、链篦机干球焙烧强度低,入窑后再次产生粉末。 d、操作不当回转窑窑温度控制过高,造成局部高温。 e、煤粉灰分含水量量高,灰分的熔点低,当灰分的熔点低于或接近焙烧温度时容易结圈。 f、高温状态下停窑。 2.防止结圈的措施 a、严格控制原、燃料成分达到技术要求。 b、提高生球强度。 c、控制焙烧质量,入窑球抗压强度控制在800N/个球以上杜绝粉末入窑。 d、严格控制窑温,不造成局部长时间高温。 e、严禁高温停窑。 3.回转窑清圈机处理方法 (1)旧的方法、冷却法除圈:,除圈的人工方法。采用风镐、钎子、大锤等工具(2)、新旧方法烧圈.热窑机械去除结圈:a、冷烧及热烧交替烧法。首先减少或停止入窑料(视结圈程度而定),在窑内结圈处增加煤量和风量,提高结圈处温度,再停止喷煤降低结圈处温度这样反复处理使圈受冷热交替相互作有用,造成开裂而脱落。;b、冷烧:在正常生产时,在结圈部位造成低温气氛使其自行脱落。新型快速方法停窑用回转窑结圈清圈机快速处理结圈 (二)、回转窑结块原因 1、结块的原因:是由于生球质量差,在链篦机内粉化或链篦机焙烧球强度不够,在回转窑内破裂后结块或排入环冷机后粘结成块 2.控制措施:a、严控进厂原、燃料质量,把好造球关;b、造球机启动控制;c、布料厚度与机速;d、提高生球和链篦机上干球质量;e、稳定热工制度防止局部出现高温。 3.结块处理方法:发现固定筛上有大块及时打碎或扒出。

回转窑结圈

回转窑结圈/治理清除预防回转窑结圈的设备/回转窑清圈机/窑结圈处理机/回转窑结圈觧 决措施 生产中使用回转窑设备的正常生产非常重要,关于回转窑结圈的问题原因,我们巳经探讨许多,也介绍了回转窑故障事故,回转窑结圈前结圈,窑后结圈的原因,以巳处理方法,现着介绍一下制理处理清除回转窑结圈的设备,名称回转窑清圈机别名窑结圈处理机/的创造发明过程,,用什么机械设备处理回转窑结圈解决回转窑结圈措施一、概述 由巩义市中佳节能设备制造公司研制的提高回转窑产能的高新技术产品.预防治理处理回转窑结圈的设备,快速处理回转窑结圈的设备,处理回转窑结大球大蛋设备,回转窑清圈机.窑内结蛋球打蛋机,窑内结圈处理机(窑内结圈打圈机铲圈机)是针对回转窑普遍存在的回转窑皮不均匀、回转窑厚窑皮、回转窑长窑皮、回转窑内结圈、回转窑内结瘤、回转窑内结蛋结大小球、等痼疾导致回转窑红窑、料层不均匀、回转窑系统阻力增大、回转窑内有效截面积缩小,严重影响回转窑产能和有郊预防回转窑结圈而设计的,一种机电一体化并具有智能化的中型机械,该机由、钎杆、冲击装置、行走自动退让系统、冷却系统和人工变频控制系统组成,一般规格长十至二十二米,宽一点五至二点二米,高一点八至三点五米。实际大小、回转窑结圈快速清圈机长度根据用户现场要求设计和配置。 回转窑结圈、结瘤、结蛋、长厚窑皮和长长窑皮是各种回转窑普遍存在的现象,曾有人说过回转窑结圈是世界性难题。无论是早期的湿法水泥回转窑系统,还是近年来兴起的链篦机-回转窑-环冷机氧化球团回转窑系统;无论是以煤为燃料的回转窑还是以气或油为燃料的回转窑;无论是各种水泥回转窑、红钒钠回转窑、氧化铝熟料回转窑、氧化镁回转窑、氧化球团回转窑、二氧化钛回转窑和活性石灰回转窑等氧化类回转窑,还是碳素回转窑、永磁铁氧体回转窑或还原钛铁矿回转窑等还原类回转窑;从小到直径不足1米的永磁铁氧体回转窑到直径6米以上的大型链篦机-回转窑-环冷机氧化球团回转窑等,几乎所有的回转窑都有结圈的问题。回转窑结圈,严重的影响了回转窑的运转率,给企业带来巨大的经济损失,耗费了大量的人力物力。如河南某企业的活性石灰回转窑,投资数千万元人民币,由于频繁结圈,严重影响正常的生产,导致长期不能达产,甚至长期停产。国内某企业在投资活性石灰窑选型时,由于考虑活性石灰回转窑有结圈问题,居然决定放弃石灰活性度高的回转窑系统,转而选用石灰活性度较低的竖窑系统。又如国内某红钒钠回转窑生产企业准备耗资数百万元建造煤气发生炉生产半水煤气,用来替代现有的煤粉作燃料,以减少结圈。我国是煤炭大国,煤炭资源丰富,以煤为燃料,成本相对较低,我国大多数回转窑采用煤为燃料,然而,以煤粉为燃料的回转窑其结圈的频率大大高于以油和气为燃料的回转窑,因此有效预防和消除回转窑的结圈问题势在必行。 早在上世纪90年代初,河南巩义中佳节能设备有限公司李建坡总工在对回转窑进行自动化控制的同时,就开始致力于回转窑窑圈和厚窑皮的研究和治理,先后在氧化锌回转窑,水泥回转窑,铝酸钙粉回转窑、红钒钠回转窑、二氧化钛回转窑和活性石灰回转窑上实验,经历过多少次的失败和挫折,遭受过不少责难和非议,也最终得到过企业的理解和支持;耗费了大量的财力物力,取得了宝贵的经验教训;我们设计过多种多样的机型,特别是铲头的设计

回转窑常见的九类问题分析

回转窑常见的九类问题分析 一、跑生料 对于一定生料喂料量,用煤量偏少,热耗控制偏低,煅烧温度不够; 结圈或大量窑皮垮落,来料量突然增大,而操作员不知道或没注意,用煤量和窑速没有及时调节或判断有误; 分解炉用煤量偏小,人窑生料分解率偏低,窑用煤量较多但窑内通风不好,烧成带温度提不起来; 回转窑产量在偏低范围内运行,致使预热器系统塌料频繁发生。 二、窑头回火 冷却机废气风机阀门开度太大; 熟料冷却风机出故障或料层太致密,阻力太大,致使冷却风量减少; 窑尾捅灰孔、观察孔突然打开,系统抽力减少。 三、窑尾和预分解系统温度偏高 窑内通风不好; 供料不足或来料不均匀; 旋风筒堵塞使系统温度升高; 烧成带温度太低,煤粉后燃。 四、冷却机废气温度太高 冷却机篦板运行速度太快,熟料没有充分冷却就进入冷却机中部或后部;

熟料冷却风量不足,出冷却机熟料温度高,废气温度自然升高。 五、烧成带温度太高 来料少而用煤量没有及时减少; 燃烧器内流风太大,致使火焰太短,高温带太集中; 二次风温度太高,黑火头短,火点位置前移。 六、烧成带温度太低 风、煤、料配合不好; 在一定的燃烧条件下,窑速太快; 回转窑窑尾来料多或垮窑皮时,用煤量没有及时增加; 冷却机一室篦板上的熟料料层太薄,二次风温度太低。 七、二次风温度太低 喷嘴内伸,火焰又较长,窑内有一定长度的冷却带; 冷却机一室高压风机风量太大; 篦板上熟料分布不均匀,冷却风短路,没有起到冷却作用。八、烧成带物料过烧 用煤量太多,烧成温度太高; 生料均化不好,化学成分波动太大或者生料细度太细致使物料太容易烧结; 窑灰直接人窑时,瞬间掺人比例太大。 九、窑口结圈 二次风温长期偏高,煤粉燃烧速度太快,火焰太集中; 烧成带温度太高,物料过烧;

回转窑结圈的影响因素及解决措施

回转窑结圈的影响因素及解决措施 -----龙仕连我司从11月23日开始窑内断断续续出现少量漏料,并出现了三次大料球,严重影响到窑的正常运转,公司及部门领导高度重视。经分析是窑23米处结后圈导致窑尾漏料和结料球。于25日开始处理后圈:1、窑减产到350 t/h煅烧;2、窑头煤管每个班移动两次,-200~+100冷热交替处理;3、每班清理煤管头部积料结焦4次,以保证头煤燃烧好,火焰集中;4、控制煤粉细度及水分,以保证煤粉燃烧效果(煤磨出磨温度控制在63~65度,入磨温度<300度。内部控制煤粉细度<6.0);5、适当提高熟料KH。通过3天的处理,23料处后圈薄了很多,并有缺口,于28日窑恢复了365 t/h正常生产。出现这样的工艺事故,我们必须深度反思。特别是工艺管理人员和窑操作员一定要密切关注窑皮的变化趋势及原燃材料的变化,及时调整窑参数,保证窑正常运转。下面让我们再次学习一下窑内结圈的成因、危害及解决措施:结圈是指回转窑在正常生产中,由于原燃材料的变化,或者操作和热工制度的影响,窑内因物料过度粘结,在特定的区域形成一道阻碍物料运动的环形、坚硬的圈。这种现象在回转窑内是一种不正常的窑况,它破坏了正常的热工制度,影响窑内通风,造成窑内来料波动很大,直接影响到回转窑的产量、质量、消耗和长期安全运转。而且处理窑内结圈费时费力,严重时需停窑停产,危害极其严重。 结圈的成因及危害: 结圈的形成: 结圈实际上是在烧成带末端与放热反应带交界处形成的窑皮,是回转窑内危害最大的结圈。在熟料煅烧过程中,当物料温度达到1280℃时,其液相黏度较大,最容易形成结圈,而且冷却后比较坚固,不易除掉。在正常的煅烧情况下,后结圈体的内径部分往往被烧熔而掉落,保持正常的圈体内径。如果在1 250~l 280℃温度范围内出现的液相量偏多,往往会形成妨碍生产的后结圈。后结圈一般结在烧成带的边界或更远,开始是烧成带后边的窑皮逐渐增长、增厚,发展到一定程度即形成后结圈。结圈严重时的窑皮长度是正常窑皮的数倍。 结圈的成因: (1)入窑生料成分波动大,喂料量不稳定。 (2)原燃材料中有害成分的影响。 (3)煤的影响: 煤粉的制备质量差,水分大,细度粗,煤粉容易产生不完全燃烧,导致结圈。

回转窑窑后结圈原因分析及处理方法

回转窑窑后结圈原因分析及处理方法 巩义市恒昌冶金建材设备厂生产的1000t/d熟料生产线是由天津水泥工业设计研究院有限公司设计的,主要包括TDF型分解炉、单系列五级旋风预热器、Φ3.2m×50m回转窑及TC-836篦式冷却机。自2007年2月以来,窑后频繁发生结圈、结球的工艺事故,巩义市恒昌冶金建材设备厂技术人员现将原因分析及解决措施介绍如下,供同仁参考。 1、结圈情况 2007年3月19日最为严重,窑前返火,窑尾有漏料现象,无法操作煅烧,迫使停窑处理。从窑内看,主窑皮长达22m,副窑皮长到窑尾,35~37m处形成后结圈,结圈最小孔洞呈不规则状,直径约l.5m,进窑观察该圈明显分为两层,且层次明确、清晰,第一层厚约150mm,呈黄白色,第二层厚约460mm,呈黑色,圈体非常致密。对圈体取样分析见表1。 表1 圈体取样分析结果 从表l可以看出,第一层硫碱含量较高,是硫碱圈,第二层明显是煤粉圈,熟料液相出现过早、过多导致结圈。 2、原因分析 (1)由于2006年煤价不断上涨,加之公路运输距离远,为了降低成本,采用当地劣质煤煅烧,煤质下降,灰分高,挥发分低,发热值低,煤工业分析如表2、3。实际生产中,煤可燃性差,煤粉燃烧不完全,大量煤灰不均掺入生料中,液相在窑后面提前出现,而未燃尽的煤灰产生沉积及液相的提前出现结圈。 (2)2007年以来,由于机械原因,高温风机l号轴与密封圈强烈摩擦,产生局部高温,使轴侧曲,水平振动最高达6.4mm/s。为了降低振动,不得不降低高温风机转速,由原来的1130r/min降至l060r/min,有时更低,严重影响了窑内通风,加上煤质又差,更多的窑头燃烧不完全的煤粉沉积在窑后燃烧,使窑内后部温度升高,液相量增加,加速了窑后结圈的形成。

结圈形成的原因、预防措施和处理方法

结圈形成的原因、预防措施和处理方法 1.结圈形成的原因 当窑内物料温度达到1200℃左右时就出现液相,随着温度的升高,液相粘度变小,液相量增加。暴露在热气流中的窑衬温度始终高于窑内物料温度。当它被料层覆盖时,温度突然下降,加之窑简体表面散热损失,液相在窑衬上凝固下来,形成新的窑皮。窑继续运转,窑皮又暴露在高温的热气流中被烧熔而掉落下来。当它再次被物料覆盖,液相又凝固下来,如此周而复始。假如这个过程达到平衡,窑皮就不会增厚,这属正常状态。如果粘挂上去的多,掉落下来的少,窑皮就增厚。反之则变薄。当窑皮增厚达一定程度就形成结圈。形成结圈的原因主要有如下几点: 1.1入窑生料成分波动大,喂料量不稳定 实际生产过程中,窑操作员最头疼的事是人窑生料成分波动太大和料量不稳定。窑内物料时而难烧时而好烧或时多时少,遇到高KH料时,窑内物料松散,不易烧结,窑头感到“吃火”,熟料fCaO高,或遇到料量多时都迫使操作员加煤提高烧成温度,有时还要降低窑速;遇到低KH料或料量少时,窑操作上不能及时调整,烧成带温度偏高,物料过烧发粘,稍有不慎就形成长厚窑皮,进而产生熟料圈。 1.2 有害成分的影响 分析结圈料可以知道,CaO+A1203+Fe203+Si02含量偏低,而R20和S03含量偏高。生料中的有害成分在熟料煅烧

过程中先后分解、气化和挥发,在温度较低的窑尾凝聚粘附在生料颗粒表面,随生料一起人窑,容易在窑后部结成硫碱圈。在人窑生料中,当MgO和R20都偏高时,R20在MgO引起结圈过程中充当“媒介”作用形成镁碱圈。根据许多水泥厂的操作经验,当熟料中MgO>4.8%时,能使熟料液相量大量增加,液相粘度下降,熟料烧结范围变窄,窑皮增长,浮窑皮增厚。有的水泥厂虽然熟料中MgO<4.0%,但由于R20的助熔作用,使熟料在某一特定温度或在窑某一特定位置液相量陡然大量增加,粘度大幅度降低,迅速在该温度区域或窑某一位置粘结,形成熟料圈。 1.3 煤粉质量的影响 灰分高、细度粗、水分大的煤粉着火温度高,燃烧速度慢,黑火头长,容易产生不完全燃烧,煤灰沉落也相对比较集中,就容易结熟料圈。取样分析结圈料未燃尽煤粉较多就是例证。另外,喂煤量的不稳定,使窑内温度忽高忽低,也容易产生结圈。 1.4 一次风量和二次风温度的影响 三风道或四风道燃烧器内流风偏大,二次风温度又偏高,则煤粉一出喷嘴就着火,燃烧温度高、火焰集中,烧成带短,而且位置前移,容易产生窑口圈,也称前结圈。 2. 前结圈 在正常煅烧条件下,物料温度达1350—1450℃时,液相量约为24%,粘度比较大。当熟料离开烧成带时,温度仍在1300℃以上,在烧成带和冷却带的交界处,熟料和窑皮有较

水泥回转窑结圈的预防和处理

各种类型的水泥回转窑都遇到过结圈问题。结圈使窑该处的横断面积显著减少,严重影响窑内通风,阻碍物料运动,对回转窑的产量、质量、安全运转、煤耗、电耗均有一定影响。尤其频繁结圈的回转窑, 不仅破坏了窑内正常热工制度,而且损害操作人员的身体健康,给生产造成经济损失。 引起回转窑结圈的因素很多,它与原料性质、生料成分、燃料的灰分和细度、窑型、窑内还原气氛及热工制度等有关。在实际生产过程中,煅烧硅酸率高的熟料时,对减少结圈有好处,但是烧硅酸率很高的白水泥熟料也结圈。至于说煤灰的影响,但所有烧油的水泥回转窑同样也结圈。所以结圈问题比较复杂。现结合生产中的体会和认识,谈 谈水泥回转窑结圈的预防和处理。 1结圈的形成 回转窑内形成结圈的因素很多,但液相的产生和固化是结圈的主要形成过程。而衬料温度、物料温度、煤灰和生料组成又是决定液相的生成和固化的主要因素。在熟料煅烧过程中,生料在1200 C左右出现液相,在1250 C左右液相粘度开始变小,液相量增加,由于料层覆盖温度突降,加之筒体表面散热,液相在窑壁上凝固下来,形成窑皮。窑继续运转,窑皮又暴露在高温中而被熔掉下来,再次被物料覆盖,液相又凝固下来,如此周而复始。如果粘挂上去的多,掉下来的小,窑皮就增厚, 反之就变薄。在正常情况下,窑皮可保持在200mm 左右的厚度。该温度条件及区域内若熔化和固化的过程达到平衡,窑皮就不会增厚。当熔化的少固化的多,其厚度增长到一定程度,即形成圈。当衬料与物料的温差大时,在足够液相的条件下,圈体越结越厚。 1.1 前结圈的形成

前结圈(又称窑口圈),是结在回转窑烧成带末端部位的圈。在正常煅烧条件下,物料温度为1350?1450 C ,液相量约为24%,其粘度较大。当熟料离开烧成带时,液相开始冷却,进入冷却带的液相已基本固化。在烧成带和冷却带的交界处存在着较大的温差,窑口物料温度高于窑皮温度。当熟料进入冷却带时,带有液相的高温熟料覆盖在温度较低的末端窑皮上,就会很快粘结、越粘越厚,最后形成前结圈。在煅烧过程中,当烧成带高温部分温度过于集中时,冷却带与烧成带交界处出现很大的温差,加之高温急烧液相量增多,粘度较小,熟料进入冷却带时,仍有大量液相迅速冷却在交界的附近,促进了前圈的增长。1.2 熟料圈的形成 熟料圈(又称二道圈) ,是结在窑内烧成带与放热反应带之间的圈, 也是回转窑内危害最大的结圈。在熟料煅烧过程中,当物料温度达到1 280 C时,其液相粘度较大,熟料圈最易形成,冷却后比较坚固,不易除掉,在正常煅烧情况下,熟料圈体的内径部分,往往被烧熔而掉落,保持正常的圈体内径。如果在1250?1280 C温度范围内出现的液相量偏多,往往形成妨碍生产的熟料圈。熟料圈一般结在烧成带的边界或更远,开始是烧成带后边的窑皮逐渐增长,逐渐长厚,发展到一定程度即形成熟料圈。严重熟料圈的窑皮长度有的甚至长出正常窑皮长度的几倍。如某白水泥厂①3.6mx65m三级旋风预热器窑,在试产期间曾结过一次严重的熟料圈。窑内窑皮长达52m(自窑头护口铁测量),圈体最厚处达1050mm 。致使试产无法进行,被迫停窑处理。 2结圈的预防和处理

陶粒砂煅烧回转窑前后结圈不同处理办法

陶粒砂煅烧回转窑前后结圈不同处理办法 随着科学技术的不断发展,回转窑作为建材设备,它促进了国内工业发展进程,陶粒砂回转窑是一个生产高品质陶瓷砂的关键设备,在生产中作用大。河南豫晖是专业制造环保陶粒砂回转窑机械设备厂家,我公司生产设备质量高价格低,品质保证。 目前我国陶粒砂回转窑煅烧超细高岭土工艺技术成熟、先进,这种煅烧技术能耗低、产量高,产品经脱水、脱碳增白,性能稳定,可用于造纸及涂料等工业领域。

在陶粒砂回转窑烧结过程中结圈是经常发生的,在结圈前如果预防的得当会减少陶粒砂回转窑结圈的故障;在陶粒砂回转窑结圈后的处理方法也一定要得当,要不然会造成巨大损失的,下面我们就来看看豫晖小编总结的回转窑前结圈和后结圈的不同处理办法。 结圈分为前结圈和后结圈两种,一般都是在窑速较慢的情况下才能形成的。 (1)前结圈的处理。当前结圈不高时,对锻烧操作影响不大,但会增加烧成的料层厚度,延长物料在烧成带的停留时间;当前结圈比较高时,会对窑况或热工制度产生较大影响,引起窑内通风变差,窑头时有正压现象,火焰伸不进去且火焰的形状不好;大块熟料也不易滚出,容易砸坏窑皮,等等。处理时,只要将喷煤管拉出,使高温集中在结圈的位置,就可以逐步将前结圈烧掉。

(2)后结圈的处理。后结圈主要在烧成带与过渡带之间形成,它会影响整个系统的通风、产量及质量,处理时通常要采用冷热交替法。其中:当后结圈结得长而不高时,只要将喷煤管向外拉出,调整火焰形状,使火焰粗而短,就可降低结圈处的温度,使之逐渐垮落(此法称为冷烧法);若圈已经长高并严重影响了窑内的通风时,要先减喂料量(为正常喂料量的80%左右),并采用冷热交替法各烧2h左右,直到把圈烧垮为止。后者,往往圈后会积有很多生料粉,当圈垮落后,会迅速涌向烧成带,这时应将喷煤管及时拉出,减慢窑速(通常称为预打小慢车),适当关小排风,让火力强度集中在烧成带,以尽量避免跑生料或久烧料出现。 (3)用陶粒砂回转窑窑内结圈快速处理机。结圈快速处理机。第一,停机、止料、停止整个操作系统。第二,快速移动陶粒砂回转窑窑内结圈处理机到窑头处,钎杆伸入窑内,击打窑圈内部,利用陶粒砂回转窑的慢转动。寻找下一个窑圈的击打部位,

回转窑结圈的原因及处理方法

回转窑结圈的原因及处理方法 1、结圈的危害 回转窑“结圈”的部位一般在距窑口一定距离的固体燃料集中燃烧点附近的耐火窑衬上,厚度可达200-500 mm左右。“结圈”对球团生产的危害有以下几方面: (1)降低产量,增加劳动强度 窑圈一经形成,对燃料烧烧所产生的热气流势必起阻碍作用,如图-1所示。热气流被部分阻挡在A区,影响了球团的焙烧效果。同时,由于链篦机上生球的干燥、预热过程是利用窑尾废气进行的,故此,结圈也对生球的干燥、预热产生不良影响。具体地说,就是透气性差,火焰不进,后部温度低,干燥时水分不易脱除,生球爆裂、粉化严重,成品率低,从而降低了劳动生产率。 另外,圈结形成后,如不及时处理,就会使圈的纵向长度、厚度增加,当圈掉下时,必然增加工人的劳动强度,有时甚至需停机处理,也影响了球团矿的产量。 (2) 增加了设备负荷 如图-1所示,一定面积及厚度的结圈使物料流被阻于B区,此时,被阻的料量要高出正常时许多,加之圈本身的重量,必然增加了托轮、轴承的磨损,同时,增加了电机的负荷,甚至烧毁。 (3) 浪费能源 在实际看火操作中,当出现“结圈”现象后,由于热气流被阻于A区,为保证链篦机的干燥和预热效果,看火工往往采用加大给煤

量的方式,这无疑造成了能源浪费。 2、结圈的原因 结圈的原因,在生产中主要可以归纳为操作不当。具体地说,是由于上料量过大,干燥效果差,生球爆裂,粉化严重,致使透气性差,使得引风机抽动火焰的作用不明显,火焰只在窑内一定距离燃烧。在大于1 200℃的高温下,未完全氧化的Fe3O4就与磁铁矿中一定数量的SiO2发生反应形成液相。 2Fe3O4+3SiO2+2CO=3Fe2SiO4+2CO2 2FeO+SiO2=Fe2SiO4 另外,当给煤量较大时,在1 150℃条件下,Fe2O3也会部分分解为Fe3O4,与SiO2作用而生成2FeO·SiO2,形成渣相粘结。这就使得物料在流经焙烧带时,所产生的液相、渣相极易粘附在窑衬的表面,同时粘结物料而产生结圈现象。 3、处理方法 为减少或杜绝结圈现象,在生产中首先是要采取措施防止结圈,即采用正确的操作方法,稳定上料量,使料层厚度适宜,以保证干燥、预热效果,减少生球的爆裂和粉化,同时,控制喂煤量,不宜过大,使温度保持在较低范围内,避免出现渣相。 在出现结圈后,一定要及时处理,否则将出现窑壁加宽加厚的不良后果,这样就增加了处理难度,甚至影响生产正常进行。 去圈的方法有以下三种: (1) 在窑内安设移动的合金刮刀;

窑内结圈、结球的原因及处理措施

窑内结圈、结球的原因及处理措施 中控室侯素克结圈是指窑内在正常生产中因物料过度黏结,在窑内特定的区域形成一道阻碍物料运动的环形、坚硬的圈。这种现象在回转窑内是一种不正常的窑况,他破坏正常的热工制度,影响窑内通风,造成来料波动很大,直接影响回转窑的产量、质量、消耗和长期安全运转。尤其频繁结圈的回转窑,不仅破坏了窑内正常热工制度,而且损害操作人员的身体健康,给生产造成经济损失。引起回转窑结圈的因素很多,它与原料性质、生料成分、燃料的灰分和细度、窑型、窑内还原气氛及热工制度等有关。 1 结圈的形成 回转窑内形成结圈的因素很多,但液相的产生和固化是结圈的主要形成过程。而衬料温度、物料温度、煤灰和生料组成又是决定液相的生成和固化的主要因素。在正常情况下,窑皮保持在200mm左右的厚度,该温度条件及区域内若熔化和固化的过程达到平衡,窑皮就不会增厚。当熔化的少固化的多,其厚度增长到一定程度,即形成圈。当衬料与物料的温差大时,在足够液相的条件下,圈体越结越厚。 1.1前结圈的形成 前圈结在烧成带和冷却带交界处,由于风煤配合不好,或者煤粉粒度过粗,煤灰和水分大,影响煤粉燃烧,使黑火头长,烧成带像窑尾方向移动,熔融的物料凝结在窑口处使“窑皮”增厚,发展成前圈,或者由于煤粉落在熟料上,在熟料中形成还原性燃烧,铁还原成亚铁,形成熔点低的矿物或者由于煤灰分中氧化铝含量高而使熟料液相量增加,黏度增大,当遇到入窑二次风温降温、冷却,就会逐渐凝结在窑口处形成圈。 前圈形成的主要原因是煤粉的质量,熟料中溶剂矿物含量过高或氧化铝含量过高,燃烧器在窑口断面的位置不合理,影响煤粉燃烧,使结圈速度加快,前温急烧,导致温差相差大,造成液相冷却凝固形成前圈, 1.2熟料圈的形成原因

窑内结圈、结球的原因及处理措施

窑内结圈、结球的原因及处理措施 各种类型的水泥回转窑都遇到过结圈问题。结圈使窑该处的横断面积显着减少,严重影响窑内通风,阻碍物料运动,对回转窑的产量、质量、安全运转、煤耗、电耗均有一定影响。尤其频繁结圈的回转窑,不仅破坏了窑内正常热工制度,而且损害操作人员的身体健康,给生产造成经济损失。 引起回转窑结圈的因素很多,它与原料性质、生料成分、燃料的灰分和细度、窑型、窑内还原气氛及热工制度等有关。在实际生产过程中,煅烧硅酸率高的熟料时,对减少结圈有好处,但是烧硅酸率很高的白水泥熟料也结圈。至于说煤灰的影响,但所有烧油的水泥回转窑同样也结圈。所以结圈问题比较复杂。现结合生产中的体会和认识,谈谈水泥回转窑结圈的预防和处理。 1 结圈的形成 回转窑内形成结圈的因素很多,但液相的产生和固化是结圈的主要形成过程。而衬料温度、物料温度、煤灰和生料组成又是决定液相的生成和固化的主要因素。在熟料煅烧过程中,生料在1200℃左右出现液相,在1250℃左右液相粘度开始变小,液相量增加,由于料层覆盖温度突降,加之筒体表面散热,液相在窑壁上凝固下来,形成窑皮。窑继续运转,窑皮又暴露在高温中而被熔掉下来,再次被物料覆盖,液相又凝固下来,如此周而复始。如果粘挂上去的多,掉下来的小,窑皮就增厚,反之就变薄。在正常情况下,窑皮可保持在200mm左右的厚度。该温度条件及区域内若熔化和固化的过程达到平衡,窑皮就不会增厚。当熔化的少固化的多,其厚度增长到一定程度,即形成圈。当衬料与物料的温差大时,在足够液相的条件下,圈体越结越厚。 1.1前结圈的形成 前结圈(又称窑口圈),是结在回转窑烧成带末端部位的圈。在正常煅烧条件下,物料温度为1350~1450℃,液相量约为24%,其粘度较大。当熟料离开烧成带时,液相开始冷却,进入冷却带的液相已基本固化。在烧成带和冷却带的交界处存在着较大的温差,窑口物料温度高于窑皮温度。当熟料进入冷却带时,带有液相的高温熟料覆盖在温度较低的末端窑皮上,就会很快粘结、越粘越厚,最后形成前结圈。在煅烧过程中,当烧成带高温部分温度过于集中时,冷却带与烧成带交界处出现很大的温差,加之高温急烧液相量增多,粘度较小,熟料进入冷却带时,仍有大量液相迅速冷却在交界的附近,促进了前圈的增长。 1.2熟料圈的形成

回转窑工艺、操作要求及推荐参数

九沣矿业直接还原铁铁磷还原法生产 回转窑工艺、操作要求及推荐参数 一、回转窑直接还原法工艺流程 1、回转窑法工艺流程 一般如上图所示(九沣矿业使用的工艺流程与上图不完全一致)。回转窑是与水平稍呈倾斜放置在几组支撑托轮上、内衬耐火材料可连续旋转的筒形高温反应器。作业时,将一定粒度的原料(氧化铁皮)、部分还原煤(包括返回炭)和脱硫剂按比例连续从窑加料端(尾端)加入,随着窑体转动(0.5~1.2r/min),物料受摩擦力被带起一定高度并因重力作用翻滚落下,同时向窑排料端(低端)前移一小距离。在窑排料端还设有还原煤喷送装疆,靠高压空气将适宜粒度的还原煤送入窑内,调节喷送空气量能有效地控制喷入距离和分布。窑内物料加热和反应热由排料端和沿窑长装设的伸入窑内的供风管送入空气(一次风和二次风),燃烧窑内还原煤释放的挥发分、还原反应生成的CO和碳提供。如热量不足,可在窑头增设煤粉烧嘴补充。物料在前移过程中逐渐被逆向的热气流加热,完成干燥、预热、碳酸盐分解、脱硫、铁氧化物(或其他元素)还原和渗碳反应等。调节各风管供风量、煤粉和还原煤数量、粒度和分布,可灵活的控制窑内温度和分布。使入窑铁矿石在窑内停留8~10小时和950~1100℃下转变成海绵铁。 从排料端排出的高温料通过溜槽落入冷却筒。靠筒外喷水(或内、外同时喷水)将料冷却到120℃以下。为改善物料运动强化冷却,筒内装有扬料板。在回转窑卸料端及冷却筒两端安装有密封装置,生产时维持微正压,防止空气吸入发

生再氧化。冷却后的物料经筛分分级、磁选分离得出磁性颗粒料(直接还原铁)、磁性粉料、非磁性颗粒料和非磁性粉。非磁性颗粒料含较高固定碳,可作还原剂重新利用。 二、回转窑设备组成 回转窑设备主要由筒体、滚圈、支承装置、传动装置、窑头罩、密封装置、集尘室、燃烧装置及热烟室等部分构成,详见上图。 (1)筒体。回转窑的筒体由钢板卷成,从铆接已发展为全部焊接。筒体应具 有足够的刚度和强度,以保证在安装和运转中轴线的直线性和截面的圆度。筒体 内衬耐火材料,起保护简体和减少散热的作用,简体衬砖应能满足操作条件的要 求。预热带一般采用粘土砖,烧成带根据煅烧温度、化学侵蚀等因素选择。煅烧 铁矿的回转窑一般采用粘土砖或3等高铝砖砌筑。筒体两端设有窑口护板,防止 筒体因受灼热物料或高温烟气作用而变形开裂以及导致筒体的窑衬脱落。由于窑 口工作温度有时高达1000~1300℃,故窑口护板应由可以更换的耐热、耐磨材 料制成,必要时还采用风冷或水冷措施。 (2)滚圈。简体上装有若干个滚圈(轮带),将筒体分成数跨。简体、窑衬、 物料及窑皮等所有回转部分的重量均通过滚圈传递到支承装置上。滚圈由耐磨性 好,接触疲劳强度高的碳钢、合金钢铸成或锻造。滚圈截面形状有矩形和箱形两 种,当前多数采用矩形截面滚圈。滚圈与筒体之间留有适度的间隙,既可增强筒 体刚度,又不致使筒体和滚圈产生较大的热应力。

预分解窑结圈的原因分析及处理

预分解窑结圈的原因分析及处理 一、概述 公司1000t/d预分解窑是以窑尾带TD分解炉的单系列五级旋风预热器和∮3.2×46m回转窑为核心,配套∮3.5×10m中卸式烘干生料磨、503H-606H-825H推动篦式冷却机,设计生产能力920t/d 熟料。99年8月,因TD炉炉容偏小,对分解炉进行了改造,在窑尾塔架旁增设一台N-MFC流态化分解炉与原TD炉串联(见图1)。改造后,因对预分解窑认识不足,操作、管理水平跟不上,造成窑内频繁结圈,严重影响回转窑的正常运转(表1为历年结圈的次数和影响时间)。经过几年的生产,已摸清了结圈的原因,并基本解决预分解窑结圈的问题。在此,对公司预分解窑结圈的原因分析及处理过程做些简单介绍。 二、结圈的原因分析及处理 公司1000t/d预分解窑从试生产到2000年4月期间,因原燃材料成份不稳定,操作不统一、窑炉风量不平衡等原因,造成在距窑口12m至35m处频繁结圈,引起停窑次数及时间最多的是23~30m处的后结圈,16~23m处结圈造成停窑次数仅有一次,16m以内的结圈虽对产质量有一定的影响,但从未引起停窑。纵观几年的生产过程,虽然引发结圈的因素委多。但每次都有一、二个主要原因,每当解决了主要原因,结圈的问题可以得到缓解或消除。下面主要介绍一下23m~30m处后结圈的形成原因及处理过程。 1、窑内用风过大,热工制度不稳定(2000.1~3) 2000年1月至2000年5月,因回转窑25~30m处频繁结圈被迫停窑297小时,尤其2000年3月,窑内结圈停窑9次,其中进窑处理6次,共影响停窑121小时。从现象看:窑内黑火头长,窑前温度低,有时二、三个班次后,窑皮就长到30m处,后窑口开始倒料,熟料立升重偏低,一般在1000~1200g/l之间,结粒细碎,多为飞砂料,时有篦冷机堆雪人事故发生。当时分析认为:从2000年2月份开始,为解决N-MFC炉结渣的问题,在分解炉使用低挥发分煤,前煤仍然使用烟煤(见表

水泥回转窑结圈的预防和处理

水泥回转窑结圈的预防和处理 作者: 姜振元:四川省建筑材料工业设计院 各种类型的水泥回转窑都遇到过结圈问题。结圈使窑该处的横断面积显著减少,严重影响窑内通风,阻碍物料运动,对回转窑的产量、质量、安全运转、煤耗、电耗均有一定影响。尤其频繁结圈的回转窑,不仅破坏了窑内正常热工制度,而且损害操作人员的身体健康,给生产造成经济损失。 引起回转窑结圈的因素很多,它与原料性质、生料成分、燃料的灰分和细度、窑型、窑内还原气氛及热工制度等有关。在实际生产过程中,煅烧硅酸率高的熟料时,对减少结圈有好处,但是烧硅酸率很高的白水泥熟料也结圈。至于说煤灰的影响,但所有烧油的水泥回转窑同样也结圈。所以结圈问题比较复杂。现结合生产中的体会和认识,谈谈水泥回转窑结圈的预防和处理。 1 结圈的形成 回转窑内形成结圈的因素很多,但液相的产生和固化是结圈的主要形成过程。而衬料温度、物料温度、煤灰和生料组成又是决定液相的生成和固化的主要因素。在熟料煅烧过程中,生料在1200℃左右出现液相,在1250℃左右液相粘度开始变小,液相量增加,由于料层覆盖温度突降,加之筒体表面散热,液相在窑壁上凝固下来,形成窑皮。窑继续运转,窑皮又暴露在高温中而被熔掉下来,再次被物料覆盖,液相又凝固下来,如此周而复始。如果粘挂上去的多,掉下来的小,窑皮就增厚,反之就变

薄。在正常情况下,窑皮可保持在200mm左右的厚度。该温度条件及区域内若熔化和固化的过程达到平衡,窑皮就不会增厚。当熔化的少固化的多,其厚度增长到一定程度,即形成圈。当衬料与物料的温差大时,在足够液相的条件下,圈体越结越厚。 1.1 前结圈的形成 前结圈(又称窑口圈),是结在回转窑烧成带末端部位的圈。在正常煅烧条件下,物料温度为1350~1450℃,液相量约为24%,其粘度较大。当熟料离开烧成带时,液相开始冷却,进入冷却带的液相已基本固化。在烧成带和冷却带的交界处存在着较大的温差,窑口物料温度高于窑皮温度。当熟料进入冷却带时,带有液相的高温熟料覆盖在温度较低的末端窑皮上,就会很快粘结、越粘越厚,最后形成前结圈。在煅烧过程中,当烧成带高温部分温度过于集中时,冷却带与烧成带交界处出现很大的温差,加之高温急烧液相量增多,粘度较小,熟料进入冷却带时,仍有大量液相迅速冷却在交界的附近,促进了前圈的增长。 1.2 熟料圈的形成 熟料圈(又称二道圈),是结在窑内烧成带与放热反应带之间的圈,也是回转窑内危害最大的结圈。在熟料煅烧过程中,当物料温度达到1280℃时,其液相粘度较大,熟料圈最易形成,冷却后比较坚固,不易除掉,在正常煅烧情况下,熟料圈体的内径部分,往往被烧熔而掉落,保持正常的圈体内径。如果在1250~1280℃温度范围内出现的液相量偏多,往往形成妨碍生产的熟料圈。熟料圈一般结在烧成带的边界或更远,开始是烧成带后边的窑皮逐渐增长,逐渐长厚,发展到一定程度即形成熟料圈。

回转窑结圈问题

?01,10,20,24,30,33 | 11 ?04,16,20,22,24,27 | 15 ?04,05,08,12,15,29 | 07 ?04,18,20,30,31,33 | 10 ?02,11,14,18,20,25 | 14 立即投注 第三代篦冷机应用现状及注意的问题 2011-2-28 作者: 一、国产第三代篦冷机的结构特点 高温区采用固定和活动充气梁技术进行热回收,中温区采用高阻尼低漏料篦板,低温区采用富勒改进型篦板,同时篦冷机实施厚料层操作,篦冷机结构上主要是充气梁安装高阻尼充气式篦板,固定式充气梁的供风由固定式分配风管实现篦板供风,活动式充气梁的供风由活套式分配风管或者关节式活动风管或者式金属绕性软连接风管实现篦板供风。高阻尼低漏料篦板和富勒改进型篦板的供风由篦冷机空气室供风来实现。 篦床的结构确定为复式水平推动布置,通常高温区5-10排固定篦板为15度角布置,一段为3度角布置,后段均为水平布置,破碎机根据实际情况选择使用锤式破碎机或者辊式破碎机,目前中国国产第三代控制流充气梁篦冷机普遍采用吹式破碎机,国外公司大多选择辊式破碎机。 整个篦冷机根据单机产量负荷情况进行分段,通常分为1-3段,日产700-1000吨熟料生产线的篦冷机仅仅设计为固定篦板和一段篦床,日产2000-3500吨熟料生产线的篦冷机设计为固定篦板和两段篦床,日产3500-10000吨熟料生产线的篦冷机设计为固定篦板和三段篦床,使用效果很好。第二代篦冷机单位篦床面积产量仅为30~40t/m2.d,而第三代篦冷机乃至第四代篦冷机单位篦床面积产量已达到40~50t/m2.d以上。第三代空气梁式篦冷机的广泛应用,使出窑熟料得到急速淬冷,冷却机热回收效率已达73%以上。比如安徽海螺集团2500吨及5000吨生产线上广泛使用TC1164、NC-III型LBT32216、TC12102、NC-III型LBT36356、NC-III型LBT36352、NC39325篦冷机,8000吨生产线使用伯利鸠斯公司的RS 4821/III型篦冷机,10000吨生产线采用英国CP公司的HE10 -1845R/1845R/1845R篦冷机,这些均代表水泥行业中第三代篦冷机的先进型号,同时也是使用在广泛的机型,比如天津水泥研究设计院设计的TC1164、TC12102在海螺集团内生产线上使用很广泛,而且技术成熟,使用效果好。 二、第三代篦冷机与第二代篦冷机的区别 1、料层厚度增加。由于采用充气梁技术、高阻尼技术和高压风机,熟料冷却风的穿透能力上升,熟料在篦床上采取厚料层操作。 2、高温区风机的风压上升。由于采用高阻尼篦板和充气梁技术,供风风机的风压上升,

相关主题
文本预览
相关文档 最新文档